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Abstract: We present a new algorithm of the two-level control for a singularly
perturbed system. If the mathematical model of the controllable dynamic system
has a singular perturbation, it can be reduce with the help of hierarchical controls
that can be obtained with Tikhonov’s theorem. This is the stabilization of
the adjoining system around an equilibrium point and to stabilize the desired
movement through the use of a simplified system. In this paper, we present
the application of the stabilization and the control algorithm of an aeronautics
problem. Copyright c©2007 IFAC.
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1. INTRODUCTION

In this article we present a method that makes
possible the simplification and control of a dy-
namic controllable system. This method is based
on the use of Tikhonov’s theorem (Tikhonov,
1952) in order to determine the controls that are
necessary for the stabilization of the system.

We propose design of two controls, the first one
is u1 wich depends on the fast and slow variables.
Control u2 realizes the desired movement of the
simplified system. In this way, the two controls
will be dependent on the slow variables. Thus, u1

is known as the first-level control, and u2 is called
the second-level control. We present here the ap-
plication of this method for the vertical launching
of an automatic airplane for those whose task
consists in taking the airplane in flight up to a
height Yk. The criterion used for the realization
of the desired movement of the simplified sys-
tem consists in the optimization of a functional

J based on the Pontryagin maximum principle
and Kelley’s necessary condition (Afanasiev et al,
1996; Pontryagin et al, 1962).

2. DESCRIPTION OF THE
SINGULARLY-PERTURBED SYSTEM WITH

TWO CONTROLS

Let us suppose that the controllable system can
be represented in the operating form

F (x, u1, u2, T ) = 0 (1)

where x is the matrix (1 × n) of the coordinates;
u1, u2 are the controls, and T is the real time.
After the transformation T = T∗t, x = (y, z)S,
(where t is the time without dimension, T∗ is the
time scale, S is the matrix (n × n), (y, z) is the
matrix (1 × n) of (m + l) coordinates without
dimensions) the system (1) has the form
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dy

dt
= f(y, z, u2, t), y(t0) = y0, (2)

ε
dz

dt
= ϕ(y, z, u1), z(0) = z0 (3)

and 0 < ε = constant ¿ 1, t ε [t0, tk].

The coordinates zi(t) (i = 1 . . . l) can change very
fast (dz

dt ' 1
ε ) and for that reason we can name

them fast coordinates (Kokotovic et al., 1999).
The coordinates yj(t)(j = 1, . . . , m) we can name
slow coordinates (m+l=n).

Let us suppose that the functions f(y, z, u2, t),
ϕ(y, z, u1) are analytical functions of its argu-
ments, which belong to an opened region R of
Euclides space Rn+3. In the space Rn it is given
smooth variety M

f0(y) = 0. (4)

We are going to design the controls - to reach
this variety by the time (t1 − t0) ≤ (tk − t0).
The process derived by this way should be stable
with the estimation ν(t) in the interval [t0, t1]
(Alexandrov et al., 2005):

| x(t)− x0(t) |≤ ν(t) | x(t0)− x0(t0) |, (5)

where

sup
t0≤t≤t1

ν(t) < ∞, ν(t1) < 1 (6)

3. DESIGN OF THE CONTROL

We can present a new algorithm to solve the prob-
lem (2), (3), (4) approximately. This algorithm
has five steps (A,B,C,D,E) and an annex.

Step A Control design of the additional subsys-
tem by the fast time.
A1 We can present the subsystem (3) by the

fast time τ = t
ε (or computer time) in the

following form:

dz

dτ
= ϕ(y, z, u1) (7)

where now all slow coordinates yj(t) (j =
1, . . . , m) are fixed (Novozhilov, 1997). We
search the control u1 as one combination of
the controls:

u1 = u0
1(y) + ∆u1(z, y), (8)

where u0
1(y) is main control and ∆u1(z, y) is

an additional control. Let us suppose, that
the analytic function u0

1(y) exists when z0 =
ϕ−1(y, u0

1(y)) is the unique solution of the
equation (9):

ϕ(y, z, u0
1(y)) = 0.. (9)

For this reason we can say that the additional
subsystem has an unique, critical point (or

equilibrium point) i.e. unique stationary pro-
cess. This is to say we used the main control
u0

1(y) to obtain this process.

A2 We search the additional control for the
stabilization of the stationary process z0(y)
in the following form:

u1 = K(z − z0)(y) = K∆z, (10)

where K = − 1
r bTL0 with b = ∂ϕ(y, zo(y), u0

1(y))
∂u1

and L0 (LT
0 = L0 > 0) is the solution of the

Rikkati equation:

1
r
LbbTL − (LA + ATL)−Q = 0, (11)

where A = ∂ϕ(y, z0(y), u0
1(y))

∂z .
In order to obtain the equation (11) we

used the functional
J1 =

∫ τk

0

[
(∆z)T Q (∆z) + r (∆u1)

2
]
dτ , when

τk = tk

ε → ∞ (ε → 0) with the applica-
tion of the Kalman’s theorem (Afanasiev et
al., 1996), when
det(b(y), A(y)b(y), . . . , Al−1(y)b(y)) 6= 0, yεR.

In compliance with the theorem on sta-
bility by the first approach, we have the affir-
mation that the stationary process is asymp-
totically stable.

Step B Let us suppose that the initial condition
z0(τ0) of the subsystem (7) belongs to the at-
traction region of the critical point z0(y). Then
we can say that all the conditions of Tikhonovs
theorem (Novozhilov, 1997) on reduction of the
original system (2), (3) to the simplified system
are fulfilled, if the control u2(t) (yet it is un-
known) is an analytical function. According to
Tikhonov’s theorem (when ε = 0),we have the
simplified system

˙̃y = f(ỹ, z̃, u2(t), t), ỹ(t0) = ỹ0,

0 = ϕ(ỹ, z̃, u1), (12)

u1 = u0
1(y)− 1

r
bT (ỹ)L0(ỹ)(z̃ − z0(y0)).

Step C We rewrite the simplified system in the
shorter form:

˙̃y = f(ỹ, z̃, u2(t), t), ỹ(t0) = ỹ0. (13)

We solve the problem of the search for the
control as a programmed optimal control:

J2(u) = ϕ0(ỹ(t1)) → minu, (14)

where t1 is the first moment, when ỹ(t1)εM =
{f0(ỹ) = 0}. After this we must approximate
the control u0

2(t) to fulfill the last condition of
Tikhonov’s theorem (u0

2(t) → ũ0
2(t)).
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Fig. 1. Scheme of the two level control for the singularly perturbed system.

Step D In this step, we can detail the function
u0

1(y) in such a way, when the process ỹ0(t)
that corresponds to the the control ũ0(t) is
stable in the interval [t0, t1] with desired wished
estimation (u0

1(y) → u0
1(ỹ

0)) (Alexandrov et
al., 2005).

Finally we have both controls (figure 1):

u1 = u0
1(ỹ

0)− 1
r
bT (ỹ0)L0(ỹ)(z̃ − z0(ỹ0))

−control of first level−,(15)

u2 = ũ0
2(t) − control of second level−(16)

Step E The affirmations of Tikhonov’s theorem
are the asymptotical equalities:

lim
ε→0

y (t, ε) = ỹ (t) , t ε [t0, t
′
], (17)

lim
ε→0

z (t, ε) = z̃ (t) , t ε (t0, t
′
]. (18)

Because of the reality ε ≡ constant 6= 0, it is
necessary to return to the original system with
the synthesis of both controls (15), (16).

Annex In fact, frequently we do not have exact
and complete information of the ∆z = z − z0.
In this situation also, this algorithm with some
modifications can be applied.

4. STATEMENT OF THE PROBLEM OF
VERTICAL LAUNCHING OF AN AIRPLANE

For this point, we analyze the application of the
algorithm described in section 3, in aeronautics.
We consider the following desired movement: ver-
tical launching of an automatic airplane to a fixed
height Yk in such a way that the fuel-consumption
rate is minimized. The optimal control to achieve
the vertical launching will be determinated with
the application of the theorems: Pontryagin Max-
imum Principle and the theorem of H. J. Kelley
(Afanasiev et al., 1996). Also, we want to stabilize

this desired movement. Let us suppose that the
automatic airplane is launched vertically with an
initial perturbation, with a trajectory angle θ1 6= 0
and with an inclination angle ϕ1 6= 0. Tradition-
ally the equations for the longitudinal movement
are, (Novozhilov, 1997):

MV̇ =−Mg sin θ1 + PT cos α− 1
2
PV 2Scx

MV θ̇1 =−Mg cos θ1 + PT sin α +
1
2
PV 2Scy

IzΩ̇ =
1
2
ρSV 2ba

(
mα

z α + mδz
z δz

)
(19)

ϕ̇1 = Ωz; Ṁ = −U , α = ϕ1 − θ1

Ṁ =−U ; Ẏ = V cos (θ1) ; Ẋ = V cos (θ1)

Here M is the mass of the airplane, Xand Y
are the coordinates of the center of mass, V
corresponds to the speed of the center of mass;
U denotes the speed of decrease of mass due to
the fuel-consumption, P is the push force, and we
suppose that it is given as: P = µU , where µ
is the speed, relative to the airplane, with which
the gases escape due to the combustion of fuel;
ρ is the air density; θ1, α, ϕ1 and δ are the
angles of trajectory, of attack, of inclination, and
of the elevator deflection; I, S and ba are the
moment of inertia, the characteristic area, and the
longitude characteristic; cx, cy, mα

z and mδ
z are the

aerodynamic characteristics of the airplane.

The equations (19) that describe the movement
are normalized, introducing the following dimen-
sionless quantities:

T = T∗t, M = M∗m, V = V∗v, (20)

Y = Y∗y, U = U∗u, Ω = Ω∗ω. (21)

The values of M∗, V∗, U∗, Y∗ are assumed to be
equal to the maximum values that correspond
to the type of airplane. We will also assume
that the characteristic values of the aerodynamic
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forces and propulsion forces are of the order of
magnitude of the weight of the airplane:

3
2
P∗V 2

∗ S∗/2 = µU∗ = 3M∗g. (22)

The value of Ω∗ is estimated by the simplified
equation I d2ϕ1

dT 2 = 1
2P∗V 2

∗ Sbamα
z ϕ1, where mα

z ∼
1. The temporal constant for this oscillating ele-
ment can be considered with the following expres-
sion:

T 2
1 =

I∗
P∗V 2∗ Sba/2

=
M∗r2

∗
M∗gba

; asi Ω∗ =
1
T1

(23)

We also denote: T2 = V∗
g ; T3 = Y∗

V∗
. Now,

let us consider that: Y∗ = 4km, M∗ = 430kg
(structures and fuel) y U∗ = 6.8 kg

s . With these
data, some characteristics of the flight are seen
(Novozhilov, 1997) in table 1.

Table 1

V∗, m
s 300 T3 = 4000

300 = 13.333
T1, s 0.5 M∗

T2U∗
= 450

30∗6.8 = 2.205
T2, s 30 T3

T2
= 13.333

30 = 0.4443
T∗, s 30 ε = T1

T2
= 0.5 ∗ 10−1

With such characteristic values, the system (19)
becomes a singular perturbed system by the small
parameter ε:

ε
dϕ1

dt
= ω

ε
dω

dt
= {mα

z (ϕ1 − θ1) + mδ
zδ}v2 (24)

dv

dt
=− cos (θ1) +

3u

m
cos (ϕ1 − θ1)− 2v2cx

m
dθ

dt
=

1
v

sin (θ1) +
3u sin (ϕ1 − θ1)

mv
+

2v2cy (ϕ1 − θ1)
mv

dm

dt
=− 1

2.2059
u;

dy

dt
=

1
0.4443

v cos (θ1) . (25)

It can be observed of (24)-(25) that the controls
of the first and second level are δ y u respectively.

4.1 Application of the algorithm for the simplified
subsystem

Step A. The control δ is given as: δ = δ0 + ∆δ,
where δ0 corresponds to the main control and
∆δ = δ−δo corresponds to the additional control.

4.1.1. A1 Determination of principal control δ0

We consider the adjoining sub-system (τ = t
ε )

and assume that ∆δ = 0. Then δ0 is the control
that realizes the equilibrium point of the adjoining

system. Therefore, for v 6= 0 and for all t, with
0 < t ≤ 1, we have: δ0 = −mα

z

mδ
z

(ϕ10 − θ1) .

We can designate the control δ0 in the next form:

δ0 = κθ1 (26)

where κ is a constant to be determined in the next
section (Step D), and the equilibrium point of the
additional system is unique, and it is given by:

z0(δ0(θ1)) =
(

ϕ0
1 =

(
1− mδ

z

mα
z

κ

)
θ1, ω

0 = 0
)T

(27)

4.1.2. A2 Determination of additional control ∆δ
Considering that we have complete information

of ϕ1 and ω, the additional control is obtained
by expressing the additional system in terms of
deviations and proposing a control of the form
∆δ = −K(∆ϕ1,∆ω)T that minimizes the func-
tional J1 of the 3 section, where ∆ϕ = ϕ1 − ϕ0

1,
∆ω = ω − ω0.

For the particular case in which

mα
z = 1.85; mδ

z = 1.6; v = 1; r = 2;

Q =
(

1 0
0 1

)
; the optimal gains K are obtained:

K =
(
k1 = −0.1991 k2 = −0.8654

)
(28)

Hence, δ is obtained:

δ = κθ1 − k1

[
ϕ1 −

(
1− mδ

z

mα
z

κ

)
θ1

]
− k2ω, (29)

4.2 Step B. Reduction to Simplified System

Supposing that we can determine a control of the
second level u in analytic form, and given the
control δ, satisfying the conditions of Tikhonov’s
theorem, then we can reduce to the simplified
system. Taking ε = 0 and substituting the root
of the resulting algebraic equations, we obtain:

dv

dt
=− cos

(
θ̄1

)
+

3u

m̄
cos

(
mδ

z

mα
z

κθ̄1

)
− 2v̄2cx

m̄
,

dθ̄1

dt
=

sin(θ̄)
v̄

−
3u sin

(
mδ

z

mα
z
κθ̄1

)

m̄v̄
−

2v̄2cy

(
mδ

z

mα
z
κθ̄1

)

m̄v̄
,

dm̄

dt
=

1
2.2059

u;
dȳ

dt
=

1
0.443

v̄ cos
(
θ̄1

)
(30)

The control u to be determined by the system
(30).
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4.3 Step C. Algorithm for the Launching

For the system (30), let us consider the following
desired movement:

θ̄1 (t)≡ 0; v (t) ≥ 0; m̄ (t) > 0; y (t) ≥ 0∀t ∈ [
0, t0k

]

y
(
t0k

)
= yk = 1.

Moreover, we minimize the functional J2, where

J2 (u) = ϕo

(
y

(
t0k

))
=m̄0 − m̄

(
t0k

) −→ min
u

. (31)

with m̄0 such that m̄(t = 0) = m̄0.

Thus, substituting θ1 (t) ≡ 0 in the equations (30),
we obtained:

dȳ

dt
=

1
0.443

v̄;
dm̄

dt
=

1
2.2059

u

dv̄

dt
=−1 +

3u

m̄
− 2v̄2cx

m̄
, (32)

where the control u is subject to the restriction
0 ≤ u ≤ umax . The problem of determining
of the optimal control u, is a problem that was
solved with the help of two fundamental results of
the optimal control theory: the Pontryaguin max-
imum principle and Kelley’s necessary condition.
The application of these two principles produce
one algorithm for the optimal control u0 given for:

u = u0 =





umax si t ∈
[
0, t̂1

]

uopt.especial si t ∈
[
t̂1, t̃1

]

u = 0 si t ∈
[
t̃1, t0k

]





(33)

In order to use the control (33) according to
Tikhonov’s theorem, it is necessary that u0 (t) is
analytical of the time interval [0, t0k].

4.4 Step D. Stability Conditions of the Simplified
System

To determine the control completely δ, now we
must obtain κ from the simplified system equation
(30) with the condition that θ1 6= 0:

dv̄

dt
=−1 +

3u

m̄
− v̄2cx

m
;

dm̄

dt
=

1
2.2059

u;

dȳ

dt
=

1
0.443

v̄;

dθ̄1

dt
=

1
v̄
θ̄1 −

3u
mδ

z

mα
z
κθ̄1

m̄v̄
−

v̄2cy
mδ

z

mα
z
κθ̄1

m̄v̄
(34)

The constant κ is obtained when the condition
of the vertical launching is stable with estimation

(5). This is satisfied if the next condition is ac-
complished:

κ >
mα

z m̄ (t)
mδ

z (3u (t) + v̄2 (t) cy)
= F1(t). (35)

With the condition (35) for parameter κ, the
control is totally certain. Therefore, the problem
of determining the control that stabilizes the
desired movement has been resolved by applying
the control algorithm described in section 3.

4.5 Numerical Results (Step E)

4.5.1 Considering that the objective is achieved
at height Yk = 7.2 Km, the control u0(t) has
three regimes as in (30), but it is a continuous
function at the intervals, then we approximate
u0(t) by an analytic curve u(t) (Figure 2). Taking
cx = 0 · 23, the numeric simulation of the system
(32) determine v(tk) = 0 when Yk(Tk) = 7.2 Km
(Reyes et al., 2006).

Fig. 2. The control of the second level u(t) mini-
mizes the fuel consumption for the airplane.

We finish the launching when the height is 6 Km.
Then the velocity is V (t1) 6= 0, the flight can be
continued.

With the control u(t) (Fig. 2), we can determine
the constant κ if we graph the function F1(t) (Eq.
35). The graphics of F1(t) can be seen in Figure
3. According to condition (35), it should be taken
κ > 1, also the numerical solution of (34) shows
that with κ ≥ 0.7, the desired solution θ1 ≡ 0 is
stable with estimation (5) (Reyes et al., 2006).

4.5.2 Now when the controls are completely
certain, we can return to the dimensional system
(according to transformation (20)-(21) to check
that the controls stabilize the desired movement.

We do the numeric simulation for system (19) with
V (0) = 1 × 10−6 m/s; X(0) = 0 m, Y (0) =
0 m, M(0) = 410 Kg, θ1(0) = 0.1 rad; ϕ1(0) =
0.1 rad; Ω(0) = 0 rad/s;, and the values for
the other parameters are: cy = 8; mδ

z = 1.85;
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Fig. 3. The Graph of F1(t) show the condition for
κ.

mα
z = 1.6; κ = 0.88; S = 0.16 m2; g = 9.81 m/s2;

ρ = 1.22 kg/m3; µ = 2041.6 m/s; Umax =
6.8574 Kg/s; I = 300 Kg ·m2. In figure 4 we only
show the slow variables: V (T ), X(T ) and θ1(T );
in figure (5) we show the fast variable Ω(T ):

Fig. 4. The slow variables show that the movement
desired is achieved.

In the figure 4 can be seen that the airplane has
deviated 42 meters on the horizontal direction.

Finally, we can say that the problem has been
solved. With the help of Tikhonov’s theorem,
using the additional subsystem and the simplified
system, two controls have been found.

Fig. 5. The fast Variable Ω decrease quickly, then
the movement desired is achieved.

Conclusion:

In this paper, we formulated and applied a new
algorithm for a singularly perturbed and con-
trollable system, which was constructed using
Tikhonov’s theorem. This theorem makes possible
the formation of two control levels.
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automático. Dirigided by V. V. Alexandrov
and W. F. Guerrero, F. C. F. M (B. U. A.
P).

Tikhonov A. N. (1952). Systems of Differential
Equations Containing Small Parameters by
Derivates. Matem. sbornic, 31, 575-586.

332


