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Abstract: A new nonparametric approach to identify multivariable Hammerstein models 
is presented in this paper. The linear dynamic subsystem is identified and represented by 
its finite impulse response (FIR) model, and, the static nonlinearity is identified and 
represented as an MIMO input-output mapping. By specially designed test signals, the 
estimation of FIRs for multivariable linear subsystems can be conducted under a SISO 
framework and can be decoupled from the identification of the static nonlinearity. Due to 
the nonparametric nature, the representation of MIMO Hammerstein model may not be 
unique. By making uses of this fact, several parameters can be adjusted to shape the 
model for achieving engineer’s requirement. These above-mentioned representations can 
be used to obtain an exact process model or an apparent model suitable for control design. 
Copyright © 2007 IFAC 
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1. INTRODUCTION 

 
Most chemical processes are better represented by 
nonlinear models, which can be able to describe the 
global behaviour of the system over the whole 
operating range. Thus, many research activities have 
focused on developing identification methods of 
nonlinear systems. One of the most frequently used 
nonlinear model structure is the Hammerstein model, 
which are composed of a memoryless static 
nonlinearity followed by a linear dynamical system.  
 
Many techniques have been proposed for the 
identification of Hammerstein systems. Most of the 
methods focus on single-input-single-output (SISO) 
systems, while only some methods can handle multi-
input-multi-output (MIMO) systems (e.g. Verhaegen 
and Westwick, 1996; Al-Duwaish and Karim, 1997). 
These techniques mainly differ in the way the static 
nonlinearity is represented and in the type of 
optimization problem that is finally resulted. In 
parametric approaches, the static nonlinearity is 
expressed  in  terms of  a  given  functional form (e.g. 
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polynomial, neural network, expansion of basis 
functions) with a set of parameters. However, a priori 
knowledge of the process is required to select an 
appropriate form. Regardless of the parameterization 
scheme chosen, the resulted optimization problem 
(sometimes non-convex) is usually difficult to solve 
and the global convergence of the estimated 
parameters is not always guaranteed. Recently, Lee 
et al. (2005) proposed an identification method by a 
special test signal that enables the decoupling of the 
identification of the linear dynamical part from that 
of static nonlinearity. Chan et al. (2006) use cardinal 
cubic spline functions to model the static nonlinearity 
and then the nonlinear identification problem is 
converted into a linear one. Although the 
optimization problem has been simplified, the 
parameterization of static nonlinearity is still required. 
 
Motivated by the above problems for Hammerstein 
model identification, a new nonparametric approach 
is presented in this paper. The parameterization of 
system is not required and complicate optimization 
problem  is   avoided.   By   specially   designed   test 
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Fig. 1. Hammerstein model. 
 
signals, the identification of multivariable linear 
subsystem can be conducted under a SISO 
framework and can be decoupled from the 
identification of the static nonlinearity. Due to the 
nonparametric nature, the representation of MIMO 
Hammerstein model may not be unique. Several 
parameters within the model can be adjusted to 
obtain an exact process model or an apparent model 
for control system design. 
 

2. PROBLEM FORMULATION 
 
A Hammerstein system is schematically represented 
in Fig. 1. The system consists of a static nonlinearity 

( )F i  followed by a linear time invariant (LTI) 
system ( )qG  which contains all the dynamics of the 
process.  Let ( )H l  be the impulse response matrix 
of a m n×  (m inputs, n outputs) LTI system with 
elements 1,2, ; 1,2,( ){ }i j i n j mh = =L Ll , and 

1,2, ,( ) { ( )} :j j mf ==F Li i  m m→¡ ¡  be a nonlinear 
vector function. The input-output relationship is then 
given by 

 

( )

1

0

( ) ( ) ( ) ( )

( ) ( )

L

k k k

k k

−

=

= − +

=

∑y H v e

v F u
l

l l
 (1) 

where ( )ku , ( ) mk ∈v ¡ , ( )ky  and ( ) nk ∈e ¡  are 
the system input, intermediate input (unobserved), 
output and noise, respectively, and L is the length of 
the longest ( )i jh l . The identification problem is to 

find ( )H l  and input-output mapping of ( )F i  based 
on a devised input ( )ku  and the observed output 

( )ky . This is a nonparametric approach because no 
specific model structure is imposed on either the 
nonlinearity or the LTI system. The only 
assumptions are that the LTI system is stable and 

( ) =F 0 0 . 
 
In order to simplify the presentation of our method, 
the following content of this paper is focused on the 
identification of a 2 2×  Hammerstein system. 
However, the proposed method can be applied to a 
general m n×  system straightforwardly. 
 

3. IDENTIFICATION OF LTI SYSTEM 
 
The impulse response matrix of a multivariable LTI 
system can be estimated by least-squares method 
(Hsia, 1977) provided that its input and output data 
are given. For Hammerstein system, the intermediate 
variable ( )kv  is unobserved so that the least-squares 
method cannot be directly applied. Thus, we propose 

a special test signal to excite the Hammerstein 
system for the estimation of its impulse response 
matrix.  
 
3.1 Process Excitation 
 
A sequential multi-stage process excitation using a 
special test signal is proposed. The number of stage 
equals the number of input variable m. At the Jth 
stage, the Jth input ( )Ju k  is a pseudo-random binary 
sequence (PRBS) of which one step value must be 
zero, while all other inputs  ( )ju k , j J≠ , are zero. 

It  follows that each intermediate variable ( )jv k , 
1, 2, ,j m= L , is also a PRBS of which one step 

value is zero and  has the same switch time with 
( )Ju k . As we will show in the following, such test 

signal can make the identification of LTI system be 
separated from the nonlinearity. 
 
3.2 Estimation of Impulse Response Matrix 
 
Consider the identification of LTI system of a 2 2×  
Hammerstein process. Denoting a PRBS with its two 
step values being a and b as PRBS( , )a b , the input at 

the first stage is 1 1( ) PRBS 0( , )u k u= , 2 ( ) 0u k =  
and, hence 

 1 1 1

2 2 1

( ) PRBS 0) 0

( ) PRBS 0) 0

( ( , , )
( ( , , )

v k f u

v k f u

=

=
 (2) 

with the same switch time as 1( )u k . The input at the 

second stage is 1( ) 0u k = , 2 2( ) PRBS 0( , )u k u=  
and, hence 

 1 1 2

2 2 2

( ) PRBS 0, ) 0

( ) PRBS 0, ) 0

( ( , )
( ( , )

v k f u

v k f u

=

=
 (3) 

with the same switch time as 2 ( )u k . Notice that the 
nonlinear functions in ( )F i  can be scaled by any 
nonzero constants because the steady-state gains of 
the LTI system will compensate it accordingly. Here, 
we assume, without loss of generality, 1 1 10( , )f u u=  

and 2 2 20,( )f u u= . Thus, the intermediate variables 

at the first stage (Eq.(2)) become 1 1( ) ( )v k u k=  and 

2 2 1( ) ( )v k p u k= , where 2 2 2 1 2 2 1( , 0) (0, )p u f u f u u= . 
Similarly, the intermediate variables at the second 
stage (Eq.(3)) become 1 1 2( ) ( )v k p u k=  and 

2 2( ) ( )v k u k= , where 1 1 1 2 1 1 2(0, ) ( , 0)p u f u f u u= .  
 
The input-output relationship of a 2 2×  LTI system 
in Eq.(1) can be written as (the noise term is omitted 
for simplicity) 

 
[ ]

[ ]

1

1 11 1 12 2
0

1

2 21 1 22 2
0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

L

L

y k h v k h v k

y k h v k h v k

−

=

−

=

= − + −

= − + −

∑

∑
l

l

l l l l

l l l l
 (4) 
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At the first and second stages, Eq.(4) becomes 

 
[ ]

[ ]
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0

1

2 21 2 22 1
0
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( ) ( ) ( ) ( )

L

L
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−

=

−

=

= + −
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l

l l l

l l l
 (5) 

and 

[ ]

[ ]

1
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0

1

1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

L

L

y k p h h u k

y k p h h u k

−

=

−

=

= + −

= + −

∑

∑
l

l

l l l

l l l
      (6) 

respectively. It is seen that Eqs.(5) and (6) represent 
four SISO LTI systems where the input and output 
data of each system are known. Let 

 

(1)
1 11 2 12

(1)
2 21 2 22

( 2)
1 1 11 12

( 2)
2 1 21 22

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

h h p h

h h p h

h p h h

h p h h

= +

= +

= +

= +

l l l

l l l

l l l

l l l

 (7) 

At the first stage, (1)

1 ( )h l  and (1)

2 ( )h l can be 
identified, for 0,1, , 1L= −l L , based on data 

1 1( , )u y  and 1 2( , )u y , respectively; at the second 

stage, (2 )

1 ( )h l  and (2 )

2 ( )h l can be identified based on 

data 2 1( , )u y  and 2 2( , )u y , respectively. These SISO 
identification tasks can be done by standard least-
squares method (Hsia, 1977) or subspace-based 
least-squares algorithm (Jeng and Huang, 2006). 
Rewrite Eq.(7) in matrix form as 
 ( ) ( )Q = H Pl l  (8) 
where 

 

(1) (2)
1 1
(1) (2)
2 2

1

2

11 12

21 22

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

1
1

h h
h h

h h
h h

p
p

=

=

=

 
 
 
 
 
 
 
 
 

Q

H

P

l l
l

l l

l l
l

l l
 (9) 

or,  
 1( ) ( ) , 0,1, , 1L−= = −H Q Pl l l L  (10) 
Notice that P  is a square matrix with all the diagonal 
elements as unity. Since the elements of ( )Q l  are 
identified, the impulse response matrix ( )H l  can be 

computed by Eq.(10) with given values of 1p  and 

2p  provided 1 2 1p p ≠ . The selection of values of 1p  

and 2p  will be discussed later. 
 

4. IDENTIFICATION OF NONLINEARITY 
 
With the arbitrarily given values of 1p  and 2p , 

denoted as 1p%  and 2p%  ( 1 2 1p p ≠% % ), the LTI system is 
estimated by Eq.(10) as  

 1( ) ( ) −=H Q P% %l l  (11) 

Then, based on ( )H% l , it is possible to reconstruct the 
unobserved intermediate variable ( )kv%  from output 

( )ky . As a result, the input-output mapping of the 

nonlinearity ( ) : ( ) ( )k k→F u v% %i  can be built by 
exciting the system with devised ( )ku  which covers 
the region of interest.  
 
4.1 Process Excitation 
 
The accuracy of extrapolation of a nonlinear function 
is not guaranteed. Thus, the distribution of 
introduced input signal to excite the nonlinear 
function must cover the whole space expanded by 
input variables. In addition, higher density has to be 
used in the region where high model accuracy is 
desired. If there is not enough a priori knowledge 
about the process, uniformly distributed signal is 
recommended as test input. In this paper, 
multivariable multi-step signal is used. For example, 
if the numbers of possible value of 1u  and 2u  are 1n  

and 2n , respectively, then the test signal contains a 

total of 1 2n n  steps which are all combinations of 1u  

and 2u , with one sampling interval for each step. The 
sequence of these steps can be randomly ordered. 
 
4.2 Estimation of Nonlinear Mapping  
 
Assume the introduced multi-step signal contains 

1N +  steps, i.e. ( ), 0,1, ,k k N=u L , and ( )k =u 0  
for k N> . Then, the LTI system of Eq.(4) can be 
rewritten, based on  ( )H% l  and ( )kv% , as matrix form 

 =η Φυ% %  (12) 
where  

1 111 12

2 221 22

, ,
     
     

    

υ ηΦ Φ
Φ = υ = η =

υ ηΦ Φ

% % %% %% % %
 (13) 

with 
(0) 0 0

(1) (0) 0

( ) ( 1) (0)

( 1) ( 2) ( 1)

( ) 0 for 

ij

ij ij

ij

ij ij ij

ij ij ij

ij

h

h h

h N h N h

h N L h N L h L

Lh

=
−

+ − + − −

= ≥

 
 
 
 
 
 
 
 
  

Φ

% L
% % L

M M O M%
% % %L

M M O M
% % %L

l l%

 
[ ]
[ ]

(0) (1) ( )

(0) (1) ( 1)

T

j j j j

T

i i i i

v v v N

y y y N L

=

= + −

υ

η

% % % %L

L
 

Notice that if the LTI system has time delay, the 
rows, where all elements are zero, of Φ%  and η  have 

to be removed. Since the row number of Φ%  is always 
larger than the column number and all elements of 
Φ%  are identified, we can now estimate the 
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unobserved intermediate variable υ%  by the method 
of least-squares, i.e. 

 ( ) 1ˆ T T−
=υ Φ Φ Φ η% % %%  (14) 

Thus, the nonlinearity is identified as the mapping of 
ˆ( ) : ( ) ( )k k→F u v% %i . Furthermore, a functional form of 

the nonlinearity, e.g. multivariable polynomial with 
cross-terms, can be found to fit this data set, if it is 
desired.  
 
4.3 Measurement Noise 
 
If the noise ( )ke  is random white noise with zero 

mean, then υ̂%  is an unbiased estimate of υ% . 
Moreover, if the row number of Φ%  approaches 
infinity, υ̂%  is a consistent estimate of υ% . To increase 
the row number of Φ% , we can proceed the test using 
the signal of which the steps are identical to those of 
previously used input, but the sequence is randomly 
scrambled. In this way, more equations for the 
unknown υ%  can be set up in Eq.(12) and hence a 
more consistent estimate of υ%  could be resulted. 
However, this is at the cost of prolonged experiment 
time. In case of strong noise level, it is suggested that 
the measurement is first passed through a filter to 
reduce the effect of noise so that the model accuracy 
can be maintained without extra test. Another way to 
deal with the noise is fitting the estimated data set 
with a nonlinear function because the noise will be 
filtered out by the fitting procedure. 
 

5. DETERMINATION OF MODEL 
REPRESENTATION 

 
According to the identification algorithm presented 
in Sections 3 and 4, the resulted Hammerstein model 
is represented in Fig. 2. In this model, the LTI 
system consists of two blocks, ( )Q l  and 1−P% , where 

( )Q l  is well-determined by several SISO FIR 
identification tasks. However, the off-diagonal 
elements of P%  can be arbitrarily given provided that 
P%  is non-singular. Based on the selected P% , the 
associated intermediate variable v%  is estimated and 
then a nonlinearity ( )F% i  is resulted accordingly. 
 
Since the proposed identification method is a 
nonparametric one, the static nonlinearity and LTI 
system are not restricted to any specific structures. 
Thus, these two components of a MIMO 
Hammerstein model are not uniquely determined if 
only input and output data are given. In other words, 
for a given input set, many combinations of different 
static nonlinearity ( )F% i  and LTI system ( )H% l  can 
produce identical output with that of the actual 
nonlinear process. Therefore, it gives engineers the 
flexibility to choose a desired model representation. 
In the proposed model shown in Fig. 2, this 
flexibility is achieved by selecting the off-diagonal 
elements of P% , as discussed in the following.  
 

yu
( )F% i 1−P% ( )Q l

( )H% l

v%

 
 
Fig. 2. Representation of identified Hammerstein 

model. 
 
5.1 Exact Model Representation 
 
The result of identification can be made unique if a 
prior knowledge about the model structure of the LTI 
system is incorporated. Generally, the linear 
dynamics can be assumed as the ARX form with 
known order ,( )ij ijr s  and delay ijd , i.e. 

( )1 2

,0 ,1 ,2 ,

1 2

,1 ,2 ,

( )( )
( )

( ) ( )

1

ij

ij ij

ij

ij

ij

d

iji
ij

j ij

s d

ij ij ij ij s

r

ij ij ij r

B q qy t
G q

u t A q

b b q b q b q q

a q a q a q

−

− −− −

−− −

= =

+ + + +
=

− − − −

L

L

 (15) 

The corresponding FIR, for ( )ij ijd s> +l  satisfies 
the following relation: 

   
,1 ,2

,

( ) ( 1) ( 2)

( )
ij

ij ij ij ij ij

ij r ij ij

h a h a h

a h r

= − + −

+ + −

l l l

L l
               (16) 

Thus, the off-diagonal elements of P  can be 
determined such that the condition in Eq.(16) is 
satisfied. Although the parameters ija  are unknown, 

they can be computed from ( )ijh% l  by the method of 

least-squares if the off-diagonal elements of P%  are 
given. That is 

 ( ) 1T T
ij ij ij ij ij

−
=a Γ Γ Γ φ  (17) 

where  

[ ]
,1 ,2 ,

( ) ( 1) ( 1)

( 1) ( ) ( 2)

( 1) ( 2) (

( 1) ( 2) ( )

ij

ij ij ij ij ij ij ij ij ij ij

ij ij ij ij ij ij ij ij ij ij

ij ij ij

T

ij ij ij ij r

T

ij ij ij ij ij ij ij ij

ij

h d s h d s h d s r

h d s h d s h d s r

h L h L h L

a a a

h d s h d s h L

+ + − + − +

+ + + + − +

− − −

=

= + + + +

=

  a

φ

Γ

% % %L

% % %L

M M O M

% % %L

L

% % %L

)
ij

r

 
 
 
 
 
 

Then, the off-diagonal elements of P  can be 
estimated by solving an optimization problem. For a 
2 2×  system, it is 

{ }
1 1

2 2

1 2 2,
1 1

, arg min ij ij ijp p
i j

p p
= =

= −
 
 
 
∑∑ φ Γ a

% %
 (18) 

As a result, a unique representation of Hammerstein 
model, i.e. the exact model representation, is 
obtained. If the model order and delay are unknown, 
the above optimization problem can be solved 
repetitively using different sets of , ,( )ij ij ijr s d  until 
the residual is smaller than required. 
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Fig. 3. Control structure of Hammerstein system. 
 
5.2 Model Representation for Control Design 
 
The result of process identification enables us to 
design a model-based control system, such as model 
predictive control (MPC). Since many model 
representations can exhibit identical input-output 
relationship, identification of the exact model 
representation described previously may not be our 
primary goal. Alternatively, identifying a model 
representation which can help us to achieve some 
control relevant purposes (e.g. better control 
performance, simpler control design) is usually more 
desirable.  
 
The most straightforward nonlinear control strategy 
for Hammerstein process is applying an inverse 
function of the static nonlinearity model, 1 ( )−F% i , 
precedent to the Hammerstein process and then 
designing a linear controller, CG , based on the LTI 

model, ( )H% l . This control structure is shown in Fig. 

3, where CG  can be conventional PID controller or 

MPC controller. Assume the nonlinearity ( )F% i  is 
invertible so that the design of CG  depends only on 

( )H% l . Thus, the off-diagonal elements of P%  can be 
determined to meet the desired characteristic 
imposed on the LTI system ( )H% l . Two cases are 
discussed in the following, but engineers can specify 
other conditions based on their demands. 
 
Steady-State Decoupling.   By the proposed method, 
if the system is square, the MIMO LTI system can be 
modelled as a decoupled system at steady-state 
without using additional decoupler in the loop, i.e. 
the LTI model is “self-decoupled” at steady-state. 

Let ( ) 1 ( )

0
( )j

i

L j
iK h−

=
= ∑ l

l  be the steady-state gain of 

the dynamics described by ( ) ( )j
ih l  and K be the 

steady-state gain matrix of ( )Q l  in Eq.(9) with  

 
(1) (2)
1 1
(1) (2)
2 2

K K
K K

=
 
 
 

K  (19) 

By Eq.(11), if d=P P% %  is chosen such that 1

d

−KP%  is a 

diagonal matrix, the LTI system described by ( )H% l  
is decoupled at steady-state. In other words, a steady-
state decoupler, dP% , has been automatically 

imbedded into the model. Let 1

d

−=D KP% . The off-

diagonal elements of dP%  are obtained by solving 
equations of  
 { }

1,2, , ; 1,2, , ;
0ij i n j m i j

D
= = ≠

=
L L

 (20) 

For a 2 2×  system, the resulted  dP%  is 

 
(1) (2)
2 2

(2) (1)
1 1

1
1d

K K
K K

=
 
 
 

P%  (21) 

 
Diagonally Dominant.   The diagonal dominance of a 
MIMO model is usually desired because it means 
slight interactions between loops, so that better 
control performance can be achieved. To this end, the 
off-diagonal elements of P%  can be estimated by 
solving the following optimization problem to reduce 
the loop interactions 

{ }
1 2

* * 12 212 2
1 2 1 2

,
11 222 2

, arg min
p p

p p w w= +
 
 
 

h h

h h% %

% %
% %

% %  (22) 

where 1w , 2w  are weighting factors of two loops and 

[ ](0) (1) ( 1)
T

ij ij ij ij
h h h L= −h % % %% L . Alternatively, 

similar to steady-state decoupling, P%  can also be 
estimated to maximize the diagonal dominance of the 
LTI model at a certain frequency ω  by 

(1) (2 )

2 2

( 2) (1)

1 1

1

1

( ) ( )
( ) ( )dd

K K

K K

ω ω

ω ω
=

 
 
 

P%  (23) 

where 1( ) ( )

0
( ) ( )

Lj j j

i iK h e ωω
− −

=
= ∑ l

l
l . 

 
6. SIMULATION EXAMPLE 

 
Consider a nonlinear process described by 
Hammerstein system as follows: 

( )

( ) ( )1 2

1 2 1

1 2 1

1 2 1 2

1 2

3 2
1 1 2 2

( )

0.1 0.2
1 1.2 0.35 1 0.7

0.3 0.2 0.5
1 0.8 1 0.4

2
0.582 1u u

q q q
q q q

q
q q q q

q q

u u u u
e

− − −

− − −

− − − −

− −

+

+
− + −

=
+ +

− +

− +
=

−

 
 
 
 
 
 
 
 
 

F u

G

 

The inputs for estimation of impulse response matrix 
are 1( ) PRBS 1 0( , )u k = , 2 ( ) 0u k =  at the first stage 

and 1( ) 0u k = , 2 ( ) PRBS 1 0( , )u k =  at the second 
stage. The input for identification of the nonlinearity 
is a multivariable multi-step signal which covers all 
the combination of { }1 2 2 : 0.2 : 2u u= = − , i.e. a 
total of 21 21 441× =  steps. The sampling interval is 
takes as one. To simulate the measurement noise, 
random white noise is added to the output, with 

1 ( ) 0.2e k ≤  and 2 ( ) 0.2e k ≤ . First, the matrix 
( )Q l  is identified from the PRBS test. Here, two 

model representations of LTI system, i.e. exact 
(Model 1) and steady-state decoupled (Model 2) ones, 
are used for illustration. For identifying the exact one, 
the order ,( )ij ijr s  of ARX dynamics is assumed 
known. The results obtained by Eq.(18) are 

1 1.973p =  and 2 0.965p = . Notice that their exact 

values  are   1 2p =   and   2 1p = .  For  steady-state 
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Fig. 4. Impulse response of LTI system. 
 
decoupled model, the results computed from Eq.(21) 
are 1 0.592p =  and 2 1.357p = . The impulse 
response sequences of these two models together 
with that of original process are shown in Fig. 4. 
Based on the two LTI models, two corresponding 
input-output mappings of the nonlinearity are thus 
estimated from the test of multi-step signal. These 
mappings have been fitted with multivariable 
polynomials as shown in Fig. 5. The outputs of 
original Hammerstein system and two identified 
models to random input are simulated as shown in 
Fig. 6. As mentioned previously, although these two 
representations of Hammerstein model are quite 
different, both of them can produce very similar 
outputs with that of original system.  
 

7. CONCLUSION 
 
In this paper, a new method has been presented to 
identify and model MIMO Hammerstein systems. By 
the proposed special test signals, the identifications 
of LTI subsystem and nonlinearity are separated. 
Because the proposed method is a nonparametric one, 
the parameterization of system is not required in 
advance and thus the representation of model is not 
unique. The exact model representation can be 
obtained by incorporating a priori knowledge of the 
LTI system. In addition, engineers can have the 
flexibility of modelling Hammerstein systems to 
meet their demands by adjusting a few parameters. 
Simulation results have shown that accurate model 
can be identified by the proposed method and 
different model representations can be used to 
describe or predict the behaviour of the system. 
 

REFERENCES 
 
Al-Duwaish and M. N. Karim (1997). A New 

Method for the Identification of Hammerstein 
Model. Automatica, 33, 1871-1875. 

Chan, K. H., J. Bao and W. J. Whiten (2006). 
Identification of MIMO Hammerstein Systems 
Using Cardinal Spline Functions. Journal of 
Process Control, 16, 659-670. 

Hsia, T. C. (1977). System Identification: Least-
Squares Methods, D. C. Heath and Company: 
Lexington, U.S.A. 

-2

0

2

-2

0

2
-10

-5

0

5

10

15

20

u1
u2

v 1

-2

0

2

-2

0

2
-10

0

10

20

30

40

u1
u2

v 2

(a)

 

-2

0

2

-2

0

2
-10

-5

0

5

10

15

20

u1
u2

v 1

-2

0

2

-2

0

2
-10

0

10

20

30

40

u1
u2

v 2

(b)

 

-2

0

2

-2

0

2
-10

0

10

20

30

40

u1
u2

v 1

-2

0

2

-2

0

2
-10

0

10

20

30

40

50

u1
u2

v 2

(c)

 
Fig. 5. Plot of nonlinearity. (a) True process (b) 

Model 1 (c) Model 2 
 

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15

20

y 1

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15

20

25

Time

y 2

True process
Model 1
Model 2

 
Fig. 6. Process and model outputs to random input. 
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