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Abstract: In MPC relevant identification, it is necessary to identify models that
are suited for multi-step ahead predictions. This can be achieved by minimizing
the multi-step ahead prediction error in the identification stage. This work aims
at the development of a methodology for identification of MPC relevant models
based on Generalized orthonormal basis filters (GOBF). Specifically, ARX models
parameterized using GOBF are identified. The efficacy of the proposed modeling
technique is demonstrated by carrying out simulation studies on the benchmark
Shell control problem. The relative quality of the obtained models is evaluated
through closed-loop performance with MPC.
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1. INTRODUCTION

Model predictive control (MPC) has been widely
used in the process industry over the last two
decades for controlling key unit operations in
chemical plants. As a consequence, there has been
significant research activity in the process control
community with the aim of improving the analysis
and synthesis of MPC controllers (Morari and Lee,
1999). MPC determines the optimal input moves
by solving an optimization problem in which, the
objective function makes use of predicted outputs
over a finite horizon. Hence, MPC requires mod-
els that are capable of providing accurate multi-
step ahead predictions rather than one step ahead
predictions (Shook et al, 1992). In reality, the
process and noise model structures are not known
accurately and moreover most of the processes en-
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countered are nonlinear. To guarantee satisfactory
closed-loop performance in such a scenario, it is
advantageous to use models that are "tuned" for
multi-step ahead predictions. This is facilitated by
employing an identification criterion based on the
multi-step ahead prediction error.

Recently, considerable amount of work has been
done in the area of MPC relevant identification
or MRI. Huang and Wang (1999) have discussed
MRI in the context of data prefiltering and have
shown that the problem of multi-step ahead pre-
diction error minimization can be reduced to that
of filtered one-step ahead prediction error min-
imization. Shreesha and Gudi (2004) have pro-
posed methods to design control relevant prefilters
for MISO model identification from closed loop
data. The use of multiple models for multi-step



ahead predictions has been proposed by Rossiter
and Kouvaritakis (2001). Gopaluni et al. (2003)
proposed the use of an identification criterion that
is based on the multi-step ahead prediction error
which is equivalent to minimizing a pre-filtered
one-step ahead prediction error. The prefilter is
based on the noise model and hence the noise
model plays an important role in determining
the quality of the multi-step ahead predictions.
Gopaluni et al. (2004) have discussed the influence
of the noise model (and hence the data prefilter)
on the quality of multistep ahead predictions from
the bias distribution viewpoint.

In recent years there has been growing interest
in the use of orthonormal basis filters (OBF) for
representing process dynamics (Van den Hof and
Ninness, 2005; Patwardhan and Shah, 2005; Pat-
wardhan et al., 2006). The orthogonal filter ap-
proximations provide a simple and elegant method
of representing open loop stable systems. In fact,
these models can be looked upon as a compact
(parsimonious in parameters) representation of
convolution type models, which have been widely
used in MPC schemes. Moreover, if some a priori
information about system dynamics is available,
then the resulting parameter estimation problem
can be solved analytically using linear regression.
From an industrial practice viewpoint as well,
GOBF's can elegantly represent large scale mul-
tivariable system dynamics because the underly-
ing representation is in state-space form, and are
therefore more suited than other parameteriza-
tions. Patwardhan and Shah (2005) proposed a
method of identification of multivariable state ob-
servers using GOBF parameterization. They have
also shown that the parameter estimation prob-
lem can be formulated as two nested optimization
problems in which, the GOBF poles are estimated
using a nonlinear iterative search and the GOBF
expansion coefficients are obtained analytically.

In this work, we propose a method to iden-
tify MPC relevant models based on GOBF pa-
rameterization. We specifically propose the use
of a GOBF-ARX structure, the parameters of
which are determined by minimizing the multi-
step ahead prediction error. We employ the nested
optimization formulation mentioned above in or-
der to reduce the dimensionality of the parameter
estimation problem.

The paper is organized as follows. We begin by
discussing MPC relevant identification in Sec-
tion 1. In Section 2, we present the GOBF-ARX
structure. The proposed identification technique
is discussed in Section3. We then demonstrate
the efficacy of the proposed identification method
by carrying out simulation studies on the Shell
Benchmark Control Problem in Section 4. The
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main conclusions reached are presented in Section
5.

2. MPC RELEVANT IDENTIFICATION

Gopaluni et. al. (2002) propose control relevant
methodology as " The philosophy of identifica-
tion by minimizing an objective function that is
commensurate with the control objective function
". MPC requires models that can provide accu-
rate multi-step ahead predictions. Hence, in the
context of MPC, control relevant identification
necessarily implies identification of models based
on the minimization of multistep ahead prediction
errors. This can be achieved by relating the ob-
jective function used for model identification with
the MPC objective function.

If the true process is described by,

= G(q)u(t) + H(g)e(t) (1)
where G and H represent the true process and
noise dynamics respectively and e(t) is white noise
with variance o2. Then the p step ahead optimal
predictor is given by (Ljung, 1999),

y(t)

G(t+p1t) =W,Gu(t+p)+(1-W,)y(t+p) (2)
p—1

W,=FH" F,=) h(i)g'; Fi=0. (3)
1=0

ﬁ(z) being the impulse response coefficients of the
estimated noise model H.

Eq.2 implies that the predicted multistep ahead
output is influenced by the estimated noise model.
Further, the influence of W, on the deterministic
as well as the stochastic models increases with an
increase in p as can be seen from Eq.3.

2.0.1. MPC Relevant Identification Objective Func-
tion MPC involves the solution of an optimiza-
tion problem that employs the following objective
function,

p
Trpe =3 lelt + k| 1) (4)
k=1

where,e(t+k|t)=rt+k)—[glt+k|t)+d(t)]
(5)

d(t) being the difference between process output
and predicted output of the model at instant ¢



and is given as d(t) = y(t) — y(t | t — 1).Thus the
objective function becomes,
P

Jrnpe = S [r(t+K)

k=1

gt+k|t)+d®). (6)
Readjusting the terms,

Jrnpe = Z{ + [P

+2[ (t+ k) =yt + k| D)]d®)]} (7)

where, 7 is the reference trajectory and p is
the prediction horizon. This objective function
consists of quadratic and linear terms of predicted
output 7 and reference trajectory r. The linear
terms, weighted less than the quadratic terms,
can be neglected from the objective function.
Thus, the objective function is governed mainly by
the quadratic error between predicted output and
reference trajectory. This is the motivation behind
the following proposed objective function which
minimizes the similar quadratic error between
desired model output and actual model output.
The objective function minimizes p-step ahead
prediction error as follows.

(t+k)—gt+k]|t)?

N-p p

pstep—zz t+k

t=1 k=1

gt+k|D)? (8

where N is the data length. The prediction error
is thus accumulated over the prediction horizon at
each instant. Also, note that the objective func-
tion depends explicitly on the prediction horizon

p-

3. THE GOBF-ARX STRUCTURE

For a SISO system represented by a strictly proper
stable transfer function G(q),

y(q) = G(q)u(q) (9)

there exists a unique generalized Fourier series
expansion of G(q) such that,

= ZCin‘(Q) (10)

where ¢; and Fj(q) are the Fourier coefficients
and basis filters which are strictly proper stable
transfer functions in q.

Now, consider a SISO ARX structure,

y(k) =y(klk = 1) +e(k) (11)

J(klk—1)= [Zal ] k)
Zbiqi] u(k) (12)

where e(k) represents a zero mean Gaussian white
noise sequence. Since orthonormal basis {g~*} has
shorter memory, we propose to use GOBF to
parameterize the ARX model as follows,

k=)= 3 i, ] o)
+ icu,iFu,i(q, fu)] u(k) (13)

where the GOBFs F(q,¢) and expansion coeffi-
cient ¢; are defined as in Patwardhan and Shah
(2005).

The structure in Eq.13 has two advantages.
Firstly, it retains the advantages of the conven-
tional ARX structure. Secondly, the GOBF pa-
rameterization provides a compact representation
(parsimonious in parameters) of the ARX struc-
ture. This measure can significantly reduce the
number of parameters to be identified, and, as
a consequence, time of identification experiments
can be significantly reduced.

4. GOBF BASED MPC RELEVANT
IDENTIFICATION

The state realization of the proposed MISO
GOBF-ARX model in Eq.13 can be expressed as
(Srinivasarao et al., 2005),

X(k+1) = ®X (k) + Tu(k) + Ky(k)  (14)

y(k) = CX(k) +e(k) (15)

where X (k) € R™ represents the state vector, u(k)e
R™ represents the input vector, y(k)e R™ repre-
sents the output vector, C represents linear static
map relating states with the outputs and e(k)
represents a white noise sequence. K represents
the steady state Kalman gain. Rearranging above
equations,

X(k+1) = UX (k) + Tu(k) + Ke(k)
y(k) = CX (k) + e(k)
U =[+ KC|

As mentioned earlier, the parameter estimation
problem can be posed as a two step optimization
problem. The parameters to be estimated are the
filter poles £ and filter expansion coefficients Cj.
The algorithm starts with an initial guess of filter
poles & obtained from the a priori knowledge of
the system.

(1) From an initial guess of the filter poles, 2787
the ¥ and I matrices are formed which are
then used to compute the vector of filter



expansion coefficients, C' using Eq.14 and
Eq.15 as,

N
in 1
Copr = arg 'y 7 D _ee(k,C)* (16)
k=1

which is a linear least squares problem. The
error €. is 1-step ahead prediction error.
The estimated coefficients C,p; along with

the filter poles Z’s are then used for gener-
ating the multistep ahead predictions as,
X(k+1)=UX(k) 4+ Tu(k) + Ke(k)
Gk +j|k)=C[W X (K +1)
j—2
+> UTulk+j — (i +1)]
i=0

(17)

where j = 2,3, ..,p. Using these predictions,
the multi-step ahead prediction error, e(k +
j | k), is generated, which is then minimized
to obtain the filter poles,

N—-p p

> e(k+4 k)

o~ min
gopt = arg

§ —
j=1

k=1
(18)

where,
e(k+j|k)=ylk+j)—gk+j|k)

It can be seen from Eq.18 above that at each
instant, the prediction errors are computed
for j = 1,2...p and their squares are summed
up. This process is repeated for all k. The
accumulated errors corresponding to all k’s
are added-up and this sum is minimized. This
can be viewed as the multi-step ahead predic-
tion error being minimized in a moving hori-
zon fashion. The above mentioned two step
optimization procedure is explained with the
help of flowchart shown in Figure.1

5. ILLUSTRATIVE EXAMPLE

The efficacy of the proposed multistep ahead pre-
diction algorithm is demonstrated by carrying out
modeling studies on Shell Control Problem. The
Shell Control Problem is a benchmark problem
proposed at the Shell Process Control Workshop
and involves control of a heavy oil fractionator
system characterized by large time delays in each
input output pair. The heavy oil fractionator has
three product draws, three side circulating loops
and a gaseous feed stream. The system consists
of seven measured outputs, three manipulated in-
puts and two unmeasured disturbances. Product
specifications for top and side draws are deter-
mined by economic considerations. There is no
product specification on bottom draw, however,
there is an operating constraint on the bottom
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Fig. 1. Flowchart for two step optimization

reflux temperature. Top draw, side draw and bot-
toms reflux duty can be used as manipulated
variables to control the column while heat duties
on the two other side loops (upper reflux duty
and intermediate reflux duty) act as unmeasured
disturbances to the column. Since the controlled
outputs of interest are top end point, side end
point and bottoms reflux temperature, in this
work we consider a subsystem consisting of only
these three outputs. Further, the process dynam-
ics are simulated under following assumptions

e Manipulated inputs are piecewise constant

e Disturbances entering the plant can be ade-
quately represented using piecewise constant
functions

Under these assumptions, a discrete dynamic
model of the form

¥(2) = Gp(2)u(z) + Ga(2)d(2)

is developed with sampling time (7T") equal to 2
minutes. A minimal order state space realization
of (19) of the form

(19)

X (k + 1) = AX(k) + B,u(k) + Bad(k) (20)
y(k) = CX(k) (21)

with 51 state variables is used for simulation
of process behavior. The stationary unmeasured
disturbances d(z) are assumed to be generated by
the following stochastic process



X (k +1) = Apxy(k) + Byw(k)
d(k) = Cuxy (k) + Dyw(k)
Ay, =C, =095 B, =D, = I(24)

or equivalently by

z
z—0.95 0

d(z) = 0

z w(z) (25)

z—0.95

where w € R? is a zero mean normally distributed
white noise process with o,,1 = 04,2 = 0.0075. In
addition, the measured outputs are assumed to be
corrupted with measurement noise

y(k) =y(k) +v(k)

where v € R? represents zero mean normally
distributed white noise process with o,; = 0.005
fori=1,2,3.

(26)

In order to carry out system identification, a
low frequency signal (maximum value 0.15 Hz)
random binary signals with amplitude 0.08 were
simultaneously introduced in all the manipulated
inputs and 1000 data points were collected. The
estimates of signal to noise ratios between each
input and disturbance in each output are given

by Eq.27,

~2
~ Uui
SNR = (,\2
oy,
The proposed identification methodology was
tested on the simulation data for p =1,2,5,10 and
20.

8.81 9.00 9.14
3.64 3.70 3.76
6.88 7.00 7.11

(27)

5.1 Comparison of Predictive Ability

The models obtained were compared for their
open-loop prediction capability based on the per-
centage prediction errors (PPE),

[y(k) — §(k))?
PPE =" x 100 (28)
> ly(k) — (k)2
k=1

where, 4 in above equation represents the mean
value of measurements y(k)and (k) is the pre-
dicted value of y(k). Table 1 compares the predic-
tive ability of the models identified with different
horizons in the identification step, for the accu-
racy related to a 20 step ahead prediction.

The predictive ability of the models is better
for larger horizons in the identification step, as
evidenced by lower PPE values.
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Table 1. PPE values for 20 step ahead
predictions with 1, 5, 10, 20 step models

P Y1 Y2 Y3
1 Step 13.57 | 21.85 | 54.67
2 Step 14.18 | 8.24 16.98
5 Step 2.73 3.76 2.19
10 Step | 3.51 3.67 1.78
20 Step | 2.85 4.96 1.69

5.2 Comparison of Closed-Loop Performance

The effect of the horizon used in the identifica-
tion step on the performance of MPC was stud-
ied. The prediction and control horizons in the
controller were fixed at 40 and 5 respectively.
The other tuning parameters and constraints are
taken as given in Patwardhan et.al.(2005).Firstly,
a setpoint change of 0.5 units was introduced in
the third output. The closed-loop performances of
MPC was evaluated using two models: 1. Model
A — This model was identified with a prediction
horizon of p = 1 during the identification step
(Eq.18) and 2. Model B — In this case p was set to
10 during the identification step. Since model A is
identified with a smaller prediction horizon, it is
expected (see discussion related to Eq.2 and Eq.3)
to show good fidelity and provide tight control at
high frequencies. Likewise, model B is expected to
match the plant dynamics well at low frequencies
and perform well for slowly moving targets. The
closed-loop performance of MPC when the above
models were employed are compared in Figure 2.
It is clearly seen that the response of MPC with
model B is faster and the third output, Y3, settles
to its new setpoint earlier than the performance
obtained with model A. Also, outputs Y1 and Y2
settle down to their setpoints rapidly in case of
model B. These results verify the relative supe-
riority of model B for low frequency targets as
compared with model A.

Next, the performance of MPC in presence of fast
changing disturbances was evaluated. Step type
disturbances of magnitude £0.4 were introduced
in the process. The disturbance magnitude was
switched between +0.4 and —0.4, every 40 in-
stants. Figure 3 shows the regulatory performance
of MPC with the above models. It is evident that
MPC based on model A is able to reject the high
frequency disturbances rapidly as compared to
that with the performance obtained with model
B. This is again an expected result in view of
the relatively small mismatch of model A at high
frequencies.

The setpoint change applied in the first case above
can be viewed as a low frequency input to the
closed-loop system. The superior performance of
MPC with the model B as compared to the model
A indicates that the models obtained with larger
prediction horizons in the identification objective
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have better response in the low-frequency region.
On the other hand, from the results in Figure 3, we
can conclude that models obtained by minimizing
the 1-step ahead prediction error are more fidel at
high frequencies as compared to those obtained by
minimizing the multi-step ahead prediction error.

6. CONCLUSIONS

An approach for MPC relevant identification that
is based on the use of GOBF parameterization
for the identification of multivariable dynamics,
has been proposed. The strategy is relevant for
industrial practice considering that processes can
be affected by targets and disturbances that could
be both slow and fast. Since, model-plant mis-
match is inevitable, the model that would be used
in the controller needs to have high fidelity in
the expected region of interest. The MPC relevant
methodology proposed here is shown to accomo-
date these requirements by appropriately using
different horizons P during the identification step.
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A large value of P in the identification objective
results in a reduced bias in low frequency region
as such the value of P could be a suitable handle
to shape the bias in model estimate. The pro-
posed methodology can be expected to provide
improved control due to this reduced bias in th
low to mid frequency region. Closed loop simula-
tion results involving the benchmark Shell Control
Problem demonstrate the efficacy of the proposed
approach.
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