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Abstract: A high gain observer was designed to estimate the Crystal Size Distri-
bution in batch crystallization processes. This observer is based on a model where
growth kinetics depend on crystal size. The observer is based on the discretization
of population balance equations solved by the finite difference method. A reduction
of the number of state variables was done in order to reduce the computation
time. The observer’s output allows to estimate the moments of the CSD, which
are interesting for control purposes.Copyright c©2007 IFAC
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1. INTRODUCTION

The crystallization represents one of the most
important processes in the industry. The control
of such processes is a real challenge because of
modelling complexity, lack or reproducibility and
the difficulty of measuring the CSD (Crystal Size
Distribution). The problem of measuring CSD
remains an open field of research.

The CSD is an important characteristic of the
final solid end-use properties. In line calorimetric
or turbidimetric measurements have been used,
together with off line image analysis for the mod-
elling of the time variation of CSD during batch
solution crystallizations by (Kleizen et al., 1993)
and (Monnier et al., 1997). However it is im-
portant to note that no reliable on line CSD
measurements were available when such modelling
studies were done. Using the Mc Cabe hypothesis,
the model of batch crystallization process could
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be considerably simplified. The growth kinetic
became size independent. A high gain observer
and a continuous-discrete observer were designed
((Bakir et al., 2005) and (Bakir et al., 2006b)) in
order to reconstruct the whole CSD using popu-
lation balance equations (PBE). This model was
also used in (Bakir et al., 2006a) in order to
reconstruct the two CSD’s in polymorphic crys-
tallization and in line partial measurements.

The aim of the present work is the use of a more
precise model to estimate the whole CSD. The
crystallization rate depends on two mechanisms:
nucleation and crystal growth (Ramkrishna, 2000).
These two kinetics are computed using solute
concentration and crystallizer temperature. The
used model also exhibits a growth kinetic which
depends on crystal size.

Since the observer is based on the PBE describing
the time variations of the CSD, it is essential to
use a well adapted method to solve these PBE.
The different moments of the distribution are
known to describe well the the main dynamic fea-
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tures of the process. Using the different moments
of the CSD, the control of such process had been
explored by (Jones, 1974), (Rohani, 1990) and
(Zoltan and Richard, 2004).

In this work, the measurement used to perform
the observer is the number of nuclei (smallest
stable crystals). A reduced high gain observer is
developed. Different state reductions are studied
which allows to considerably reduce computation
time. The paper is organized as follows, first the
batch crystallization model is briefly described.
The principle of discretization of the PBE is
then exposed in section 3. Section 4 is devoted
to the observer synthesis. Finally, the estimation
technique is validated through simulation.

2. MODEL DEVELOPMENT

The population balance approach applied to the
batch crystallizer yields the following partial dif-
ferential equation:

∂n(x, t)

∂t
+

∂G(x, t)n(x, t)

∂x
= 0 (1)

where n(x, t) represents the CSD which defines
the number of crystals of size x per unit volume
of suspension. In this model, only nucleation and
growth are considered. Agglomeration and break-
age are not taken into account. The growth term
G(x , t) is size dependent. The solute concentra-
tion balance describing the mass transfer from the
liquid to the solid phase is:

dVt(t)C (t)

dt
+

dVT (t)Cs(t)

dt
= 0 (2)

C (t) represents the solute concentration and
VT (t) is the suspension volume. The variation of
this volume du to the mass transfer is very small
and can be neglected. the solid concentration
Cs(t) is deduced from the crystal size distribution
(CSD):

Cs(t) =
Kvρs

Ms

∫

∞

0

x3n(x , t)dx (3)

where Kv is a shape factor. For sphere Kv = π
6
. Ms

is the molecular weight of solid, ρs is the density of
the solid and Vt(t) is the solution volume (i.e. the
continuous phase) calculated from the following
expression:

Vt(t) = VT (t)(1 −
Ms

ρs

Cs(t)) (4)

The crystallizer temperature is described by the
energy balance around the jacket wall:

3
∑

ı=1

Cpini

∂Tcr

∂t
= −△HcVT

dCs

dt
− UA(Tcr − Tj ) (5)

The solubility, which refers to the solute concen-
tration under saturated conditions, is assumed to
obey Van’t Hoff equation:

Csat(T ) = asat exp (
−∆Hf

RT
) (6)

The absolute supersaturation (C − Csat) is the
driving force of the crystallization process. The
overall growth rate, including possible diffusive
limitations, is assumed to be represented by the
following simple power low. Exponential values of
exponent J2 where generally found to lie between
1 and 2:

G(x, t) =
Ms

2ρs

Kcη(x)(C(t) − Csat(t))
J2 (7)

where Kc represents growth rate coefficient, η

represents the effectiveness factor which is the
solution of the following equation:

Kc

Kd(x)
(C − Csat)

g−1η(x) + η(x)
1

g − 1 = 0 (8)

Kd(x) represents the mass transfer coefficient and
is size dependent:

Kd(x) =
D

x
(2.0+0.47(

x
4

3 ǫ
1

3

ν
)0.62(

Da

TR

)0.17(
ν

D
)0.36)

(9)
With:
D: solute diffusivity (m2

s
)

ǫ: dissipated energy per unit of suspension mass
(W/kg)

ν: cinematic viscosity of the solution (m2

s
)

Da: stirrer diameter (m)
TR: crystallizer diameter (m)

Analytical solution of equation (8) is available
if g is equal to 1 or 2. A numerical solution
can be considered in the other case. B is the
result of two competitive nucleation mechanisms.
Primary nucleation takes place in the absence of
any crystal in the solution:

B1 = aN1 exp (
bN1

ln2( C
Csat

)
) (10)

Secondary nucleation, which may occur at lower
supersaturation level, is favored by the presence of
solid in suspension (i.e. added in the crystallizer
through seeding or generated through primary
nucleation):

B2 = aN2M i
T (C − Csat)

j (11)

aN1 is the primary nucleation parameter required
to be identified on line , aN2 and bN1 are constant
parameters and MT is the crystal mass in the
solution. The boundary condition for equation (1)
is usually set as follows:

n(x1, t) =
B(x1, t)

G(x1, t)
≃

B(t)

G(x1, t)
(12)
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3. DISCRETIZATION OF THE PBE

Many discretization methods were developed for
solving PBE by (Kumar and Ramkrishna, 1997)
and (Liu and Cameron, 2003). To our concern, two
methods are applied: finite difference method and
collocation method (Villadsen and Stewart, 1966)
that are widely developed in numerical analysis
books. The first method gives a model under a
canonical form of observability. Indeed, the state
matrix has tri-diagonal form. Moreover it agrees
with the physical behavior of the system. Collo-
cation method gives a polynomial approximation
based on a mathematical correlation between the
different states not describing physical phenom-
ena. Therefore, we use the finite difference method
is used for the observer development.

After the discretization of the PBE, the final
system of equations gives:

{

ṅx =
1

∆x
A(u, t)nx

y = Cnx

(13)

with: nx =















nx1

nx2

...
nxN−1

nxN















, C =
(

1 0 . . . 0
)

,

A(u, t) =




















−G(x1, t) G(x2, t) 0 . . . 0

−
G(x1, t)

2
0

G(x3, t)

2

. . .
...

0
. . .

. . .
. . . 0

...
. . . −

G(xN−2, t)

2
0

G(xN , t)

2
0 . . . 0 0 0





















,

with nx ∈ R
N , A ∈ R

N × R
N and C ∈ R

N . The
moments of the estimated CSD can be calculated
and compared to those of the model. The expres-
sion of the moments is the following:

µi =

∫ x∞

x∗

xin(x, t)dL (14)

The moments computation allows the evaluation
of certain values that characterize the CSD like
the number mean size Lpop and the variation
coefficient V Cpop which are calculated as follow:

Lpop =
µ1

µ0
(15)

V Cpop =

√

µ0µ2

µ2
1

− 1 (16)

4. HIGH GAIN OBSERVER SYNTHESIS

The system 20 has the following form:

{

ż = f(z, t)
y = h(x) = Cx

(17)

with z ∈ R
N , y ∈ R

m. The system is clearly
observable due to its triangular form. For the con-
ception of the high gain observer for this system,
the following assumptions must be verified :
The time varying parameter in 20 is positif:

∃γ, ξ : 0 < γ ≤ ξ,∀t ≤ 0 : γIdN
≤ AG(t) ≤ ξIdN

(18)
In the case of continuous measurements, a candi-
date exponential observer for this system is given
by a variant of (Farza et al., 1997) and (Gauthier
et al., 1992):































˙̂nx(t) =
1

∆x
A(u, t)n̂x

−
1

∆x
S−1

θ CT (Cn̂x − y))

Ṡθ(t) = −θSθ(t) − AT (u, t)Sθ(t)

− Sθ(t)A(u, t) + CT C

(19)

The convergence of this observer can be easily
proved using 18.

In the case of unseeded solution, we took N
equal to 200 to improve the model precision. This
number could be reduced for the observer to a
half (Nobserver = 100, ratio = 2). This task is
motivated by the reduction of the computation
time. In this case, the following matrix of the
system is generated for the observer synthesis:

A2obs
(u, t) =

























−
G(x1, t)

ratio

G(x2, t)

ratio
0 . . . 0

−
G(x1, t)

2ratio
0

G(x3, t)

2ratio

. . .
...

0
. . .

. . .
. . . 0

...
. . . −

G(xN−3, t)

2ratio
0

G(xN , t)

2ratio
0 . . . 0 0 0

























,

With:
ratio = N

Nobserver

So:
A2obs

= Aobs

ratio

The new equations system is:



















ṅxobs
=

1

∆x
A2obs

(u, t)nxobs

=
1

ratio∆x
Aobs(u, t)nxobs

y = C2nxobs

(20)

The structure remains unchanged. The new num-
ber of components of the gain matrix S is (1 +

Nobs)
(Nobs−1)

2 .
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5. SIMULATION RESULTS

The simulation concerns a batch crystallization
with unseeded initial solution. In this simulation,
the observer is run with a reduced number of
states. This simulation was performed using a
concentration measurement with added noise of
about (±2%) which is a reasonable choice re-
garding the range of concentration (0− 1500)mol

m3 .
The solubility curve (Csat) and the solute con-
centration profile during the crystallization are
presented in figure 1.
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Fig. 1. solubility and solute concentration versus temper-
ature

Nuclei produced by the primary nucleation grow
with the increase of the supersaturation due to
decreasing temperature. Temperature increases at
this time because the crystal growth is exother-
mic. The secondary nucleation also takes place
due to the presence of crystals. A simulation
problem due to noise appears when the supersat-
uration becomes small. Some noisy solute mea-
surements are lower than the concentration at
saturation (Csat). This error introduces a change
of the model (from growth kinetics to dissolution
kinetics). Knowing the process behavior, this error
is set equal to zero.
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Fig. 2. Germ number (nuclei)

The significant interval where an important pro-
duction of nuclei occurs is presented in figure (2).
The generation of nuclei in the remaining interval
is less important. Sampling period is equal to
2 seconds. This period is small because of fast
system dynamic. Greatest sampling periods yield
to important estimation error.
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Fig. 3. 19th model crystal size and equivalent 10th

observer crystal size

The 10th crystal class observer corresponds to the
(19th) crystal model class. There evolution with
time is presented in figure 3. It is shown that this
crystal size is estimated with acceptable precision.
The choice of such crystal size was arbitrary. The
other crystal sizes exhibit the same estimation
accuracy.

The 3D figures 4 and 5 represent the growth
size dependent model and observer. These tow
figures show that the Mc Cabe hypothesis leads
to neglecting important growth kinetic difference
between small and large crystals. Growth for small
crystals is about 10 to 20 times greater than the
growth for large crystals. This justifies the use of
a more complex model. Figure 5 represents the
growth kinetic obtained by the observer. It was
computed using noised solute concentration.
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Fig. 4. Growth size dependent for the model
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Fig. 5. Growth size dependent for the observer

The last two 3D figures (6) and (7) represent
respectively the CSD model and its estimation.
An estimation error can be seen. It is justified by
the huge number of estimated variable.

Fig. 6. model CSD
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Fig. 7. CSD Observer

6. CONCLUSION

The model used in order to estimate the CSD
is more complex than those used before. The
PBE discretization yields to a change of model
structure and thus the observer structure.

In spite of the great number of variables (crystal
sizes) to be estimated, and the availability of only
germs number, a high gain observer allowed the

estimation of the CSD. In the observers realized
above, the accuracy of the CSD estimation is
acceptable. The reduction of the variable number
involved a less number of variables to integrate
and therefore a reduced computation time.
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