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Abstract: This paper presents an indirect adaptive fuzzy control scheme for nonlinear 
uncertain stable plants with unmeasurable states. A discrete-time T-S fuzzy model is 
employed as a dynamic model of an unknown plant. Based on this model, a feedback 
linearization controller is designed and applied to both the model and the plant. 
Parameters of the model are updated on-line to allow for partially unknown and time-
varying plants.  Stability analysis shows that the adaptive controller guarantees the 
boundedness of all the closed-loop signals and achieves bounded tracking error. In the 
ideal case where there is no modelling error and the signal for parameter learning is 
persistently exciting, perfect tracking is ensured. The effectiveness of the method is 
verified by simulation examples. Copyright  © 2007 IFAC 
 

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1. INTRODUCTION 

 
Adaptive control has become very popular in many 
fields of control engineering and attracted much 
attention in developing advanced applications. 
Adaptive control is based on feedback of signals in a 
controlled system for control adaptation to 
effectively handle system uncertainties (Tao, 2003). 
The adaptive control can be divided into two classes: 
direct adaptive control and indirect adaptive control. 
The former tunes the parameters of the controller 
while the latter updates the parameters of the model. 
This paper focuses on indirect adaptive control, 
which means the T-S fuzzy model is adapted on-line.  
Design of provably stable indirect adaptive fuzzy 
controller posed more difficult theoretical questions. 
Some of the early adaptive control schemes using 
continuous-time T-S fuzzy model (Takagi &Sugeno, 
1985) were presented in the papers (Wang, 1994; 

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Spooner 1996; Yoo, 1998) with stability results.  
Wang’s control law is composed of a certainty 
equivalence control and a supervisory controller 
which is used to force the tracking error not to 
exceed certain error ball. Spooner and Passino’s 
approach consists of a certainty equivalence control 
term, a bounding control term used to restrict the 
plant output trajectory, and a sliding mode control 
term to compensate the approximation errors. Their 
parameter adaptation algorithms are chosen to make 
the derivative of a certain Lyapunov equation 
nonpositive. Recent adaptive fuzzy control schemes 
for continuous-time system can be found in the 
papers (Golea，2003; Park & Cho, 2004).   In Park 
and Cho (2004), an adaptive law for updating 
parameters is designed based the Lyapunov theory 
and with the on-line parameter estimator, any type of 
fuzzy controllers works adaptively to the parameter 
perturbations.  
All the above adaptive control schemes assume that 
full states of the controlled plant are available for 
measurement. Adaptive output feedback control for 
nonlinear systems when full states are not 
measurable remains one of the outstanding problems. 
Kulawski and Brdys (2000) present an adaptive 
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control scheme for uncertain nonlinear plants with 
unmeasurable states based on dynamic neural 
networks. In their approach, a recurrent neural 
network is employed as a dynamical model of the 
plant and the control law is designed by using the 
states of the neural network instead of the plant. Our 
proposal in this paper is inspired by the above 
consideration and applies it to discrete-time adaptive 
fuzzy control system. A discrete-time T-S fuzzy 
model is trained to approximate the input-output 
behaviour of an unknown continuous-time plant by 
using I/O data from the plant.  Then an appropriate 
control law is calculated completely based on the 
model, using the model structure, parameters and 
states. The control input is applied to both the plant 
and the model. The parameters of the model are 
updated on-line by recursive least square estimation 
(RLSE) method, which is fast and is able to ensure 
the boundedness of parameters (Tao, 2003). With 
this approach, at least the model can be stabilized 
and provides bounded control input without extra 
supervisory controller. The sufficient conditions for 
the convergence of tracking error are derived for 
stable plant.  
The paper is organized as follows. The control 
algorithm including parameter adaptation law is 
presented in Section 2.  Stability of the closed-loop 
system and convergence of the tracking error are 
proven in Section 3. Section 4 shows the simulation 
results on control of a single-link robot manipulator 
with parameter disturbance. Finally, Section 5 
concludes the paper. 
 

2. CONTROL ALGORITHM 
 
2.1  Modelling for adaptive control 
It has been shown that T-S fuzzy systems with 
piecewise linear rule consequents are universal 
approximators to approximate any continuous 
nonlinear system to an arbitrary accuracy (Ying, 
1998 & 1999) if all fuzzy membership functions are 
Gaussian and the t-norm is the multiplication.  In this 
paper, the T-S fuzzy model is used to express a real 
nonlinear plant. That is, the nonlinear plant can be 
represented by the following fuzzy rules: 

1 1

0 1 1 1

: If ( ) is  and  and ( ) is , then 
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i i i
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where iR ( 1, 2, ,i N= L ) denotes the ith fuzzy rule 
and N is the number of rules. 1( ), , ( )nx k x kL  are the 
premise variables which are the past plant output 
measurements and ( )u k  is the control input. i

jM  
( 1, ,i n= L ) are fuzzy sets which are described by 
Gaussian functions 
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The model parameter values i
jθ , i

jc  and i
jσ , 

1, ,i N= L , 1, ,j n= L  are unknown. The T-S fuzzy 
model approximates a nonlinear system by 
combining a group of local affine models. The 
premise of a fuzzy rule defines a local operating 
region and each consequent describes a local input-

output relation in the local operating region. Let 
1 2( ) [ ( ), ( ), , ( )] [ ( 1), ,T

nk x k x k x k y k n= = − +L Lx  
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An assumption is made here. 
Assumption 1. The modelling error is negligible and 
there exist parameter values ( , )c σ  and Θ  that make 
the model  (3) to become a perfect representation of 
the real plant. 
From now on, the nonlinear plant is completely 
represented by (3). Since all the parameters in (3) are 
unknown, we define an estimation model as 
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where ˆ ˆ( ( ), ( ))k kc σ  and ˆ ( )kΘ  are the estimates of 
( , )c σ  and Θ  at time k. ˆ( ) nk ∈ ¡x  is the model state 
vector. 
 
2.2 Control synthesis 
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Fig. 1 Adaptive control based on T-S fuzzy model 

 
The control objective is to make the output of the 
nonlinear plant (3) tracking a specified reference 
trajectory ry ∈ ¡ . 
Assumption 2.  The reference ( )ry k satisfies 

( )r k U≤y  (6) 
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 where [ ]( ) ( 1) ( ) T
r r rk y k n y k= − +y L  and U is 

a known bound. 
The overall control structure is shown in Fig. 1. It 
consists of three parts: a nonlinear uncertain plant, an 
adaptive T-S fuzzy model and a model based 
feedback linearization controller.  
 
The control law is designed based on the model (5) 
whose evolution of output can be expressed as 
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To apply feedback linearization technique to design 
the control law ˆ ˆˆ( ( ) | ( ))g k kx p  is required to be 
invertible.  
Assumption 3. ˆ ˆˆ( ( ) | ( ))g k k ε>x p  where ε  is a 
small real positive number, which implies the 
relative degree of the T-S fuzzy model is equal to 
one. 
With the assumption 3, the control law can be 
calculated as 

1 ˆ ˆ ˆ( ) [ ( | ( )) ( )]
ˆ ˆˆ( | ( ))

u k f k v k
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= − +x p
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 (9) 

where ( )v k  is a new input chosen as 
ˆ ˆ( ) ( 1) ( | ( ))T

rv k y k k k= + + k e p  (10) 
where [ˆ ˆ ˆˆ( | ( )) ( 1 | ( 1))k k e k n k n= − + − + Le p p

]ˆˆ( | ( )) Te k kp and ˆˆ( | ( ))e k kp  is the model tracking 
error  

ˆ ˆˆ ˆ( | ( )) ( ) ( | ( ))re k k y k y k k= −p p  (11) 
and 1( , , )T

nk k= ∈L ¡k  be such that the zeros of the 
polynomial 1

1( ) n n
nh z z k z k−= + + +L  lie within the 

unit circle centered at the origin of the z  plane. 
The control law (9) applied to (7) results in it being 
decoupled and linear with respect to the new input 

( )v k  
ˆ( 1) ( )y k v k+ =  (12) 

 
2.3 Online parameter adaptation 
The initial T-S fuzzy model can be obtained by either 
off-line or on-line identification methods. In this 
paper, the initial model is obtained by the on-line 
identification method proposed in ((Qi and Brdys, 

2005). The initial model is good enough for the 
model based controller to produce proper control 
signal in the beginning of closed-loop control. 
However, the plant may have external disturbances 
and parameters disturbances so that the initial model 
needs to be updated. Therefore, the model should be 
adaptive when plant changes. The parameters of the 
model can be adjusted on-line to provide an adaptive 
model. 
For fixed parameters ˆ ˆ( ( ), ( ))k kc σ , Θ  can be 
estimated by recursive least square estimation 
(RLSE). 
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where ( )kΨ  denotes ˆ ˆ( | ( ), ( ))k kΨ x c σ  and 
ˆˆ( 1) ( 1) ( 1) ( ) ( ) ( 1)Tk y k y k k k y kε + = + − + = Ψ Θ − + . 

 
The initial conditions are chosen as 
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of the initial T-S model and Ω  is a large positive 
constant. Large Ω  can speed up parameter 
convergence, but too large may cause instability. It 
needs to be chosen properly during on-line 
adaptation. 
 

3. STABILITY ANALYSIS 
 
3.1 Convergence of model tracking error 
Applying (9) to (7) , we get 
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Since Λ  is a stable matrix 
( 1

1
n n

nzI z k z k−− Λ = + + +L  is stable), the system 
(17) is asymptotically stable, which implies 
ˆ ˆ( | ( )) 0k k →e p  when k → ∞ . The model tracking 

error will converge to zero. 
 
3.2 Boundedness of parameters and control signal 
Assumption 4.  In order to deal with the T-S model 
bring linear in parameters when performing tracking 
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error boundedness analysis, we shall assume that the 
premise parameters of the model ˆ ˆ( , )c σ  are the same 
as the plant parameters ( , )c σ .  
However, updates of all paramters will be carried 
during the control simulation studies. 
 
Lemma 1. The adaptive algorithm (13)-(14) 
guarantees that ( )kΘ%  and ˆ ( )kΘ are bounded. 
Lemma 2. If the signal ( )kΨ  is persistently exciting, 
then the least-squares algorithm (13)-(14) ensures 
that lim ( ) 0k

k
Θ =

→∞
% . 

 
These follow from standard properties of the least-
square estimation methods applied to linearly 
parameterized models. 
 
Applying (9) to (7) yields 
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From assumption 2, ( 1)ry k +  is bounded and since 
ˆ( )ke  is bounded. Thus, equation (19) implies the 

boundedness of ˆ( 1)y k + . Since ˆ( )kx  is a vector 
consisting of past outputs, ˆ( )kx  is bounded.  
Bounded ˆ( )kx , bounded parameters ( )kΘ  and 

bounded ˆ( ( ))i kω x  imply bounded ˆ ˆ( ( ))f kx  and 
bounded ˆˆ( ( ))g kx  in (8). Thus, from (9) we obtain 
the boundedness of ( )u k .  
 
3.3 Boundedness of plant tracking error 

From (3), we have the plant output evolution. 
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Applying (9) to (20) and after some manipulations, 
we have 
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Moving ( 1)ry k +  to the left side of (21) and after 
some manipulation, we get 
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Substituting (23) into (22), the plant tracking error 
dynamics can be obtained as follows 
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The error dynamics (24) can also be written into a 
matrix form 
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Assumption 5.    There exists a positive constant a  
and a common positive definite symmetric matrix 
P for all the matrices ( 1, , )iA i N= L  such that 

0 for 1, ,iT iA PA P aI i N− ≤ − < = L  (28) 
 
Theorem 1.  Consider the closed-loop system 
consisting of plant (3), controller (9)  and parameter 
adaptation law (13)-(14). If the assumptions 1-5 hold, 
then 
(i) the plant tracking error ( )ke  is bounded; 
(ii)  if in addition, the signal ( )kΨ  is 

persistently exciting,  ( )ke  converges to 
zero. 

Proof.  Consider the following possible Lyapunov 
function 
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Then the difference of the Lyapunov function along 
the plant tracking error trajectory (26) is calculated as 
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With assumption 5, we have 
2 2 for all  and iT j jT iA PA A PA P aI i j+ − ≤ −  (31) 

Applying (31) in (30), the following inequality can 
be obtained 
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Since all the elements in (33) are bounded, ( )kΓ  is 

bounded. Hence there exists positive constant ρΓ  
such that 
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We can conclude outside the ball 
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the Lyapunov function difference can be bounded by 
( ( )) 0 ( )V k k ε∆ ≤ ∀ ≥e e  (36) 

The hypothesis (i) has now been proven. 
With Lemma 2, if the signal ( )kΨ  is persistently 
exciting, then the least-squares algorithm (13)-(14) 
ensures that lim ( ) 0

k
k

→∞
Θ →% . With the assumption 4, 

lim ( ) 0
k

k
→∞

Θ →%  means the model become a perfect 

representation of the plant, which will make the 
model state ( )kx  become the same as the plant state 

( )kx . Thus we have ˆlim ( ) ( ) 0i i

k
ω ω

→∞
− =x x . With 

the control law (9), we have proven ˆlim ( ) 0
k

k
→∞

→e . 

Therefore, when k → ∞ , ( )kΓ  in (33) converges 
to zero and (32) becomes 

21( ( )) ( )
2

V k a k k∆ ≤ − → ∞e e  (37) 

 we obtain ( ) 0k →e  as k → ∞ . The hypothesis (ii) 
and the Theorem 1 have now been proven. 
 

5. SIMULATION RESULTS 
In this example, the validity and effectiveness of the 
proposed control scheme are illustrated through the 
tracking control of a single-link robot arm described 
by 

1 2

2 1 1 2 2

( ) ( )
( ) sin[ ( )] ( ) ( )

q t q t
q t q t q t bu tα α

=
= − − +

&
&

 (38) 

where 1( ) ( )y t q t=  is the arm position which is the 
measured output, 2 ( )q t  is the angular velocity which 
is unmeasurable and ( )u t  is the input torque. The 
parameters 1α  and 2α  depend on the mass and 
length of the arm. The values of 1α , 2α  and b  are 
chosen as 1 2 1bα α= = = . The premise variables are 
selected as 1( ) [( 1) )]x kT y k T= − and 2 ( ) ( )x kT y kT= . 
The sampling time 0.01secT = .  The control 
objective is to make 1q  track a bounded reference 
signal. The initial T-S fuzzy model for closed-loop 
control is an input-output model obtained by the on-
line identification method proposed in Qi and Brdys 
(2005) which follows the structure of (38).  
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Fig. 2. Plant tracking response with parameter 
disturbance ( 2α  changes from 1 to 1.5 at 5t s= ) 
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Fig. 3. Consequent parameter adaptation of rule 3 
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Fig. 4.  Control signal 

Fig. 2 illustrates the plant tracking response with 
disturbance and tracking error and Fig. 4 shows the 
control signal. The plant parameter  2α  changes from 
1 to 1.5 at 5t s= , which causes the tracking error to 
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increase after 5t s= . However, the controller is able 
to adapt to the change and regain good tracking 
performance. The tracking error decreases gradually 
as the model is learning to become a good 
approximation of the plant. Parameter adaptation of 
rule 3 is shown in Fig. 3. The learning rate Ω  is 
chosen as 61.0 10Ω = × . 
 
The reference trajectory in Fig. 5 is obtained by 
passing a piecewise constant through a first-order 
stable linear filter. A disturbance in 1α  was 
introduced at 44t s= . As a result, it can be seen that 
the tracking error increases after 44s . The parameter 
adaptations are shown in Fig. 6.The control law can 
produce control signal that adapts to the change and 
regain good tracking performance. 

0 10 20 30 40 50 60 70 80 90 100

-1

0

1

2

Time (sec)

O
ut

pu
ts

0 10 20 30 40 50 60 70 80 90 100
-0.2

0

0.2

0.4

0.6

0.8

Time (sec)

P
la

nt
 T

ra
ck

in
g 

E
rro

r

plant output
reference

Fig. 5. Plant tracking response with parameter 
disturbance ( 1α  changes from 1 to 1.5 at 44t s= ) 
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Fig. 6. Consequent parameter adaptation of rule 2 
 

6. CONCLUSION 
 
The indirect adaptive fuzzy control algorithm for 
uncertain nonlinear stable plants is presented in this 
paper. A discrete-time T-S fuzzy model is employed 
as a dynamical model of an unknown continuous-
time plant with unmeasurable states. By proper 
training, the T-S fuzzy model is able to achieve 
input-output behaviour close to the plant and provide 
useful information about the states of the plant. A 
feedback linearization control is calculated entirely 
based on the model, using the model structure, 
parameters and states, while the parameters of the 
model are updated on-line by RLSE method. 
Sufficient conditions stability and tracking error 

convergence are derived for stable nonlinear plant. It 
should be noted here that although the error 
boundedness or the closed-loop global stability are 
proven under the assumption that the premise 
parameters of the model are the same as in the plant, 
a local stability or the error boundedness are 
achieved if the initial parameter values are close 
enough to the plant parameter values. Simulation 
examples verify the effectiveness, adaptation and 
tracking performance of the proposed control scheme. 
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