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Abstract: In this work, we propose a novel scheme for identifying fast-rate deter-
ministic and disturbance model from irregularly sampled multirate input-output
data. Generalized Orthogonal Basis Functions (GOBF) are used for representing
model dynamics. In the �rst step, we identify MISO output error (OE) type
models using irregularly sampled outputs and inputs changing at the fast rate.
To capture the dynamics of unmeasured disturbances, we propose to develop AR
type models with time varying coe¢ cients using the irregularly sampled model
residuals generated in the �rst step. The e¢ cacy of the proposed identi�ca-
tion technique is demonstrated by simulation studies on Shell control problem.
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INTRODUCTION

Multirate sampled data system, in which di¤er-
ent variables are sampled at di¤erent rates, are
common in the chemical process industries. This
is because it is di¢ cult to acquire measurement
at a high frequency for quality variables such as
composition, density and molecular weight dis-
tribution. On the other hand, process variables
such as temperature, pressure and �owrate can be
readily sampled at a high frequency. For satisfac-
tory control of such processes, it is required that
the quality variable also be estimated, directly
or indirectly, at higher frequency. One prominent
approach for estimation of slow sampled variable
is based on Kalman Filter, which requires �rst
principle model of system. Deriving and using �rst
principle model may become prohibitively di¢ cult
for large scale chemical systems. Alternately, it is

possible to identify dynamic models from input-
output data and subsequently these models can be
used for designing a fast rate estimator. There has
been substantial research in the �eld of inferen-
tial estimation where frequently available process
variable are used to generate estimation of slowly
sampled process variables, over last three decades.
(Joseph and Brosilow, 1978; Stephanopoulos and
San, 1984; Gudi et al., 1995). Above methods
have considered only uniformly sampled multirate
systems and their extension to more relevant and
important irregularly sampled case is not obvious,
particularly when black box model is used.

In recent years, there has been growing inter-
est among researchers in area of identifying fast
rate model from multirate sampled data. Lu and
Fisher (1989), presented a recursive least square
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estimation of parameters in an output error model
structure for multirate systems. They proposed to
update model parameters only when the output
measurements are available, otherwise the same
model is used to estimate output at the interme-
diate time points. Li et al. (2000), used lifting
technique to convert multirate systems to single
rate systems which, subsequently, is identi�ed us-
ing subspace method. The identi�ed lifted model
is then converted to fast single rate model. In this
approach, the only case where the output is sam-
pled at a slower rate than inputs was considered.
Wang et al. (2004), proposed a modi�ed scheme
for computation of fast rate model from lifted
model to overcome the above limitation.

The problem of identifying optimal models, when
some of variables are irregularly sampled, has
been studied in statistics using Expectation Max-
imization (EM) approach. Shumway and Sto¤erm
(1982), considered the application of EM algo-
rithm for state space identi�cation in presence of
missing data for the case with no manipulated
inputs, i.e. the time series model identi�cation
problem. Tanaka and Katayama (1990), outlined
a procedure to identify time series state space
model in presence of outlier, which are treated as
missing data. Isaksson (1993), used modi�ed form
of Kalman �ltering for reconstruction of missing
value and then EM algorithm is used to identify
ARX model. Raghavan et al. (2005), presented
EM based approach to identify state space model
for systems with irregularly sampled outputs. The
EM algorithm generates maximum likelihood es-
timate of the state space model. However, the
main di¢ culty with the EM algorithm is that it
requires good initial guess for the deterministic
and stochastic model to ensure convergence.

Multirate systems, in which inputs are manipu-
lated regularly and output are measured irregu-
larly at sampling rate which is an integer multiple
of the input sampling rate, are considered in this
work. We propose a novel scheme for identify-
ing fast-rate deterministic and disturbance model
from irregularly sampled multirate input-output
data. In recent years, there has been a growing
interest in the use of Orthogonal Basis Functions
(OBFs) for representing process dynamics (Nin-
ness and Gustafsson, 1997). Recently, Patwardhan
and Shah (2005) have proposed a GOBF based
two tier scheme for identi�cation of state space
models using fast rate data. We show that their
approach can be extended to extract a fast rate
OE type model from the irregularly sampled mul-
tirate data. In the �rst step, we identify MISO
output error (OE) type models using irregularly
sampled outputs and inputs changing at the fast
rate. To capture the dynamics of unmeasured dis-
turbances, we propose to develop AR type models
with time varying coe¢ cients using the irregularly

sampled model residuals generated in the �rst
step. Recently, Srinivasrao et al. (2007) have pro-
posed a similar scheme for identifying nonlinear
time series models from irregularly sampled multi-
rate data. The e¢ cacy of the proposed identi�-
cation technique is demonstrated by simulation
studies on Shell control problem.

This paper is organized as follow. In next section,
we brie�y introduce GOBF parameterization of
transfer function and then parameter estimation
for deterministic model and disturbance model is
explained. In section 3, results of case studies on
shell control problem, Tennessee Eastman prob-
lem and four tank setup is presented. The section
4 ends this report with conclusion.

1. MODELLING AND IDENTIFICATION OF
MULTIRATE SYSTEM

The information available from the plant is the
sampled sequence of input (u) and output (y)
vectors. It is assumed that

� Sampling rates for all the measurements are
integer multiples of some time period called
�shortest time unit�(T ):

� All the actuators are manipulated at a fre-
quency corresponding to the �shortest time
unit�(T ).

� The process under consideration is a fading
memory system and does not have any un-
stable/integrating modes.

Thus, the manipulated inputs are changed at
ftk = kT : k = 0; 1; 2; :::g where sampling instants
ftkg are called as minor sampling instants. The
measurements of ith output are assumed to be
available only at sampling instants given by the
sub-sequence fki;0; ki;1; ki;2;:::g ; called as major
sampling instants, such that the di¤erence ki;l �
ki;l�1 = qi;l (> 1) where qi;l is an integer. When
qi;l is constant and independent of l; the output
data is a regularly sampled multirate system, else,
the system is an irregularly sampled system.

In this work, given a MIMO process consisting of
r outputs and m inputs, we propose to develop r
MISO deterministic OE type models as well as r
SISO/MISO stochastic models.

Given input sequence fu(k) : k = 0; 1; 2; :::::Ng
and the corresponding irregularly sampled output
data fyi(ki;l) : ki;l = ki;0; ki;1; ki;2; :::; ki;ng collected
from a plant where ki;l represents sampling in-
stants for ith process output, we propose to iden-
tify OE type of fast rate model of the form,

ŷi(k) =

nuX
j=1

Gij(q)uj(k) (1)

yi(ki;l) = ŷi(ki;l) + b�i(ki;l) (2)
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where ŷi(k) is noise free component of the process
output and fb�i(ki;l)g is a zero mean colored noise
in the output. It may be noted that fb�i(ki;l)g is
available at irregular sampling instants and it is
di¢ cult to use conventional �xed sampling time
models for modelling such a stochastic process.
To capture dynamics of the stochastic process
fb�i(ki;l)g, we develop an AR type model with
time varying coe¢ cients.

1.1 Deterministic Model

Under the assumption that Gij(q) in Eq.(1) is
strictly proper and stable, it can be approximated
using discrete time GOBF as,

Gij(q) '
nijX
p=1

cijpFijp(q) (3)

where Fijp(q) represents orthonormal basis �lter.
The resulting MISO model can be expressed in
the following state space form (Patwardhan and
Shah, 2005)

X(i)
u (k +1) =�

(i)
u (�

(i)
u )X

(i)
u (k) + �

(i)
u (�

(i)
u )u(k)(4)byi(k) = �(i)u X(i)

u (k) (5)

where �(i)u is vector of poles of discrete time
GOBF, byi(k) is estimated output at the fast rate
and �(i)u is a vector consisting of expansion coe¢ -
cients, fcijpg. In the multirate scenario under con-
sideration, the measured output can be expressed
as follows

yi(ki;l) = ŷi(ki;l) + b�i(ki;l) (6)

Unknown parameters in Eq.(4), �(i)u and �(i)u , are
estimated by minimizing 2-norm of the residuals,b�i(ki;l) = yi(ki;l) � ŷi(ki;l). Following the two
tier optimization scheme proposed by Patward-
han and Shah (2005), the parameter estimation
problem for the ith MISO model can be stated
as,

(b�(i)u ; b�(i)u ) = argmin
�
(i)
u

24 1

Nyi

NyiX
k=ki;1

b�i(k; �(i)u ; b�(i)u )2
35

Subject to (7)b�(i)u =E
h
X(i)
u (ki;l)X

(i)
u (ki;l)

T
i�1

(8)

�E
h
X(i)
u (ki;l)yi(ki;l)

i
(9)����(i)u;p���< 1 for p = 1; :::n (10)

The proposed decomposition strategy to estimate
only the GOBF poles by nonlinear iterative search
and the GOBF expansion coe¢ cients analytically
is based on the fact that every guess of GOBF
poles generates a valid orthonormal basis for the
set of all stable transfer functions. Approximate

knowledge of dominant poles of the system under
consideration can be used to initialize the above
nonlinear optimization problem.

1.2 Unmeasured Disturbance Model

The next step is to estimate a model for the un-
measured disturbances. To begin with, we develop
a SISO model and latter show how it can be
extended to deal with multivariable scenario.

Consider signal fb�i(ki;l)g, which is available at
irregularly sampling intervals. We propose a dis-
crete AR type model with time varying coe¢ cient
matrices as follows

x(i)v (ki;l+1) =�
(i)
v (ki;l+1; ki;l) x

(i)
v (ki;l) (11)

+�(i)v (ki;l+1; ki;l) b�i(ki;l) (12)b�i(ki;l+1) = �(i)v x(i)v (ki;l+1) + e(ki;l+1) (13)

where

�(i)v (ki;l+1; ki;l) = exp
h
�A(i)

v T (ki;l+1 � ki;l)
i

�(i)v (ki;l+1; ki;l) =

ki;l+1TZ
ki;lT

exp
h
�A(i)

v �
i
B(i)v d�

Here, matrices A(i)
v and B(i)v can be viewed as

coe¢ cient matrices of a continuous state space
model, which are discretized depending on the
interval between two successive sampling instants.
We propose to parameterize A(i)

v and B(i)v using
GOBF of the form

Fj(s;a
(i)
v ) =

q
�2Re(a(i)v;j)

(s� a(i)v;j)

j�1Q
p=1

(s+ a
(i)�
v;p )

(s� a(i)v;p)
(14)

where av represents a vector of poles of in the left
half plane of the complex s-plane. With the pro-
posed parameterization, matrices A(i)

v and B(i)v
can be expressed as follows

Av(av) = [�1(av)]
�1
�2(av)

B(av) = [�1(av)]
�1 � �1 0 0 : : : 0 �T

�1(av) =

26666666664

1 0 0 0 0

��2
�1

1 0 0 0

0 ��3
�2

1 : : : : : :

: : : : : : : : : : : : 0

0 0 0 � �n
�n�1

1

37777777775

�2(av) =

2666666664

av;1 0 0 0�
�2
�1

�
av;1 0 0 0

0 ::: : : : : : :
: : : : : : : : : 0

0 : : :

�
�n
�n�1

�
av;n�1 av;n

3777777775
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where �j =
p
�2Re(av;j). The parameters of the

ith SISO / MISO can be computed by solving
following optimization problem.

(ba(i)v ; b�(i)� ) = argmin
a
(i)
�

24 1

Nyi

NyiX
k=ki;1

b�i(k;a(i)v ; b�(i)� )2
35

Subject to (15)b�(i)� =E
h
X(i)
� (ki;l)X

(i)
� (ki;l)

T
i�1

(16)

�E
h
X(i)
� (ki;l)b�i(ki;l)i (17)

Re
�
a(i)�;p

�
< 0 for p = 1; :::n (18)

It may be noted that the constraints on pole
location are di¤erent here when compared to
deterministic component modeling.

1.3 Inter-sample Inferential Estimation

The main reason for developing fast-rate models
is inferential estimation of irregularly sampled
variable at the fast rate. As described above, we
can identify r fast-rate MISO deterministic model
and r AR type SISO / MISO multirate stochastic
observers from multirate input output data. These
observers can be used for inter-sample predictions
i.e. when measurements are not available. For car-
rying inter-sample predictions, the deterministic
and stochastic components have to be used in
a di¤erent manner. As the identi�ed model for
deterministic component is discrete time fast rate
model with sampling time same as of input, it can
be used recursively at every instant k to estimate
state.

bX(i)
u (kjk � 1) =�(i)u bX(i)

u (k � 1jk � 2) (19)

+�(i)u u(k � 1) (20)

ki;l < k � ki;l+1 (21)

Estimation of stochastic component requires use
of time varying matrices as innovation, f�i(ki;l)g;
is available only at major sampling instants. Last
available innovation is used to estimate stochastic
contribution at inter-sample instances i.e. inno-
vation at major sampling period ki;l is used to
estimate stochastic component at instants ki;l+1
to ki;l+1. For example, when the SISO unmea-
sured disturbance model is given by Eq.(11), inter-
sample predictions can be generated as,

bx(i)v (kjki;l) =�(i)v (k; ki;l) bx(i)v (ki;l) (22)

+�(i)v (k; ki;l)�i(ki;l) (23)byi(kjki;l) = �(i)u h bX(i)
u (kjk � 1)

i
(24)

+�(i)v

h bx(i)v (kjki;l)i (25)

for ki;l < k � ki;l+1 (26)

2. ILLUSTRATIVE EXAMPLE

In this section, we present simulation studies on
the benchmark Shell control problem (heavy oil
fractionator system).

To assess the quality of identi�ed model following
two criteria are used.

� Percentage Prediction Error ( PPE)

PPE =

NyP
k=ki;1

[yi(k)� ŷi(k)]2

NyP
k=ki;1

[yi(k)� yi]2
� 100 (27)

In above expression, �yi represents the mean
value of the slow sampled measured outputs
data. ŷi(k) represents the predictions gener-
ated by the model while yi(k) is measured
output. As PPE is computed only using data
obtained at major sampling instants, it can
be computed for simulation as well as exper-
imental data.

� Percentage Estimation Error (PEE)

PEE =

NP
k=1

[eyi(k)� ŷi(k)]2
NP
k=1

[ eyi(k)� eyi]2 � 100 (28)

In the above expression, eyi(k) represents
noise free fast rate measurement of outputs
(i.e. at minor sampling instants) obtained
from simulations. This index can be com-
puted only for simulated studies.

To carry out simulation studies, we use the bench-
mark problem for control of a heavy oil fractiona-
tor system, which is characterized by large time
delays in each input output pair, proposed at
Shell process control workshop (Prett and Morari,
1987). The heavy oil fractionator has three prod-
uct draws, three side circulating loops and a
gaseous feed stream. The system consists of seven
measured outputs, three manipulated inputs (u)
and two unmeasured disturbances (d). Since the
controlled outputs of interest from viewpoint of
multi-rate sampling are top end point and side end
point, in this work we consider a subsystem con-
sisting of only these two outputs. The continuous
time transfer function model for this sub-system
is as followsby(s) = Gp(s)u(s) +Gd(s)d(s) (29)

Transfer function for this sub-system can be found
in Patwardhan and Shah, (2006). A discrete ver-
sion of this system, obtained using sampling in-
terval of 1 min, is used to simulate the plant dy-
namics. The stationary unmeasured disturbances
d(z) are assumed to be generated by the following
stochastic process
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d(z) =
z

z � 0:95Iw(z) (30)

wherew 2 R2 is a zero mean normally distributed
white noise process with �w1 = �w2 = 0:0075 . In
addition, the measured outputs are assumed to be
corrupted with measurement noise

y(k) = by(k) + �(k) (31)

where � 2 R3 represents zero mean normally
distributed white noise process with ��i = 0:005
for i = 1; 2; 3.

In order to carry out system identi�cation, a low
frequency (in the range

�
0 0:01�

�
) random bi-

nary signals with amplitude 0:075 were simulta-
neously introduced in all the manipulated inputs.
Top end point and side end point are resampled
irregularly so that their sampling periods are uni-
formly distributed between (a) Case A: 11 to 20
min. and (b) Case B: 11 to 30 min.

To begin with, two MISO OE models are esti-
mated without considering any time delay. These
identi�ed models are then used to estimated time
delay matrix as discussed in Shah and Patward-
han (2005). The estimated time delay matrix and
true time delay matrix are as follow,

� d(estimated) =

�
29 27 29
19 14 17

�
� d(true) =

�
27 28 27
18 14 15

�
Estimated values of time delay are fairly close to
true values of time delay and the error is of the
order of at most two sampling period.

In second step, the estimated time delays are used
to introduce zeros at origin in the GOBF model
and MISO OE models are re-identi�ed. Two basis
�lters with distinct poles are used between each
input-output pair while developing the OE mod-
els. The irregularly sampled model residuals are
then used to develop SISO disturbance models
using one basis �lter between each pair.

Figure. (1) presents model validation results for
case with MR ratio 10-30. The corresponding
manipulated inputs are given in Figure (2). The
PPE and PEE values obtained using validation
data set are reported in Table. (1). Comparison of
PPE and PEE values shows that the inter-sample
predictions are signi�cantly improved when the
noise models are used. It can seen that the im-
provement of provided by noise model deteriorates
when the MR ratio increases. This is because
the autocorrelation decreases as the MR ratio is
increased. Comparison of the frequency responses
of the identi�ed fast rate OE model with that of
the true process is presented in Figure (3) while
the comparison of step responses is presented in
Figure (4). From this �gure, it can be observed
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Fig. 1. Model validation for MR ratio 10-30: Com-
parision of measured and predicted outputs.
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Table 1. Shell Control Problem: PEE
values

PPE PEE
MR ratio Model y1 y2 y1 y2
11-20 OE 6.43 5.05 26.06 22.91

OE + AR 1.13 1.96 9.11 10.95
11-30 OE 5.76 5.95 25.53 22.76

OE + AR 2.36 2.05 12.93 11.41

that OE model identi�ed using multirate data
closely represents the true process behavior.

3. SUMMARY AND CONCLUSIONS

Multirate sampled data system, in which di¤er-
ent variables are sampled at di¤erent rates, are
common in the chemical process industries. For
satisfactory control of such processes, it is required
that slowly measured variable be estimated, di-
rectly or indirectly, at higher frequency. In this
work we considered multirate systems, in which
inputs are manipulated regularly and output are
measured irregularly at sampling rate which is
integer multiple of input sampling rate. We pro-
posed a novel scheme for identifying fast-rate de-
terministic and disturbance model from multirate
input-output data. Generalized Orthogonal Basis
Function (GOBF) are used for parameterizing
the deterministic and stochastic models. A two
tier optimization scheme is used to identify single
rate system with time delays. By this approach,
models for the deterministic and the stochastic
components are identi�ed separately. Fast rate
OE type model is extracted from the irregularly
sampled multirate data. The multirate residuals
generated in the �rst step are used to develop
an unmeasured disturbance model. We propose
a novel auto regressive models with time vary-
ing coe¢ cients that can capture dynamics of un-
measured disturbances. E¢ cacy of the proposed
scheme is successfully demonstrated by simulation
study of Shell Control problem. From the analysis
of the simulation and experimental results, follow-
ing conclusions can be reached.

� Proposed method of identifying OE model
based on GOBF from irregularly sampled
multirate data, generates accurate estimates
of the deterministic component of the process
dynamics.

� The proposed autoregressive type unmea-
sured disturbance model with time varying
coe¢ cient is capable of producing excellent
intersample estimates.

� The model quality deteriorates with increase
in MR ratio. This can be attributed to in-
crease in variance error.

Thus, the proposed approach provides a viable
method for developing deterministic and stochas-
tic model for systems that are sampled irregularly.

Also, the proposed models can be used for fast
rate inferential estimates in any conventional or
advanced control schemes.
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