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Abstract: An emerging method to increase the recovery from oil reservoirs is the
application of measurement and control techniques to better control subsurface flow over
the life of the reservoir. In particular the use of sensors and remotely controllable valves
in wells and at surface, in combination with large-scale subsurface flow models is
promising. Various elements from process control may play a role in such ‘closed-loop’
reservoir management, in particular optimization, parameter estimation and model

reduction techniques. Copyright © 2007 IFAC
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1. INTRODUCTION

An increasing quality of life of the world’s
increasing population will result in an increasing
energy demand for the decades to come. Although
the contribution of sustainable energy sources
(hydro, wind, solar and biomass) is slowly going up,
fossil fuels (oil, gas and coal) will remain to play a
very important role until at least the end of this
century; see e.g. Smil (2003). An increasing
problem, in particular for oil, is that the ‘easily’
producible reservoirs have nearly all been found (to
our current knowledge), and to a large extent been
produced. Most oil fields consist of relatively thin
slabs of porous rock buried at depths of hundreds to
thousands of meters. After the drilling of wells the
oil usually flows to the surface naturally, but after
some years this primary recovery phase ends, and it
will be necessary to inject water or gas into the
reservoir to maintain the reservoir pressure and to
displace the oil from the injection wells towards the
production wells. However, even when using such
secondary recovery techniques, most of the oil
remains trapped in the pores of the rock, and often
the oil recovery factor stays somewhere between 10
and 50%. Increasing the recovery factor of existing
oil fields is therefore a good alternative to finding
new ones. Sometimes this is possible during a
tertiary recovery phase through the use of ‘enhanced’
oil recovery techniques such as the injection of
surfactants, polymers or steam. These techniques are
relatively expensive, and, depending on the type of
oil and the subsurface conditions, only economically
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feasible at oil prices even above the current high
level. An alternative, emerging, method to increase
the recovery factor is the application of measurement
and control techniques to improve the control of
subsurface flow. In particular the use of sensors and
remotely controllable valves in wells and at surface,
in combination with large-scale subsurface flow
models is an increasing area of research, which is
known in the oil industry under various names, such
as ‘smart fields’, ‘intelligent fields’, ‘real-time
reservoir management’, or ‘closed-loop reservoir
management’. Many of the ‘smart’ applications of
measurement and control in wells were initially
focused on increasing the instantaneous production
rate, i.e. on short term ‘production management’,
through the use of ‘reactive’ control strategies. Here
we will consider long term ‘reservoir management’
with the aim to maximize recovery, or some
economic objective function, over the life of the
reservoir, see Fig. 1. This typically requires a more
‘pro-active’ approach using system models to predict
future performance. Sources of inspiration for our
research are at one hand model-based control
concepts as used in the process industry, which offer
a wide variety of solutions to cope with uncertainties,
nonlinearities and multi-scale optimization. At the
other hand we draw inspiration from disciplines like
meteorology and oceanography where advanced data
assimilation techniques have been developed to
condition large scale flow models (with more than
10° state variables) to measured data while honoring
measurement and model errors.
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Fig. 1. Domains in time and space covering the main
elements of the oil recovery process.

2. RESERVOIR MANAGEMENT

Fig. 2 depicts reservoir management as a model-
based controlled process (Jansen et al. (2005)). The
system, at the top of the figure, comprises of one or
more reservoirs, wells, and facilities for the
separation and treatment of oil, gas and water.
Generally, the system boundaries can be specified
accurately for the wells and the surface facilities, but
are much more uncertain for the reservoir of which
the geometry is usually deduced from seismics with a
limited resolution. Also the parameters of the system
are known to varying degrees: the fluid properties
can usually be determined quite well, but the
reservoir properties are only really known at the
wells. The subsurface is very heterogeneous, and the
parameters relevant to flow are correlated at different
length scales, but often over distances smaller than
the well spacing. As a consequence, the uncertainties
in the model parameters of the subsurface part of the
system are very large, and during the design phase of
an oil field development it is therefore customary to
construct multiple subsurface models to simulate the
flow of fluids for different geological ‘realizations’.
The typical number of state variables in these system
models is in the order of 10* to 10°, with similar
numbers for the model parameters. Numerical
simulation of reservoir flow is performed in discrete
time steps of weeks to months and a single forward
run, i.e. simulation of some decades of oil
production, typically involves hours to tens of hours
computing time. Based on these large-scale system
models it is possible to optimize the oil recovery
process design (known as the field development
plan). This concerns, for example, determining the
number and position of wells, or the optimal water
injection and oil production flow rates over the life
of the reservoir. During the past decades the
possibilities to control subsurface flow have
increased considerably. This concerns complex well
configurations, e.g. ‘meandering’ horizontal wells, or
multi-lateral wells with multiple branches, and the
installation of control valves in ‘smart’ wells or at
surface. Model-based optimization is therefore a
rapidly growing activity within the reservoir
simulation community. This optimization process is
indicated in blue in Fig. 2. During the oil production
process, more or less regular measurements are
performed at the top of the wells and in the facilities,
which give an indication of the pressures and phase
rates (i.e. oil, gas and water flow rates) in the surface
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part of the production system. Traditionally these
measurements are performed monthly or quarterly
and with a limited accuracy. During the past years,
however, an increasing amount of sensors is being
installed that give near-continuous information about
the system pressures and phase rates, not only at
surface but more and more also downhole. In
addition, other measurement techniques have
emerged that give an impression of the changes in
reservoir pressure and fluid saturations in between
the wells. This concerns in particular ‘time-lapse’
seismic measurements, which allow for monitoring
the displacement of oil-water or oil-gas fronts
between injection and production wells at regular
(say quarterly to yearly) intervals. By combining the
measured response of sensors and the simulated
response of the system models it is possible to judge
to what extent the models represent reality. With the
aid of systematic algorithms for data assimilation it is
then, to some extent, possible to adjust the system
parameters such that the simulated response better
matches with the measured data, and, hopefully, such
that the models give better predictions of the future
system response. The development of ‘automatic
history matching’ techniques is therefore another
area of current activity in reservoir simulation
research. The data assimilation process is indicated in
red in Fig. 2.
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Fig. 2. Reservoir management depicted as a closed-
loop model-based controlled process.

3. SYSTEM EQUATIONS
3.1. Notation

All our work is based on the use of numerical
reservoir models. We express the model equations in
state space notation. Vectors are indicated with
Roman or Greek lower case letters, either in bold
face or in index notation. Matrices are indicated with
Roman or Greek capitals. The superscript T is used
to indicate the transpose, and dots above variables to
indicate differentiation with respect to time ¢.

3.2. Reservoir models

We consider models for multiphase flow through
porous media. Starting from the governing partial
differential equations and boundary conditions, and
applying a semi-discretization in space (using e.g.
finite differences, finite elements or finite volumes)
we obtain a set of ordinary differential equations that



can be expressed as (see Appendix A for a
derivation)

x=f(x,u,0) , (1)
or, even more general, as
g(kaxsuae): 0 ) (2)

where f and g are nonlinear vector-valued functions,
x is the state vector, u the input vector (control
vector), and @ a vector of model parameters. In a
conventional iso-thermal reservoir simulation model,
X typically contains pressures and phase saturations
or component accumulations, u contains the well
flow rates, well pressures, or valve settings in those
grid blocks that are penetrated by wells, and 0
contains parameters like porosities, permeabilities
and other reservoir and fluid properties. Using some
form of time discretization, the continuous-time
equation (2) can be rewritten in discrete-time form as

g(xk+1»xks“k,9)=0 R (3)

where the subscript £ indicates discrete time. To
complete the model we need to specify initial
conditions, which, in the discrete case, can be
represented as

“4)

Output variables y, combined in an output vector y,
are a function of the state variables x, according to

D =h(xk) , (%)

where h is a vector-valued function. Typical outputs
are wellbore pressures and phase flow rates, either
measured at surface or downhole. Note: Although in
this paper we use a notation that is quite obvious to
control engineers, the notation used in the reservoir
engineering literature will often be less familiar.

X, =X .

3.3. Nature of the equations

As discussed in some more detail in Appendix A, the
governing equations for multi-phase flow through
porous media are a set of mildly nonlinear parabolic
(diffusion) equations, describing the rate of change
of pressures, coupled to a set of strongly nonlinear
parabolic-hyperbolic (diffusion-convection) equati-
ons, describing the rate of change of phase
saturations or component concentrations. The very
low flow rates imply that inertia effects may usually
be neglected. Moreover, the flow is strongly
dissipative, such that the response to disturbances is
typically over-critically damped and instability of the
flow in time is not an issue. (Numerical instabilities
during simulation of the discretized equations may of
course still occur, notably when the solution methods
used are not fully implicit.) The time constants of the
pressure equation are typically in the order of hours
to months, whereas the diffusive parts of the
saturation equations may have time constants up to
thousands of years. Also the convective terms (i.e.
the fluid velocities) are usually so small that the
propagation speeds of oil-water or oil-gas fronts are
typically much lower than those of the pressure
waves. Under some mild assumptions the pressure
equations may therefore often be approximated as
linear with slowly time-varying coefficients. The
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saturation equations are inherently nonlinear, and in
the limit of zero diffusion may exhibit typical
properties of hyperbolic equations such as shocks
and rarefaction waves. The coefficients of the
equations are generally very poorly known, and
moreover often vary spatially up to four orders of
magnitude.

4. OPTIMIZATION
4.1. Optimization methods

For a given configuration of wells, and in particular
for a flooding scenario involving multiple injectors
and producers, we can use the well rates or pressures
to optimize the flooding process over the life of the
reservoir. First we will address optimization without
updating of the reservoir model, i.e. the blue loop in
Fig. 2. As in any optimization problem, we need an
objective function and constraints. For example, the
objective could be to maximize recovery or the net
present value of the water flooding process.
Generally, the objective function can be expressed
as:

J=

Jy (yk’uk)ﬂ (6)

K
k=1
where K is the total number of time steps, and where
Ji represents the contribution to J in each time step
(e.g. the sum of oil revenues and water injection and
production costs during that time interval, where the
costs have a negative value). Constraints can be
expressed in terms of the state variables or the input
variables and may be equality or inequality
constraints, which we represent in a general form as

¢(x,,u,)<0. 7

The control problem can now be formulated as
finding the control vector u; that maximizes J over
the time interval k=1, ..., K, subject to system
equations (3), initial conditions (4), output equations
(5) and constraints (7). Many numerical techniques
are available to solve this optimization problem. In
our work we have been using a gradient-based
optimization technique where the derivative
information is obtained through the use of an adjoint
equation; see Brouwer and Jansen (2004), Van Essen
et al. (2006) and Zandvliet et al. (2007). Much
earlier, adjoint-based techniques were introduced in
reservoir engineering for the optimization of tertiary
recovery processes such as polymer or CO, flooding;
see Ramirez (1987). The first paper on gradient-
based control of water flooding is Asheim (1988),
followed by, among others, Virnovsky (1991),
Zakirov et al. (1996) and Sudaryanto and Yortsos
(2000). However, industry uptake of these methods
was almost absent until quite recent, when the advent
of ‘smart well’ and ‘smart fields’ technology caused
a revival of interest. Gradient-based optimization
methods make use of the derivatives 6J/0uy , to

guide the iteration process. Here, u; is a single
element i of vector u, at time k. Gradient-based
methods generally require much less function
evaluations than gradient-free methods, but at the
price of having to compute the derivatives at every
iteration step. Alternative methods to perform field-



life optimization, and in particular those addressing
well placement optimization, use ‘non-classical’
methods such as genetic algorithms; see e.g. Yeten et
al. (2003) and Giiyagiller and Horne (2004).
Moreover, applications to optimize more complex
reservoir flow processes, such as alternating-water-
gas (WAG) injection, are beginning to receive more
attention, sometimes in combination with reduced-
physics models such as streamline models or
response surfaces generated with experimental
design (Esmaiel et al. (2005)).

4.2. Optimal control

A very efficient way to obtain gradients of the
objective function J with respect to the inputs uy is
given by ‘optimal control theory’ which makes use
of an adjoint formulation; see e.g. Stengel (1994).
Once the gradients have been obtained, a wide
variety of gradient-based techniques is available to
iterate to a (locally) optimal solution; see e.g. Gill et
al. (1981). Appendix B gives a brief overview of
adjoint-based optimization. Implementation of the
adjoint formulation in a numerical reservoir
simulator is conceptually simple if the simulator is
fully implicit, because in that case the Jacobian
matrix 0g, /0x, , which is required in the adjoint

formulation, is already available; see Sarma et al
(2005). In practice the programming effort is still
considerable because of the complexity of modern
reservoir simulation programs, which may contain up
to millions of lines of code. Another, more
theoretical, problem is the systematic incorporation
of the constraints ¢ as specified in equation (7). Some
possible solutions are given in Sarma et al. (2006a),
Montleau et al. (2006), and Kraaijevanger et al.
(2007). One of the disadvantages of gradient-based
techniques is their tendency to arrive at a local
optimum rather than a global one. This is particularly
the case if we have a large number of controls (wells)
and a large number of points in time at which we
may change the control setting, resulting in a very
large number of possible control trajectories. Several
regularization techniques can be applied to ‘smooth’
the control trajectories and to limit the freedom in
choosing control settings. Although this may result,
theoretically, in a sub-optimal global optimum, it
will hopefully result in less local optima, and in an
increased speed of the iterative optimization process;
see e.g. Stengel (1994). An adaptive multi-scale
regularization technique for water flooding
optimization was implemented by Lien et al. (2006).
Recently we also started to investigate the use of
adjoint-based techniques to optimize well locations,
and the first results are promising; see Handels et al.
(2007).

4.3. ‘Smart well’ optimization

The implementation of a dynamic water flooding
optimization strategy, as e.g. obtained with the aid of
optimal control theory, requires the availability of
adjustable valves. Mostly, wells are controlled at the
‘well head’, i.e. at the point where the well reaches
the surface. A recent development are so-called
‘smart wells’, equipped with down hole ‘inflow
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control valves’ which allow for the inflow control of
individual well segments in one or more reservoirs
penetrated by the well; see Fig. 3. Initially, the use of
smart well technology was strongly focused on short-
term production optimization; see e.g. Naus et al.
(2006). However, as shown in Brouwer and Jansen
(2004) and in several publications thereafter, there
may be considerable scope to achieve increased
ultimate recovery using optimal control over the
entire life of the reservoir. In the operational practice
of controlling wells it is often more convenient to
simply switch off a well rather than to try to keep its
production at a predefined rate or pressure.
Moreover, on/off valves are also cheaper than
continuously variable valves, especially downhole
valves which may cost tens of thousands of dollars
each. Fortunately, some water flooding control
problems appear to have an optimal solution that is
close to or sometimes equal to ‘bang-bang’, i.e. it is
an optimal strategy to just open or close valves rather
than to gradually adjust them; see Zandvliet et al.
(2007). Maybe somewhat surprisingly, hardly any
attention has been paid to the use of (nonlinear)
model-predictive control (NMPC) techniques, or
even to just performing optimal control with a
receding horizon, with the exception of the work of
Saputelli et al. (2006). Indeed there appear to be
ample opportunities to investigate the use of NMPC,
and possibly other optimization techniques from the
process control community, for reservoir flooding
optimization.

4.4. Robust control

One of the major challenges in reservoir engineering
is taking decisions in the presence of very large
uncertainties about the subsurface structure and the
parameters that influence fluid flow. Reservoirs are
inhomogeneous and usually consist of fossilized
deltaic or fluvial deposits (sand, clay, carbonates)
with a distinct layering and sometimes a complicated
network of fractures. They have often been tilted,
faulted or otherwise deformed. Seismic information
has a resolution that is generally too coarse to
determine the individual geological layers in detail.
Borehole measurements, using a whole range of
physical measurement principles, give a much more
detailed picture of the subsurface, but are scarce and
only truly representative for a small area around the
wells. As was already indicated in Fig. 2, one of the
ways to cope with this uncertainty during the field
development phase of a reservoir is to use multiple
subsurface models, also known as geological
realizations. In that case we would also like to
perform the optimization over the ensemble of
realizations, but because we can only use one
optimization strategy for the real field, we need to
average the results in some sense.



Fig.3. Schematic representation of a ‘smart’
horizontal well, equipped with an inner tube
(green) and an outer tube, and valves to control
the inflow from the reservoir into the individual
segments of the well. The grey triangles represent
openings that connect the reservoir to the (blue)
annular space between the inner and outer tube.
The small blue circles represent the remotely
controllable inflow control valves.

Recently we developed a robust control strategy
through computing the expected value of the
objective function J as

Ny _
E,(J)~ NLZJ(y,u,B’)

R i=1

(®)

where 0’ are the parameter vectors of realizations
i=l, ..., Ng; see van Essen et al. (2006). As an
example, consider Fig. 4 which displays two
equiprobable realizations, out of an ensemble of 100,
of a reservoir that has a fluvial structure with high-
permeability sandstone channels (green) in a
background of low permeability claystone (blue).
Fig. 5 displays the results, expressed as a cumulative
distribution function of the financial performance
measure (objective function) J, for three optimization
methods, as applied to the hundred realizations. The
blue curve corresponds to an often used reactive
water flooding strategy, where the production wells
are shut-in once the water/oil ratio exceeds a preset
maximum. The green curve corresponds to a nominal
optimization strategy based on a single ‘best’
realization. The red curve corresponds to the robust
optimization strategy based on hundred realizations,
and the purple curve to the same robust strategy but
applied to a different set of 100 realizations drawn
from the same population of reservoir models. The
curves clearly show the value of optimization over
reactive control, and the additional benefit of a
robust optimization strategy: not only is the mean (at
the horizontal dotted line) highest for the robust
results, also the standard deviation is lowest (steepest
curves).

5. DATA ASSIMILATION
5.1. Formulation as optimization problem

Data assimilation, or automatic history matching, is
the adaptation of the states and parameters of a
system model to measured data, as indicated in red in
Fig. 2. In our case this implies updating states x and
parameters 0 using measured output data y,,.
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Fig. 4. Two realizations of a

equiprobable
channelized reservoir. The top figure shows the 4
production wells (brown) surrounded by 8 water
injection wells (black). (Van Essen et al. (20006)).
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Fig. 5. Cumulative distribution functions for three
different control strategies. (Van Essen et al.
(2006)).

Often the history matching problem is formulated as
an optimization problem for the parameters only,
with an objective function defined in terms of the
mismatch between measured and simulated output
data:

J = Z[(y’m -v) Ry, —y’)J . O

i=1

where R, is a weight matrix which is often chosen as
the spatial covariance matrix of the measurement
errors, and where the counter i=1, ..., ¥ indicates
the measurements at different points in time. The
optimization problem is then usually solved with the
aid of an adjoint-based method; see e.g. Chavent et al
(1975) and Li et al. (2003). Often the objective
function is expanded to include a term that penalizes
large deviations between the updated parameter
values 0, and the prior values 0:

1=y R -y)
i=1 .

(10)
+(0, —0') R, (6] -0 )} .



The weight matrix R, can be interpreted as a
parameter error covariance matrix. If the states are
also updated, the uncertainty is taken into account
with an additional covariance matrix R,. Joint
updating of states and parameters can be done using
the ‘representer method’ which was first introduced
in ocean engineering; see Bennett (2002). For early
applications to reservoir engineering, see Rommelse
et al. (2006), and Przybysz-Jarnut et al. (2007). An
alternative way to cope with model uncertainties is
through the use of the ensemble Kalman filtering
method, which we will briefly discuss below.
Specialized model updating methods have been
developed in the reservoir engineering community
using, e.g., streamline simulation to rapidly derive
sensitivities of saturation changes along streamlines
(Vasco et al. (1999)). Other specialized methods
perform history matching under geostatistical
constraints, such as the probability perturbation
method (Caers (2003)), or emphasise the
quantification of uncertainty; see e.g. Erbas and
Christie (2007).

5.2. Ensemble Kalman filtering

As is well known in the process control community,
the minimization problem to estimate states as
described above may also be formulated as a
sequential estimation procedure, i.e. such that the
data are assimilated whenever they become
available. It can be shown that for linear systems,
and assuming Gaussian measurement and process
noise, this sequential ‘Kalman filter’ approach results
in exactly the same answers as the representer
method (Bennett (2002)). For nonlinear problems,
the ordinary Kalman filter breaks down because the
nonlinearity results in non-Gaussian noise when
propagated through the system. In the ensemble
Kalman filter (EnKF) the analytical error
propagation is replaced by a Monte Carlo approach:
the model error covariance is computed from an
ensemble of model realizations which are all
propagated in time. This ensemble method has
proved very successful in oceanographic applications
where very large models, containing millions of state
variables, are frequently updated using a variety of
data sources; see Evensen (2006). During the
forecast step a simulation is run for each of the
model realizations up to the time where new
measurements become available. With these
measurements, all realizations in the model are
updated by combining the new real measurements
with forecasts from the ensemble. Recently a large
number of publications have appeared that apply the
EnKF to reservoir engineering problems; see e.g.
Nevdal et al. (2005), Reynolds (2006) and Evensen
(2006). These implementations of the EnKF also
treat parameters as unknowns, which leads to the use
of an extended state vector X =[x’ 07]".

5.3. Parameterization

In our parameter and state estimation problems we
are dealing with a very large number of ‘inputs’
(parameters and states) that need to be adjusted to
obtain a best match between modeled and real data.
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A typical reservoir model may contain millions of
unknown parameters, such as grid block
permeabilities and porosities, fault transmissibilities
and initial conditions. Fortunately most of these
parameters display spatial correlations that can be
used to reduce the dimension of the parameter space,
and various techniques to regularize the parameter
estimation problem have been proposed using, e.g.,
zonation, wavelets, Karhunen-Lo¢ve decomposition
or discrete cosine transforms; see Jafarpour and
McLaughlin (2007) for a recent overview. It has been
shown that it is also possible to make use of spatial
correlations in the states (pressures, saturations) to
reduce the order of reservoir models using system
theoretical techniques, but application of these
possibilities either in optimization or in data
assimilation has hardly yet been pursued. For some
early attempts, see Heijn et al. (2004), Van Doren et
al. (2006), Markovinovi¢ and Jansen (2006), and
Gildin et al (2006). In general the amount of
information that can be obtained from well data is
rather limited, especially because the pressure
propagation through a reservoir is a diffusive
process. Sometimes it is possible to obtain areal
information through the repetition of seismics in
time, which may give an indication of those reservoir
areas where pressures or saturations have changed.
However, the data obtained from production
measurements and time-lapse seismics are never
sufficient to fully characterize the states and
parameters in a reservoir, and history matching is
therefore an inherently ill-posed problem. Especially
if reservoir models are used for field re-development
planning, involving e.g. the drilling of new wells,
geological models are essential to constrain the
solution space of the data assimilation problem.
Surprisingly, a formal analysis of the observability
and identifyability of reservoir flow and the
identifyability of the model parameters, has, to our
knowledge, not yet been reported and there appears
to be ample scope to clarify these system-theoretical
aspects of subsurface flow.

6. CLOSED-LOOP RESERVOIR MANAGEMENT

Finally, we consider an example of full closed-loop
reservoir management, as indicated in Fig. 1, by
combining optimization (the ‘blue loop’) with data
assimilation (the ‘red loop’). The results are taken
from Overbeek et al. (2004), and are comparable to
other early results reported in Brouwer et al (2004),
Nevdal et al. (2006) and Sarma et al. (2006b). Fig. 6
depicts a reservoir modeled with 12100 grid blocks
which was used as ‘truth’ to generate synthetic
‘measured’ data. The 10 crosses at the left represent a
row of vertical water injection wells, and the 10
circles at the right a row of producers. Just as in the
previous example, the reservoir contains high-
permeability sandy channels (in red) amidst a low-
permeability clayish background (blue). We assumed
that noisy measurements of pressure and total flow
rate (oil plus water) were available in all wells. We
used optimal control theory with a steepest descent
method for the flooding optimization and the EnKF
method for updating the unknown grid block
permeabilities in the ensemble of reservoir models.
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Fig. 6. Top view of the ‘true’ reservoir used to
generate synthetic data. (After Overbeek et al.
(2004))

The optimization objective was oil revenue minus
water production costs. The top row in Fig. 7 depicts
the snapshots in time of a conventional flooding
strategy. As expected, the injected water rapidly
flows through the highly permeable channels, which
results in early water production in some of the
producers. After one pore volume of water has been
injected all oil could, in the ideal case, have been
produced, but it is clear that because of the
heterogeneous reservoir structure a lot of oil has been
left behind; see the top-right figure. The second row
of Fig. 7 depicts the results if the water flood is
operated in ‘closed-loop’ using an ensemble of 100
coarse reservoir models of 100 grid blocks each with
parameters that are frequently updated with EnKF
during the flooding process. The figures at the
bottom row show that the initial average
permeability estimate is nearly uniform (¢ =0 days),
but that after a while a heterogeneous pattern has
emerged (1= 116 days) that does not really change
very much any more until the end of the flooding
period (¢=750 days). As follows from comparison
of the final (rightmost) figures in the first two rows,
the optimized water flooding strategy results in a
significantly improved oil recovery. In this example
the initial ensembles did not show a marked
heterogeneity, but just a Gaussian random spatial
structure, and therefore we based the optimization on
the ensemble average, rather than using a robust
strategy as in the previous example. The third row in
Fig. 7 shows the flow rates in the 10 injection wells
and illustrates that the optimization results in a
dynamic strategy of closing and opening different
valves over time.

7. DISCUSSION

The concept of closed-loop reservoir management
and production optimization has been described in
different forms before; see e.g. Chierici (1992), or
Nyhavn (2000), with further references given in
Jansen et al. (2005). However none of these papers
makes use of systematic techniques for both
optimization and data assimilation. The examples
shown in this paper are simplistic, and in a realistic
field, with realistic well constraints, the scope for
optimization will be smaller.
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0 days

116 days 750 days

Fig. 7. Snapshots in time. Top row: saturations
during conventional water flooding (red: oil, blue:
water). Second row: Saturations during closed-
loop optimized water flooding. Third row: Flow
rates in the injection wells. Bottom row:
estimated permeability field (average of 100
ensemble members). Note: The bottom-right
figure has been overlain with the ‘true’ channel
structure from Fig. 6. (After Overbeek et al.
(2004)).

However, the examples illustrate some essential
aspects of our closed-loop management approach:

e Systematic optimization of well rates over the
producing life of a reservoir produced with water
flooding offers scope for increased oil recovery
and reduced water production.

The effect of uncertain reservoir parameters can
be reduced through a) robust optimization over
an ensemble of reservoir models, and b) regular
updating of the models using production data.

A relatively simple reservoir model may still
give acceptable results when wused for
optimization of a fixed configuration of injection
and production wells.

Especially the last point raises some interesting
system-theoretical questions which are topic of our
current research. The observability of reservoir
pressures (which are required to estimate the
permeabilities) from the wells is probably very small
because of the diffuse nature of pressure propagation
in porous media. However the controllability of the
pressure field (which drives the saturation changes)
is equally limited, which explains why a relatively
simple model works so well to optimize flooding in a
fixed configuration of wells. We note that this would
to a much lesser extent be true if we were to drill new
wells, in which case additional geological



information would be required. Another, more
practical, aspect of our research that requires input
from measurement and control theory involves the
combination of short-term production optimization
and long-term reservoir management. This will
probably require a layered control structure, as
commonly used in the process industry where longer
term optimization results serve as constraints for the
short-term optimization, which in turn provides set
points for field controllers; see e.g. Saputelli et al
(2006). In conclusion, there appears to be ample
scope to use a variety of results from process control
theory and practice, in particular for optimization,
parameter estimation and model reduction, to further
develop the techniques for model-based control of
subsurface flow
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APPENDIX A: NUMERICAL SIMULATION OF
SUBSURFACE FLOW

As in all branches of fluid mechanics, the physics of
flow through a porous medium can be described with
the aid of partial differential equations that represent
conservation of mass, momentum and energy, and
equations of state that describe the fluid properties as
a function of pressure and temperature. Except in
case of steam flooding we can assume that reservoir



flow is isothermal, which implies that we may
disregard the energy balance equation. Moreover, the
movement of fluids is usually so slow that we can
disregard inertial effects, and that instead of the
momentum balance equation we may use an
empirical relationship between pressure drop and
flow velocity known as Darcy’s law. For the simple
case of two-phase (oil-water) flow we can write the
mass balance equation for each phase in vector
notation as

V(pv,)+ (A.1)

o(p#S,)
i 1 _ ) .W: 0 R
“a Pi4;
where p is fluid density, v is (superficial) fluid
velocity, ¢ is porosity, S is fluid saturation of the
pore space (0<S<1), ¢ is time, ¢’ is flow rate per

unit volume, and the subscript i € {o, w} indicates
the oil and water phases respectively. Darcy’s law
can be expressed as

Vv, = _&K(Vpi _ping) >

i

(A.2)

i

where K is the permeability tensor, x fluid viscosity,
k. relative permeability, p pressure, g acceleration of
gravity and d depth. The permeability tensor K,
whose elements have units of surface area, represents
how easily the fluids flow through the rock in
different directions. Usually the orientation of the
coordinate system can be aligned with the geological
layering in the reservoir such that K is a diagonal
matrix:

K =diag(k,.k,.k.) , (A3)

where k., k, and k. are directional permeabilities in
the x, y and =z coordinate directions. The
dimensionless relative permeabilities ,; are functions
of S, and are reduction factors that represent the
increase in flow resistance caused by multi-phase
effects. The resistance to concurrent flow of oil and
water is generally much higher than the sum of the
resistances to flow of the individual phases, and the
relative permeabilities are therefore a major source
of nonlinearity in the multi-phase equations.
Combining equations (A.1) and (A.2) results in

v.| PRk (vp, - pgvd) +—a(’0(;fi¢)—p,-q!"=0-
H;

(A4)

Equation (A.4) contains four unknowns, p,, p, S,
and S,, two of which can be eliminated with aid of
the relationships

S, +8, =1, (A.5)

p,—p,=p.(S,), (A.6)

where p.(S,,) is the oil-water capillary pressure which
is another source of nonlinearity in the flow
equations. Substituting equations (A.5) and (A.6) in
equations (A.4), expanding the right-hand sides,
applying chain-rule differentiation, substituting the
isothermal equations of state, expressed as oil and
water compressibilities
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R 0 (A7)
Py 9P, |y,
_1op,| _10p,

w

- Py apw |TR ) Pu apo |TR ’

and substituting the rock compressibility
¢ =19
¢ p,

allows us to express equations (A.4) in terms of p,
and S,, as follows:

_V . {pn—ka |:(Vpo - S%VSWJ - pnng:|} +
ll’lw w (A.9)

pw¢|:SW(CW +Cr)%+%:| _pwq‘rz -0 ,

ot ot

(A.8)

—V-['D{’—k’”K(VpO - p(,ng)} +
(A.10)

dp, OS,
0 Pw | _ w:().
R
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The two-phase flow equations as formulated in
expressions (A.9) and (A.10) contain two state
variables: the oil pressure p, and the water saturation
S,. The equations are nonlinear because of the
saturation dependence of the capillary pressure p.
and the relative permeabilities 4. In the more general
case there may also be a pressure dependency of the
densities p, the porosity ¢, and the compressibilities
¢, in particular if the formulation is extended to
include gas as a third phase. The nature of the
equations is discussed in e.g. Peaceman (1977), Aziz
and Settari (1979) and Ewing (1983). It can be shown
that the pressure behavior is essentially diffusive, i.e.
that the corresponding equations are parabolic and
become elliptic in the limit of zero compressibility.
The saturation behavior is mixed diffusive-
convective, i.e. the corresponding equations are
mixed parabolic-hyperbolic and become completely
hyperbolic in the case of zero capillary pressure. The
equations can be discretized in space and time. Most
numerical reservoir simulators apply a spatial
discretization scheme based on finite difference or
finite volume formulations, using an upstream
weighting in the convection-dominated terms. In a
simplified case where we disregard the effects of
capillary pressure, and gravity, and where we assume
that the input consists of prescribed flow rates in the
wells only, we obtain a system of nonlinear first-
order differential equations that can be expressed as

Seniel W R KSR

where p and s are vectors of pressures p, and water
saturations S,, respectively, V is an accumulation
matrix (containing the parameters ¢, ¢, ¢,, and ¢,), T
is a transmissibility matrix (containing the
parameters k, k. and p), and q, and q,, are vectors of
oil and water flow rates with non-zero elements
corresponding to gridblocks penetrated by a well.
Both V and T are functions of s, either directly or

odo




through the parameters. In injection wells we can
prescribe q,,, while q, is equal to zero. In production
wells we can not directly control q, and q,,, but we
can control the total flow rates q,=q, + q,, as

SR

where F, and F, are diagonal matrices with
saturation-dependent terms which add more
nonlinearities to the system. Further complexities
occur when we prescribe pressures in the wells rather
than flow rates, ands when we take in to account the
effects of capillary pressures and gravity. Moreover,
reservoir simulators usually also model a third phase,
gas, which has a pressure-dependent oil-solubility. A
next step in complexity is obtained when individual
hydrocarbon components are modeled, rather than
just oil and gas, or when chemical interactions or
thermal effects are taken into account; see e.g. Aziz
and Settari (1979). However in all these cases it is
possible to obtain a set of system equations which
can be expressed in a form similar to equation
(A.11), or more compactly, as

V(x)x+T(x)x=F(x)q,

(A.12)

(A.13)

where x = [p, s]”. Equation (A.13) can be recasted in
a generalized nonlinear state space form

f(x,0,)x=1,(xu,), (A.14)

where we have introduced the parameter vectors 6,
and 0,. The input vector u is related to the vector of
well flow rates q as u=L,, q, with a selection
matrix L,, that selects the non-zero elements of q,
i.e. those elements that correspond to grid blocks
penetrated by a well. For a reservoir model with n
grid blocks and m wells, and modeling two phases
only, we therefore have a state vector x and an input
vector u of dimensions 2» and m respectively. The
parameter vectors were introduced to represent those
parameters that are uncertain and that need to be
identified or updated during the reservoir
management process. In the examples in this paper
we restricted the parameter uncertainty to a
homogeneous permeability k=k.=k,=k., which
however, may still be different in each grid block
such that in our case 0, and 0, have dimensions 0 and
n respectively. Time discretization of the space-
discretized system equations is usually performed
fully implicitly, which implies that each time step the
nonlinear equations are solved iteratively using a
Newton-Raphson scheme. Under the assumption that
f, is invertible, which is the case for most problems,
we can rewrite equations (A.12) in classical
nonlinear state space form as was done in equations
(1) or (2) in the body of the text. We note that we
only use this classical state space form to simplify
the subsequent analysis. In an actual numerical
implementation, the time discretization is always
performed starting from the generalized form (A.12).
Typical grid block sizes in a reservoir simulation
model are in the order of tens to hundreds of meters
in directions aligned with the geological layers, and
meters to tens of meters in the direction
perpendicular to the layers, and reservoir models
may contain from tens of thousands up to a few
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millions of grid blocks. Typical simulation time steps
are in the order of weeks to months, and a single
reservoir simulation of the producing life of a field
requires hours to sometimes days of computing time.

APPENDIX B: ADJOINT-BASED
OPTIMIZATION

Consider the optimization problem
maxJ, k=1,....K

Uy

(B.1)

with objective function (6). We aim to compute the
optimal control u, with the aid of a gradient-based
algorithm, which requires the derivatives of J with
respect to u;,. The problem in determining the
derivatives is the indirect dependence of the variation
A&Jy. in the objective function on a variation ou;, of the
input. Here, du;, means the variation of element i of
vector u at time k. Each term Jj, at an arbitrary time
k=K, is not only a direct function of u,, but also a
function of y,, which, through equation (5), is a
function of x,, which in turn, through equation (3), is
a function of u,. The variations should therefore be
computed as

5Jix = ( aJK +
ou,

K
O 0¥ axk]a‘“ St .(B2)

i Oy OXy Ouy ) Oty

(Note the different subscripts k& and x). The term
0x;/0u, gives problems because we need to solve the
recursive system of discrete-time differential
equations (3) to connect the state vectors
X, k=x+1,...,K to the input u,. The complex
dependence can be taken into account by considering
equation (3) as a set of additional constraints to the
optimization problem, and applying the technique of
Lagrange multipliers to solve the constrained
optimization problem. Moreover, we may formally
also consider the initial condition (4) and the output
equation (5) as constraints, and, setting aside the
‘ordinary constraints’ ¢, we can therefore define a
modified objective function

Jia (Yk+1 SUWpy ) + ;“g (Xo - ’v‘)
+)"Z+1 gk+1 (Xk’ Xk+1 ’uk+1 ) >
+l’-/€+1 |:Yk+1 - hk+1 (Xk+1 ):|

where the constraints have been ‘adjoined’ to J; with
the aid of vectors of Lagrange multipliers A and p.
We can obtain a first-order description of the effect
of changing u; on the magnitude of J , through
taking the first variation of equation (B.3). A
necessary condition for an optimum is stationarity of
&J for all variations, which leads to the following set
of equations:

>~

J= (B.3)

=
Il

0

A B g (B.4)
0xX,
i, B B Mg ()
0x, 0x, 0x,
2 ey yr Mg (B.6)
OX 0X,



aJk +1

ay—kﬂﬂl;l =0 (B.7)
Zi—’:u;gﬁ—’:ﬂT (B.8)
gT(xk,ka,ukH):OT (B.9)

(x,—%) =0 (B.10)
(v, —h(x,,)] =07 (B.11)

The last three equations are identical to output
equation (5), initial condition (4) and system
equation (3), and are therefore automatically
satisfied. Equation (B.8) represents the effect of
changing the control on the value of the objective
function, while keeping all other variables fixed. For
a non-optimal control this term is not equal to zero,
but then it is exactly the expression that we require to

iteratively obtain the optimal control using a

gradient-based algorithm. Equation (B.7) allows us

to compute the Lagrange multipliers .,
k=0, ... K-1. Next we can use equation (B.6) to

compute multiplier Ax for the final discrete time K,

and thereafter the discrete-time differential equation

(B.5) to recursively compute the multipliers A, for

times k£=0,...K-1. Finally, equation (B.4)

represents the effect of changing the initial condition

Xo on the value of the objective function, while

keeping all other variables fixed. However, because

we prescribed the initial condition through equation

(4) this term is in our case only of theoretical

relevance. Solution of the optimization problem now

consists of repeating the following steps until the
optimal control vector u; has been found:

e ‘Forward’ simulation of the system equations
(5), starting from initial conditions (4) and an
initial choice for uy.

e ‘Backward’ simulation of the adjoint equations
(B.5), starting from final conditions (B.6).

e Computation of the derivatives of J with respect
to the controls u; with the aid of equation (B.8).

e Computation of an improved estimate of wu,
using the derivatives and a gradient-based
optimization routine of choice.

Because of its computational efficiency in

calculating the gradients of the objective function,

adjoint-based optimization is particularly attractive
for problems with a large number of control
parameters.
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