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1. INTRODUCTION 

 
Proportional-integral-derivative (PID) control has 
three-term functionality offering treatment of both 
transient and steady-state responses; it provides a 
generic and efficient solution to real world control 
problems. The wide application of PID control has 
stimulated and sustained research and development 
to �get the best out of PID��, and �the search is on to 
find the next key technology or methodology for PID 
tuning�. 
 
The numerous important chemical processing units 
are open-loop unstable process in industrial and 
chemical practice are well known to be difficult to 
control especially when there exists time delay, such 
as continuous stirred tank reactors, polymerization 
reactors and bioreactors are inherently open loop 
unstable by design. Furthermore, many of the 
processes are usually run batch-wise, and as a result 
of possible formulation changes, may operate with 
significant batch-to-batch variability. Clearly, the 
tuning of controllers to stabilize these processes and 
impart adequate disturbance rejection is critical. On 
the other hand the integrating processes are also 
frequently encountered in the process industries and 
many of the researchers suggested that considerable 
numbers of chemical processes can be modeled for  

 
 

 
 
 
 
the purpose of designing controller by an integrating 
process with time delay. Consequently, there has 
been much recent interest in the literature on tuning 
the industrially standard PID controllers for open-
loop unstable systems and integrating processes. The 
effectiveness of internal model control (IMC) design 
principle has attracted in process industry, which 
causes many efforts made to exploit the IMC 
principle to design the equivalent feedback 
controllers for stable and unstable processes (Morari 
and Zafiriou, 1989). The IMC based PID tuning rules 
have the advantage of only one tuning parameter to 
achieve a clear trade-off between closed-loop 
performance and robustness. It is well know that the 
IMC structure is very powerful for controlling stable 
processes with time delay and cannot be directly 
used for unstable processes by reason of the internal 
instability (Morari and Zafiriou, 1989), some 
modified IMC methods of two-degree-of-freedom 
(2DOF) control  such as Lee et al. (2000), Yang et al. 
(2002), Wang and Cai (2002), Tan et al. (2003), Liu 
et al. (2005) had been developed for controlling 
unstable processes with time delay. In addition, 
2DOF control methods based on the Smith-Predictor 
(SP) had been proposed by Majhi & Atherton (2000), 
Zhange et al. (2004) and achieved smooth nominal 
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setpoint response without overshoot for first order 
unstable processes with time delay. It is a notable 
merit that the nominal setpoint response tends to be 
faster without overshoot for unstable process 
according to either the modified IMC methods or the 
modified SP methods. In fact, the common 
characteristic of the abovementioned modified IMC 
and SP methods is utilizing the nominal process 
model in their control structures, which effectively 
contributes to acquire the above merit. It should be 
noted that most existing 2DOF control methods 
restricted attention on unstable processes modeled in 
the form of a first order rational part plus time delay, 
which in fact, cannot represent a variety of industrial 
and chemical unstable processes well enough. 
Besides, there usually exist the process unmodeled 
dynamics that inevitably tend to deteriorate the 
control system performance. The delay integrating 
process has clear advantage in the identification test, 
because the model contains only two parameters and 
simple for identification. Some of the well acceptable 
PID tuning methods for the delay integrating process 
are Chien and Fruehauf (1990); Lubyen (1996) and 
Chen & Seborg (2002).  
 
It is well known that in recent time the controller 
hardware support the microprocessor implementation 
for the PID cascaded filter. Therefore, PID controller 
cascaded with first order lead lag filter can be easily 
implemented using the modern control hardware. 
The important reason for using the controller in this 
form is availability of these facilities in the present 
microprocessor implementation to achieve the better 
performance. Many authors have suggested the PID 
controller cascaded with first order filter either to get 
PID structure or for the better performance. The PID 
controller cascaded first or second order filter type 
structure in Eq. (1) are suggested by Rivera et al. 
(1986), Lee et al. (1998), Horn et al. (1996) and 
Dwyer (2003).  
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                                          (1) 

where cK , Iτ and Dτ  are the proportional gain, 
integral time constant, and derivative time constant 
of the PID controller, respectively, and &  a b  are 
the filter parameters. It has essential to emphasize 
that design principle of the aforementioned tuning 
methods for the unstable and delay integrating 
process is either complicated or providing modified 
IMC structure which is difficult to implement in the 
real process plant.  
 
Therefore, in the present study a simple method has 
been proposed for the design of the PID controller 
cascaded with first order filter to accomplish the 
improved performance for the first order unstable 
and delay integrating processes. A closed-loop time 
constant (λ) guidelines has been recommend cover a 
wide range of θ/τ ratio. Simulation study has been 
performed to show the superiority of the proposed 
method for both the nominal and perturbed processes. 
  

2. DESIGN PROCEDURE 
 

The IMC controller (Fig. 1-a) has been shown to be a 
powerful method for control system synthesis 
(Morari and Zafiriou, 1989). However, for unstable 

processes the IMC structure cannot be implemented, 
since any input d will make y grow without bound if 
Gp is unstable. Nevertheless, as discussed in (Morari 
and Zafiriou, 1989), we could still use IMC approach 
to design a controller for an unstable process, if only 
the following conditions are satisfied for the internal 
stability of the closed-loop system: 
(i) q  stable. 
(ii) 

pG q  stable. 
(iii) ( )1 p pG q G−  stable. 

These conditions result in the well known standard 
interpolation conditions (Morari and Zafiriou, 1989): 
� If the process model

pG  has unstable poles, 

1 2, , , mup up upL , then q  should have zeros at 

1 2, , , mup up upL . 
� If the process model 

DG has unstable poles, 

1 2, , , mdup dup dupL , then 1 pG q− %  should have zeros at 

1 2, , , mdup dup dupL .  
Since the IMC controller q  is designed as 1

mq p f−=  
in which 1

mp−  includes the inverse of the model 
portion, the controller satisfies the first condition. 
The second condition could be satisfied through the 
design of the IMC filter f . For this, the filter is 
designed as 
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where r is the number of poles to be canceled; 
iα  are 

determined by Eq. (3) to cancel the unstable poles in 
DG ; r  is selected large enough to make the IMC 

controller proper.  
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Then, the IMC controller comes to be 
1 1( 1)
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Thus, the resulting setpoint and disturbance rejection 
is obtained as (nominal case i.e., P PG G= % ):  
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Fig. 1 (b) Classical Feedback Control  

 Fig. 1. Block diagram of classical feedback control

398



The numerator expression ( )1 1m i
i i sα=∑ +  in Eq. (5) 

causes an unreasonable overshoot in the servo 
response, which can be eradicated by adding the 
setpoint filter 

Rf  as: 

( )1

1
1R m i

i i

f
sα=

=
∑ +

                                                          (7) 

From Figs. (1-a) and (1-b), a feedback controller Gc 
which is equivalent to the IMC controller q is 
represented by  

1c
P

qG
G q

=
− %

                                                                 (8) 

The resulting ideal feedback controller obtained as 
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                                           (9)  

The aforementioned resulting controller in Eq. (9) 
does not have a standard PID controller configuration. 
The remaining objective is to design the PID 
controller cascaded with first order filter that 
resemble the equivalent feedback controller most 
closely and is discussed in the next section. 
  

3. PROPOSED TUNING RULE 
 

The first order delay unstable process (FODUP) is 
the typical representative model which is commonly 
utilized in the chemical process industries. 
Consequently this section comprises the design of the 
tuning rule for FODUP and it also extended for the 
delay integrating process (DIP). 
 
3.1. First-Order Delay Unstable Process (FODUP) 

1

s
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−
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−

                                                   (10) 

where K  is the gain, τ  the time constant and θ  is 
time delay. The IMC filter structure exploited is 
given as: 
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                                                              (11) 

The resulting IMC controller can be obtained as 
follows 

( )( )
( )3
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The IMC controller in the Eq. (12) is proper and the 
ideal feedback controller which is equivalent to the 
IMC controller is:  
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                                        (13) 

Approximating the dead time se θ− with a 1/2 Pade 
expansion  
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6 2
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                                                   (14)   

It is important to note that the 1/2 Pade 
approximation is precise enough to convert the ideal 
feedback controller into a PID cascaded first order 
filter with barely any loss of accuracy as well as 
retain the desired controller form. Therefore, dead 
time in Eq. (13) is approximated with 1/2 Pade 
expansion and the resulting 

cG  is  
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                     (15)                              

Expanding and rearranging the above Eq. (15)  
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 (16)   

The analytical PID formula can be obtained by 
rearranging the above Eq. (16) and presented as:     

( )
4 ;   2 3;   4;   

6 18 6C I DK a
K

θ τ θ τ θ α
θ λ α

= − = = =
+ −

         (17) 

The parameters b  in filter can be obtained by 
equating the remaining part of the denominator of Eq. 
(16) with the process pole and filter ( )1bs + . Since the 
remaining part of the denominator of Eq. (16) 
contains the factor of the process pole, filter ( )1bs +  
and a high order polynomial terms in s . The high 
order polynomial term in s has barely any impact 
because it is not in control relevant frequency range. 
Therefore filter parameters can be obtained as  

( )
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 (18)   

Taking the first derivative of the above Eq. (18) and 
substituting 0s = , the parameter b can be easily 
obtained below           
 ( )

( )

2 22 12 18
6 18 6

b
αθ θ λθ λ

τ
θ λ α

+ + +
= +

+ −

                                        (19) 

The cG  in Eq. (15) contains the RHP (zero) which 
will eliminate from the controller after factorization 
and cancel out with remaining part of Eq. (16). The 
value of the extra degree of freedom α  is selected 
so that it cancels out the open-loop unstable pole at 

1s τ= . This means certainly adopt α  so that the 
term [ ]1 Gq−  has a zero at the pole of 

DG . That 
required [ ]

1
1 0

s
Gq

τ=
− =  and ( ) ( )3

1
1 1 1 0s

s
s e sθ

τ
α λ−

=

 − + + = 
. The 

value of α  is obtained after some simplification 
3

1 1eθ τλα τ
τ

  = + −  
   

                                                    (20) 

 
3.2. Delayed Integrating Process (DIP) 

s

p D
K eG G

s

θ−

= =                                             (21) 

The DIP can be modeled by considering the 
integrator as an unstable pole near zero. This is 
necessary because it is not possible to apply the 
aforementioned IMC procedure for DIP, since the 
term of α  disappears at 0s = . Therefore, DIP can 
be approximated to FODUP as below: 

1 / 1

s s s

p D
K e K e K eG G

s s s

θ θ θψ
ψ ψ

− − −

= = = =
− −

                     (22) 

where ψ  is an arbitrary constant with a sufficiently 
large value. Accordingly, the optimum filter structure 
for DIP is same as that for the FODUP model, i.e., 

( ) ( )31 1f s sα λ= + + . Therefore, the resulting IMC 

controller becomes ( )( ) ( )31 1 1q s s K sψ α ψ λ= − + +  and 
the consequently PID tuning rules are obtained 
follows: 

( )
4

- ;   2 3;   4;   
6 18 - 6C I DK a

K
θ τ θ τ θ α

ψ θ λ α
= = = =

+
    (23a) 
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( )
( )

2 22 12 18

6 18 6
b

αθ θ λθ λ
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θ λ α
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                                      (23b) 
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ψ
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                                              (23c) 

 
4. SIMULATION RESULTS 

 
This section deals with the simulation study for the 
two different examples and the results are compared 
with some of the recently reported methods. To 
evaluate the robustness of a control system, the 
maximum sensitivity, Ms , which is defined by 

max 1/[1 ( )]p cMs G G iw= + , is used. Since the Ms  is the 

inverse of the shortest distance from the Nyquist 
curve of the loop transfer function to the critical 
point ( )1,0− , a small Ms  value indicates that the 
stability margin of the control system is large. 
The Ms  is a well known robustness measure and is 
used by Chin and Seborg, (2002). Therefore, 
throughout all our simulation examples, all of the 
controllers compared were designed to have the same 
robustness level in terms of the maximum sensitivity.  
 
4.1. Example 1. FODUP  
A widely published example of a FODUP has been 
considered for the comparisons (Lee et al., 2000; Tan 
et al., 2003, Liu et al., 2005) is:   

0.41
1 1

s

p D
eG G
s

−

= =
−

                                                        (24) 

In the recently published paper of Liu et al. (2005) 
which had already demonstrated its superiority over 
many widely accepted previous approaches (Tan et 
al. 2003 and Majhi & Atherton, 2000). The proposed 
method is compared with the Lee et al. (2000) and 
Liu et al. (2005).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The three controller parameters for Liu et al. (2005) 
method were taken as 2cK = , ( ) ( ) ( )1 0.4 1C s s s= + + and  

0.5λ = , they suggested the disturbance estimator 

( ) 12.634 0.4058
0.9566

F s s
s

= + +
. For the fair comparison λ  

has been adjusted for each tuning methods which 
gives the same Ms , because Ms  is well know 
robustness measure and used by many researchers. In 
order to achieve the same 3.03Ms =  with Liu et al. 

(2005), for the proposed method 0.20λ =  has been 
adjusted and corresponding tuning parameters are 

0.4615cK = , 0.2667Iτ = , 0.1Dτ = , 1.5779a= , 0.1053b=  
and ( )1 1.5779s+1Rf = . The tuning parameters for the 
Lee et al. (2000) method is identical with Liu et al. 
(2005) disturbance estimator at the same Ms  value. 
It is very obvious that the disturbance estimator 
design of the Liu et al. (2005) method is exactly 
identical with the Lee et al. (2000), but the setpoint 
response is different in both cases, because both of 
them have different approach. Lee et al. (2000) PID 
controller setting are 2.634cK = , 2.5197Iτ = , 

0.1541Dτ =  and setpoint filter ( )1 2.3566s+1Rf = .  
 
Figure 2(a) and 2(b) show the comparison of the 
proposed method with Liu et al. (2005) and Lee et al. 
(2000), by introducing a unit step change in the 
setpoint and a unit step input in the load disturbance 
respectively. For the servo response the setpoint filter 
is used for both the proposed and Lee et al. (2000) 
methods whereas three control element structure is 
used for the Liu et al (2005).  
 
It is clear from the Fig. (2), the proposed method 
results in the improved load disturbance response. 
For the servo response the Liu et al. (2005) methods 
appears better but the settling time of the Liu et al. 
(2005) method and the proposed method is almost 
similar. In Fig. (2-a) Lee et al. (2000) response is 
very slow and it requires long settling time. It is 
important to note that in the well known modified 
IMC structure has theoretical advantage of 
eliminating the time delay from the characteristic 
equation. Unfortunately, this advantage is lost if the 
process model is inaccurate. Besides, there usually 
exists the process unmodeled dynamics in real 
process plant that inevitably tends to deteriorate the 
control system performance severely. For the 
disturbance rejection the proposed methods has big 
advantage over other methods as shown in Fig. (2-b). 
As discussed the disturbance estimator design of the 
Liu et al. (2005) and Lee et al. (2000) method is 
exactly similar which cause the same PID tuning 
setting and consequently same response for 
disturbance rejection and have overlapping in Fig. 
(2-b). 
 
Despite the fact that the comparison has been 
performed on the same robustness by equalizing the 
Ms of the compared tuning methods by adjusting 
their λ  value. It is worthwhile to check the 
robustness of the controller by inserting a 
perturbation uncertainty of 10% in all three 
parameters simultaneously to obtain the worst case 
model mismatch, i.e., ( )0.441.1 0.9 1p D

sG G e s−= = − . The 
simulation results for the proposed and other tuning 
methods are presented in Fig. (3) for both the set-
point and the disturbance rejection. It is clear from 
Fig. (3) that the proposed controller tuning method 
has the best setpoint as well as load response while 
the modified IMC controller structure which contains 
the three-element controller of the Liu et al.(2005) 
method has worst response for the model mismatch 
for the setpoint. As we have seen in the setpoint 
response for the nominal case the Liu et al.(2005) 
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Fig. 2.  Simulation results for Example 1 (FODUP)
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has smooth and fast response, which is achieved by 
the sacrificing the robustness of the closed-loop 
system. The model mismatch case for the disturbance 
rejection of Liu et al. (2005) and Lee et al. (2000) is 
identical and overlapping. The setpoint response of 
Lee et al. (2000) is achieved by simple feed back 
controller with setpoint filter as in the proposed study 
also. The performance and robustness from the above 
study obviously exhibit that the proposed method has 
better nominal as well as robust performance among 
others.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2. Example 2. DIP (Distillation Column Model) 
The distillation column model studied by Chien & 
Fruehauf (1990) and Chen & Seborg (2002) was 
considered for the present study. The distillation 
column separates a small amount of a low-boiling 
material from the final product. The bottom level of 
the distillation column is controlled by adjusting the 
steam flow rate. The process model for the level 
control system is represented as the following DIP 
model which can be approximated by the FODUP 
model as follows: 

7.4 7.40 .2 20
100 1

s s

p D
e K eG G
s s

− −

= = =
−

                               (25) 

The proposed method, Chen and Seborg (2002), and 
Lee et al. (2000) was used to design the PID 
controllers, as shown in Fig. (4) and λ  was selected 
5.56, 9.15, and 11.0  respectively, which have 
resulting 1.90Ms =  for each tuning rule. Figure (4) 
shows the output response, where the proposed 
tuning rule result in the least settling time for both 
the servo and disturbance rejection and followed by 
Chen and Seborg (2002). Lee et al.�s (2000) method 
has the slowest response and requires the maximum 
settling time for both the setpoint and disturbance 
rejection. On the basis of Fig. (4), it is clear that the 
proposed method performs better than the other 
conventional methods for both the servo as well as 
regulatory performance. 
 
The robustness of the controller is evaluated by 
inserting a perturbation uncertainty of 50% in the 
gain and 20% in the dead time simultaneously 
towards the worst case model mismatch. The 
resulting worst case plant-model mismatch after 
perturbation is obtained as 8.880.3p D

sG G e s−= = . The 

simulation results for plant-model mismatch are 
given in Fig. (5) for both servo and regulatory 
problem. It needs to clarify that the controller 
settings are those calculated for the process with 
nominal process parameters. The responses indicate 
that the proposed method has less oscillatory 
response for both disturbance rejection and setpoint 
and required less settling time. Chen and Seborg 
(2002), method has more oscillation and followed by 
Lee et al. (2000). It seems that the proposed method 
clearly gives good performance, even for high 
process uncertainties. Also, the proposed method is 
more robust than other tuning rules for large 
uncertainness in process parameters.  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3. Closed-loop time constant λ guidelines 
The closed-loop time constant λ  is an only one 
user-defined tuning parameter in the proposed tuning 
rule. It is directly related to the performance and 
robustness of the proposed tuning method, which is 
why it is important to have some λ  guidelines in 
order to provide both a fast and robust performance 
for a desirable range of θ τ  ratio.  
 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Time

P
ro

ce
ss

 V
ar

ia
bl

e

0 1 2 3 4 5 6 7 8 9 10

-0.2

0

0.2

0.4

0.6

0.8

Time

P
ro

ce
ss

 V
ar

ia
bl

e

Proposed
Liu et al.
Lee et al.

Proposed
Liu et al.
Lee et al.(a)

(b)

Fig. 3.  Perturbed response for Example 1 (FODUP)
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Figure (6) shows the plot of λ τ  versus θ τ  ratios 
for FODUP. The presented λ  guideline is for the 
nominal model for 3.0 and 3.6Ms =  values. It is 
important to mention that the proposed tuning 
method is applicable for dead time dominant process 
also. The λ  guideline is not extended for the lager 
θ τ  value in the Fig. (6) because it is difficult to 
obtain the above  suggested Ms value for the large 
θ τ ratio. So, for the 0.6θ τ > , based on many 
simulation studies, it is observed that the starting 
value of λ can be considered to be equal as process 
time delay, which can gives robust control 
performance. If not, the value should be increased 
carefully until both the nominal and robust control 
performances are achieved. 
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5. CONCLUSIONS 
 

A simple design method of the analytical PID 
cascaded filter tuning method has been proposed 
based on the IMC principle. Two important 
representative processes have been considered in the 
present study which is frequently used in the 
chemical process industries. The proposed method 
has excellent improvement in both setpoint and 
disturbance rejection for the FODUP and DIP 
process. The simulation has been conducted for the 
fair comparison when the various controllers were 
tuned to have the same degree of robustness by the 
measure of Ms value. The robustness study has been 
conducted by inserting a perturbation uncertainty in 
all parameters simultaneously to obtain the worst 
case model mismatch, where proposed study has 
clear advantage. The closed-loop time constant λ  
guideline was also proposed for over a wide range of 
θ τ  ratio.   
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