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Abstract: In this paper, based on the prediction control performances defined over one 
cycle or multiple cycles, two higher-order ILC schemes have been developed by 
extending the Generalized Predictive Control (GPC) method to the two-dimensional (2D) 
system. The dynamics of the ILC system along time and cycle is taken as a 2D system, 
and the proposed designs integrate optimally the design and the combination of a 
time-wise GPC scheme and a cycle-wise ILC scheme in 2D sense. The simulations show 
the feasibility and effectiveness of the proposed algorithms. Copyright © 2007 IFAC
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1. INTRODUCTION 

Iterative learning control (ILC) improves the control 
performance from cycle to cycle by using the control 
information of the past cycles. In the earlier 
researches (Moore, 1993), as the cycle-wise 
convergence was concerned only, the proposed 
control laws are essentially open-loop feed-forward 
control along time for each cycle, which can not 
guarantee the time-wise control performance within 
each cycle. To solve this problem, a time-wise 
feedback control was proposed to combine with 
cycle-wise ILC, resulting in the feedback 
feed-forward ILC schemes (Amann et al., 1996).   
An ILC system is essentially a two-dimensional (2D) 
system (Kaczorek, 1985), where dynamics along 
time is determined by process and dynamics along 
cycle is introduced by ILC law. From 2D system 
viewpoint, a feedback feed-forward ILC is a 2D 
feedback control scheme. The major advantage of 
viewing an ILC system as a 2D system is that the 2D 
dynamics of the system can be taken into account not 
only in the process modeling but also in the control 
performance and controller design, resulting in an 
united design and optimal combination of the 
real-time feedback control and cycle-wise ILC in the 
2D sense. Since Geng et al. (1990) first proposed to 
describe ILC system as a 2D system, the idea of 
designing ILC from 2D system viewpoint has 
attracted considerable interest (Kurek et al., 1993; 
Yamada et al., 2003; Fang et al., 2003). 
It is noted that the most existing ILC laws generate 
the control input for process from the control 

information of the last one cycle. In terms of cycle 
index, this kind of control law is referred as 
first-order ILC law which has relatively poor robust 
convergence for the uncertainties and disturbance 
with respect to cycle index. Higher-order ILC laws 
synthesis the control from the information of past 
several cycles. It has been illustrated (Bien et al.,
1989; Chen et al., 1992) that higher-order ILC 
scheme has good cycle-wise robustness and 
convergence. 
The objective of this paper is to extend the 
philosophy of Generalized Predictive Control (GPC) 
(Clarke et al., 1987) to the 2D system to 
accommodate the design of the higher-order 
feedback feed-forward ILC system. The resulted ILC 
schemes obtained in this paper are, therefore, 
referred as higher-order Generalized 2D Predictive 
Iterative Learning Control (2D-GPILC). In 
consideration of the 2D dynamics of the ILC system, 
a 2D cost function defined on prediction horizon of 
current cycle is firstly optimized based on the 2D 
prediction model of the control system, resulting in a 
feedback feed-forward ILC scheme referred as 
single-cycle higher-order 2D-GPILC scheme. The 
structure analysis indicates that the resulted control 
scheme consists of a time-wise GPC ensuring the 
optimal control performances over the time-wise 
moving prediction horizon and a cycle-wise ILC 
guaranteeing the control performance improvement 
along cycle. To enhance the cycle-wise control 
performance, a multi-cycle predictive cost function 
is further proposed to optimize, resulting in 
multi-cycle higher-order 2D-GPILC scheme. The 
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numerical examples are provided to demonstrate the 
performance of the proposed schemes. 

2. PROBLEM FORMULATION 

2.1 Process model and higher-order ILC law 

For simplicity, it is assumed in this paper that a 
repetitive process is described by the following SISO 
CARIMA model 

1 1: ( ) ( ) ( ) ( ) ( )P t k t t k kA q y t B q u t w t  (1) 
0,1,..., ;    1, 2,...t T k

where t  and k  represent the discrete-time and 
cycle index, respectively, T  is the time duration of 
each cycle, ( )ku t , ( )ky t  and ( )kw t  are, 
respectively, the input, output and unknown 
disturbance of the process, 1

tq  indicates the 
time-wise unit backward-shift operator, 1( )tA q  and 

1( )tB q  are both operator polynomials 
1 1 2

1 2( ) 1 n
t t t n tA q a q a q a q  (2) 

1 1 2
1 2( ) m

t t t m tB q b q b q b q  (3) 
and t  represents the time-wise backward 
difference operator, i.e. ( ) ( ) ( 1)t k k kf t f t f t .
For the above process, the following ILC law 
synthesized from the control information of 
multiple past cycles, referred as higher-order ILC, 
is of interest in this paper 

0

1
: ( ) ( ) ( )

n

ILC t k i t k i k
i

u t u t r t  (4) 

( ) 0t iu t for 0 1, 2,..., ,   0, 1,...,1t T i n
where ( )kr t  is referred as updating law to be 
determined, 00 1, 1, 2,...,i i n , satisfying 

0

1
1

n

i
i

, are the specified weighting factors for the 

control increments of past cycles indicating the 
contributions of previous controls to the construction 
of the new control increments. Let 1

kq  represent the 
cycle-wise unit backward-shift operator, the 
transformation between ( )ku t  and ( )kr t  can be 
formulated as 

1 1

1 1( ) ( )
( ) (1 )k k

k t

u t r t
M q q

 (5) 

where 0

0

1 1 2
1 2( ) 1 ... n

k k k n kM q q q q  is 
operator polynomial introducing dynamics along 
cycle index. From 2D system viewpoint, the above 
control law is a 2D system with a time-wise 
integrator and cycle-wise filter cascaded in 2D sense.  

The conventional ILC law (Moore, 1993), commonly 
formulated as 1 1( ) ( ) ( )k k ku t u t L e t , however, 
is only a cycle-wise feedback control with integral 
action along cycle index. As more past cycle 
information is used, higher-order ILC law (4) can 
enhance the robust convergence and disturbance 
rejection along cycle index. 

2.2 Equivalent 2D model and cost function 

Substituting (4) into model (1) results in the 
following closed-loop control system 

2 :D P                 
0

1 1 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

n

t k i t k i t k k
i

A q y t A q y t B q r t v t  (6) 

where ( )kr t , ( )ky t ,
0

1
( ) ( ) ( )

n

k k i k i
i

v t w t w t are 

viewed as the input, output and disturbance, 
respectively. Note that model (6) represents a 2D 
system where the output of the system depends on 
both time-wise and cycle-wise historical input-output 
information. In this paper, model (6) is referred as 
the equivalent 2D model of the ILC system. The 
design work for updating law ( )kr t  is equivalent to 
design a 2D feedback control law for 2D system (6). 
For 2D model 2D P , the following quadratic cost 
function based on the time-wise moving predictive 
performance over one cycle is defined as the control 
performance index 

1 2

1 2 |
1

ˆ( , , , ) ( ) ( ) ( | )
n

r k k
i

J t k n n i y t i y t i t

2 1
22

0
( ) ( ) ( ) ( )

n

k t k
j

j r t j j u t j  (7) 

where 1n , 2 1 2( )n n n  are, respectively, referred as 
the time-wise prediction horizon and time-wise 
control horizon, |ˆ ( | )k ky t i t  indicates the predicted 
output at i  step ahead in the thk  cycle based on 
the measurements before time t  of the thk  cycle, 

( )ry t , 0,1,...,t T , is the desired trajectory, 
( ) 0i , ( ) 0j , ( ) 0j , 11,2,...,i n ,

20,1,..., 1j n  are the specified weighting factors 
indicating the importance of each cost terms. 
Remark 2.1. In cost function (7), ( )kr t , the 
manipulating variable of 2D system 2D P , is 
penalized for the improvement of 2D stability and 
robustness. It is noted from control law (4) that 
control increment ( )t ku t  is not independently 
determined by variable ( )kr t . In other word, small 
value of ( )kr t  may also result in significant control 
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increment ( )t ku t . Excluding ( )t ku t  in the 
objective function, optimization will result in a 
perfect tracking control, i.e. the inverse dynamic 
control for the process, which is hyper-sensitive to 
high-frequency components of the error and 
disturbance. Although the penalty of ( )t ku t
suppresses to a degree the movement of ( )ku t
along t , it is helpful to prevent the cycle-wise 
divergent problem for processes with unstable 
inverse dynamics. The inclusion of ( )t ku t  in the 
cost function can provide a smooth control operation 
that is important for process control applications. 

3. SINGLE-CYCLE HIGHER-ORDER 2D-GPILC 

2.3 2D prediction model 

In GPC framework, a prediction model for the output 
estimation over the prediction horizon is required for 
the derivation of control algorithm. According to 2D 
equivalent model of the ILC system, at any time t
of the k th cycle, the input and output information of 
the process can be divided into known and unknown 
parts as follows 

1 1

1 1
1

1 2 1 21
1

| |

| |

t n t m
k t k t

t t
k t n k t n

y r
A A B B

y r

0

1

1

1

1
1 2 1

1

|
|

|

t nn k i t t
i k t nt

i k i t n

y
A A v

y
 (8) 

where 1

2 1 1 2| ( )  ( 1)  ( ) Tt
k t k k kf t f t f tf ,

{ , , , }f y r v u , and 

1 2 1

11 2

1 2 2 13

1

1 0 0 0
1 0 00

 |   0 00 0

* * 10 0 0 *

n n n

n n

n

a a a a
aa a a
a aa a

a

A A

11 2 2

2 11 3

1 2 3 24

2 1

0 0 0
0 00

 |   0 00 0

* *0 0 0 *

m m m

m m

m

bb b b b
b bb b b
b bb b

b b

B B

As 2A  is a nonsingular matrix, it follows from (8)
that 

0

1 1 1

1 1
1

1
| | | ( ) ( )

n
t t t

k t n k t n i k i t n k k
i

t ty Gr y F V (9)

where 

1

1 1 1
2 2 2,    ( ) |tk k t ntG A B V A v (10) 

1 1
2 1 1( ) |t m

k k ttF A B r
0

1 1 1
2 1

1

| |
n

t n t n
k t i k i t

i
A A y y  (11) 

Clearly, ( )k tF  depends on the input-output 
information of past time over the previous cycles. 
With assumptions that disturbance 

1

1|tk t nv  is a 

white noise and 1 2n n , the best prediction of the 
outputs over the time-wise prediction horizon can be 
formulated by 

0

1 1 1

1 1
| 1

1

ˆ | | | | ( )
n

t t t
k k t n k t n i k i t n k

i
t ty Gr y F   (12) 

For 1 2n n  and setting ( ) 0,kr t i

2 1,..., 1i n n , the last 1 2n n  columns of matrix 
G  in the above model should be deleted to 
accommodate the time-wise control horizon, 
resulting in a generalized 2D prediction model as 
follows 

0

1 2 1

1 1
| 1

1

ˆ | | | | ( )
n

t t t
k k t n k t n i k i t n k

i
t ty Gr y F  (13) 

In the next subsection, higher-order 2D-GPILC 
algorithm will be developed based on the above 
prediction model. 

2.4 Single-cycle higher-order 2D-GPILC scheme 

Quadratic cost function (7) can be expressed in a 
matrix form 

2 21 2 | | 1 1
ˆ ˆ( , , ) ( ) ( ) (| ) (| )T T t t

k k k k k k t n k t nJ t n n t tX QX r Rr (14) 
where 

1 2

1
| | 1

ˆ ˆ( ) (| | ) (| )
T

T t T t
k k k k t n t k t nt tX e u  (15) 

1 1 1

1 1 1
| |ˆ ˆ(| | ) (| ) (| | )t t t

k k t n r t n k k t nt te y y  (16) 

1 2{ (1),..., ( )},  { (0),..., ( 1)}diag n diag nQ R

2{ (0),..., ( 1)},  { , }diag n diagS Q Q S  (17) 
The above cost function subject to the following 2D 
prediction model 

0

2| 1
1

ˆ ( ) (| ) ( ) ( )
n

t
k k k t n i k i k

i
t t tX Gr X W  (18) 

where  

1 1 1

1 1 1
1 1(| ) (| ) (| )t t t

k t n r t n k t ne y y   (19) 

1

2

1
1

1
1 1

(| ) ( )
( ) , ( ) ,

(| )

t
k t n k

k kt
t k t n

t
t t

e F G
X W G

0 Iu
 (20) 

It results from optimization algorithm that cost 
function (14) is minimized by optimal control law 

2

*
1(| )t

k t nr
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01

1

( ) ( )
n

T T
i k i k

i
t tR G QG G Q X W   (21) 

It then follows from (17)(19)(20) that 
0

2 1

1* 1
1

1
(| ) (| ) ( )

n
t T T t

k t n i k i t n k
i

tr R G QG S G Q e F

0

2

1

1
1

(| )
n

T t
i t k i t n

i
R G QG S S u     (22) 

Let 1K  and 2K  be the first row of matrices 
1T TR G QG S G Q  and 1TR G QG S S ,

respectively. In terms of the GPC strategy, the 
single-cycle higher-order 2D-GPILC algorithm is  

2 :D GPILC

0 0

1

1
1

1 1
( ) ( ) (| ) ( )

n n
t

t k i t k i i k i t n k
i i

u t u t tK e F

                 
0

22 1
1

(| )
n

t
i t k i t n

i
K u  (23) 

4. STRUCTURE ANALYSIS 

Let 1 1K K , 2 2K K , 1
3 1 2 1K K A B ,

1
4 1 2 1K K A A , it then follows from definition (11) 

that single-cycle higher-order 2D-GPILC law (23) 
can be reformulated as 

0

1

0

2

0

1

1

1
11 2 3 4

1
1

1 1

1

(| )

(| )
( )= 

|

| |

n
t

i k i t n
i

n
t

i t k i t n
ik

t m
k t

n
t n t n

k t i k i t
i

r t

e

u
K K K K

r

y y

From 2D system viewpoint, the closed-loop system 
is a 2D feedback control system composed of 2D 
plant 2D P  and 2D feedback controller 2D GPILC .
From ILC system viewpoint, control law (23) can be 
decomposed as 

2 , ,: ( ) ( ) ( )D GPILC t k ILC k GPC ku t u t u t  (24) 
0 0

1

1
, , 1

1 1
: ( ) ( ) |

n n
t

ILC ILC k i ILC k i i k i t n
i i

u t u t K e

            
0

22 1
1

(| )
n

t
i t k i t n

i
K u  (25) 

1 1
, 3 1 4: ( ) | |t m t n

GPC GPC k t k t k tu t K u K y  (26) 

Obviously, ILC  represents a higher-order ILC law 
using the control errors over the time-wise moving 
prediction horizon of past 0n  cycles to improve the 
control performance from cycle to cycle and 

time-wise control increments over the time-wise 
moving control horizon of past 0n  cycles to ensure 
the time-wise robustness and disturbance rejection 
along time, and GPC  is the well-known GPC law 
based on the real-time feedback information of 
current cycle to guarantee the control performance 
along time index. The proposed method designs the 
two kinds of controls in 2D system framework and 
results in the optimization of the control performance 
along time and cycle in 2D sense. 

5. MULTI-CYCLE HIGHER-ORDER 2D-GPILC 

In consideration of the 2D dynamics of the ILC 
system, a cost function involving the prediction 
control performance over multiple cycles is 
introduced as follows for the further improvement of 
the control performance along cycle, 

1 2 3( , , , )kJ t n n n
3 11

2

|
0 1

ˆ( ) ( ) ( | )
n n

k l k
l i

l i e t i t

2 1
22

0
( ) ( ) ( ) ( )

n

k l t k l
j

j r t j j u t j  (27) 

where 3n  is referred as the cycle-wise optimization 
horizon, | |ˆ ˆ( | ) ( ) ( | )k l k r k l ke t i t y t i y t i t
represents the estimated control error at time t i
of the ( )thk l  cycle based on the measurements 
before time t  of the thk  cycle, ( ) 0l ,

30,1,..., 1l n  are the cycle-wise weighting factor, 
and the definitions of other parameters are the same 
as cost function (7). 
At any time t  of the k th cycle, the higher-order 
2D-GPILC scheme obtained based on the 
optimization of cost function (27) is referred as 
multi-cycle higher-order 2D-GPILC scheme. 
To derive the multi-cycle higher-order 2D-GPILC 
law, the 2D prediction model for the outputs on the 
cycle-wise optimization horizon, referred as 
multi-cycle 2D prediction model, is required. It is 
follows from relationships (4)(9) and definitions (19)
(20) that 

0

3 2

3

1
1 2 1 1

1

| ( )
| |

| ( )

k n
k k t

k n t nk
k n

t
t

X
A A Br

X

3
3

11 2 1
1

( )
| ( )

| ( )
k k

k k n
k n

t
t

t
W

C C T
W

 (28) 

where 1

2 1 1 21| ( ) ( ) ( ) ( )
Tk T T T

k k k kt t t tf f f f ,

{ , , , }f X r W T , and 

1 2A A
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0 0 0

0 0

0

1 2 1

1 2 1

3 2 1

1* * *

n n n

n n

n

I I I I I 0 0 0

0 I I I I I 0 0

0 0 I I I I 0 0

0 0 0 I I

1 2 ,

I 0 0 0
G 0 0

0 I 0 0
0 G 0

C C B0 0 I 0

0 0 G
0 0 0 I

( )
( ) k

k

t
t

V
T

0
  (29) 

Note that 2A  is a non-singular matrix. Together 
with an assumption that disturbance 

3 1| ( )k
k n tT  is a 

white noise, a reasonable multi-cycle 2D prediction 
model is obtained 

0

3 3 2

| 1 1
1| 2 1 1 2 1 1

ˆ | ( ) | | | ( )k nk k k t
k n k k n t n kt tX A Br A A X

          
3

1 1 1|
2 1 2 2 1|

ˆ( ) | ( )k k
k k n kt tA C W A C W  (30) 

where super-vector 
3

|
1|

ˆ | ( )k k
k n k tX  and 

3

1|
1|

ˆ | ( )k k
k n k tW

denote respectively the predictions of variables 

3 1| ( )k
k n tX  and 

3

1
1| ( )k

k n tW  at time t  in the 

k th cycle, defined by 

3 3

|
1| | 1| 1|

ˆ ˆ ˆ ˆ| ( ) ( ) ( ) ( )
Tk k T T T

k n k k k k k k n kt t t tX X X X  (31) 

3 3

1|
1| 1| 2| 1|

ˆ ˆ ˆ ˆ| ( ) ( ) ( ) ( )
Tk k T T T

k n k k k k k k n kt t t tW W W W  (32) 

However, as 
3

1|
1|

ˆ | ( )k k
k n k tW  is a prediction variable, 

the control law obtained based on the above 
prediction model will be non-causal. If it is assumed 
that 1

1 0| , 1,2,..., ,k i t i nr 0  then, from (1)(4)(11)

(20), one has 
3

1|
1|

ˆ | ( )k k
k n k tW 0 , leading to the 

following simplified prediction model obtained 

3 3 21 1 1
ˆ | ( ) | | ( )k k t

k n k n t n kt tX Gr F          (33) 

where 1
2G A B  and 01

2 1 1( ) | ( )k n
k kt tF A A X

1
2 1 ( )k tA C W   which is a vector depends on the 

input-output information of past 0n  cycles.  
It follows from definitions (16)-(17) that cost 
function (27) can be reformed as 

3 3

| |
1 2 3 1| 1|

ˆ ˆ( , , , , ) | ( ) | ( )k k T k k
k n k k n kJ t k n n n t tX QX

            
3 2 3 21 1 1 1| (| ) | (| )k T t k t

k n t n k n t nr Rr  (34) 
where 

3{ (0) , (1) ,..., ( 1) }diag nQ Q Q Q  (35) 

3{ (0) , (1) ,..., ( 1) }diag nR R R R  (36) 
It again follows from the optimization algorithm that 
the above cost function is minimized by the 

following optimal control 

3 2

1*
1 1| | ( )k t T T

k n t n k tr R G QG G QF  (37) 

In terms of GPC strategy, only the first element of 

3 2

*
1 1| |k t

k n t nr  is applied to the process at each 
time. 

6. EXAMPLE 

To illustrate the effectiveness and feasibility of the 
proposed ILC schemes, it is assumed that the real 
repetitive process is described by the following 
model with unknown parameter perturbation and 
disturbance 

( )ky t
1 2 3

1 2 3

2.651( 2%) 5.298( 2%) 0.5805( 2%)
1 1.454( 2%) 0.5285( 2%) 0.04736( 2%)

t t t

t t t

q q q
q q q

( ) ( ) , 0,1,...,200k ku t v t t  (38) 
where the bracketed numbers indicate the boundaries 
of the uncertain parameter perturbations around the 
nominal values, which are set in random variables 
with respect to the cycle index in the following 
simulations, and ( )kv t  represents the effect of the 
unmodelled dynamics, disturbance and measurement 
noise of the process, defined by 

( ) 20sin(0.02 ) 0.2 ( )k kv t t n t  (39) 
where ( )kn t  is a random noise uniformly 
distributed over [ 1,1] . Clearly, the first term in 
right-hand-side is cycle-independent, simulating a 
nonlinear repeatable disturbance, while the second 
term represents a non-repeatable disturbance, such as 
measurement noise. 
For controller design, the following simplified model 
is obtained by identification algorithm 

1
1

1

13.81
( ) ( )

1 0.9524
t

k t k
t

q
y t q u t

q
 (40) 

Note from (38) and (40) the model-plant -mismatch 
is significant. 

Table 1. Design parameters
Single-cycle high-order 
2D-GPILC scheme

Multi-cycle high-order 
2D-GPILC scheme

0 1 23,  15,  10n n n
1 3,  1,  =2000i

=5

0 1 23,  15,  10n n n

3 3, 1 3,  1in
=2000, =5

The design parameters for the proposed higher-order 
2D-GPILC schemes are given in Table 1. The system 
responses and control inputs for the sing-cycle and 
multi-cycle higher-order 2D-GPILC schemes are 
shown in Fig. 1 and Fig. 2, respectively, which 
illustrate the effectiveness and performances of the 
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proposed two ILC schemes. Although, for the 
multi-cycle scheme, the cycle-wise zero initial 
condition for ILC law (4) results in significant 
control error in the first cycle, it is found form the 
comparison of the sum of squire error (SSE) over 
each cycle, as shown in Fig. 3, that multi-cycle 
higher-order 2D-GPILC scheme has faster 
convergence rate along cycle index. 
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Fig. 1. Output responses of single-cycle higher-order 
2D-GPILC scheme. 
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Fig. 2. Output responses of multi-cycle higher-order 
2D-GPILC scheme 
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Fig. 3. Comparison of cycle-wise control 
performances using single-cycle and 
multi-cycle higher-order 2D-GPILC schemes. 

7. CONCLUSIONS

In this paper, the philosophy of GPC has been 
extended to the 2D system to solve the design 
problem of higher-order ILC. Based on the 
prediction performance indices defined over single 
cycle and multiply cycles, single-cycle and 
multi-cycle higher-order 2D-GPILC schemes have 
been developed. The proposed design methods 
guarantee the integrated design and optimal 
combination of a time-wise GPC scheme and 
cycle-wise ILC scheme in 2D sense. 
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