
8th   International   IFAC   Symposium   on
Dynamics and Control of Process Systems

An Iterative, Direct Closed Loop Identification Method For Model Refinement: Application to Interaction
Estimation.

Doshi, K.1 , Venkat, A. N. 2, Gudi, R.D.1* and Rawlings J.B.2

1Department of Chemical Engineering, Indian Institute of Technology, Bombay,
Mumbai 400 076, India.

2Department of Chemical and Biological Engineering, University of Wisconsin,
Madison 53705, USA.

Abstract:  This paper addresses the problem of model refinement under closed loop 
conditions. Updating of both the direct and interaction dynamics in decentralized control
schemes is considered here. While the direct dynamics are indeed crucial in determining
local loop control performance, accurate identification of interaction relationships is
important for the deployment of coordinated, decentralized control schemes. The
proposed methodology is based on the direct method of closed loop identification and
requires dithering. An iterative strategy, that sequentially updates both the direct and the
interaction dynamics, is proposed as part of the identification methodology.
Representative validation studies are presented to demonstrate the practicality of the
proposed methodology. Copyright © 2007 IFAC
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1. INTRODUCTION

Multivariable systems can be controlled using either
centralized or decentralized control structures.
Centralized control schemes that are based on a 
complete description of the cause and effect
relationships yield optimized control performance for
multivariable systems. However, for optimization
and control of large-scale systems, partitioning and 
decentralized control schemes have been eminently
recommended over centralized approaches (Siljak, 
1996). Amongst other factors cited for this choice, an
important limitation for centralized control of large-
scale systems is from a modeling and identification
perspective. It is widely recognized that
identification of the dynamic, cause-effect
relationships in large-scale systems is a relatively
difficult task. While such relationships are identified
easily at a local level, for example at a unit level in a 
chemical or power generation plant, the interaction
between such levels is usually associated with a lot
of uncertainty.  Often times, such interactions are
also not perceivable during direct modeling, but
manifest when the local control loops are closed. 
Identification of such interaction dynamics is a 
critical requirement for implementing coordinated
decentralized schemes, which are known to yield 
closed loop performance that approaches that of a
centralized control scheme.

The direct and interacting dynamics are identifiable
when all available control inputs for the large scale

system are perturbed for identification. This
perturbation, when performed in open-loop, is a huge
and expensive exercise involving long experimental
times and is usually not practical if the interaction
structure is not full. Therefore, a preferred alternative
would be to partition the overall multivariable system
into smaller sub-systems and implement local
controllers that are based initially on an approximate
identification of the local plant dynamics (obtained
say from open loop step tests). This task can be done
relatively easily owing to smaller sizes, and is also 
intuitive because these dynamics typically pertain to
a particular unit such as the FCCU in a large plant.
The control performance can be enhanced via
refinement of the direct models and also by
implementing  higher-level co-ordinators or  peer-
level communication (Mesarovic et al. 1970, Katebi
and Johnson (1997), Venkat et al. (2004)). These co-
ordination mechanisms require knowledge of the
interaction to achieve the desired level of co-
ordination. This interaction thus also needs to be
identified under controlled conditions using closed-
loop identification methodologies along with the
refinement of the direct dynamics described earlier.

Closed-loop identification strategies have been
extensively proposed in the literature and an 
excellent review of the state of the art can be found in 
Forssell and Ljung (1999). The primary motivation in
these strategies has been towards identifying direct
models between the inputs and outputs using closed
loop data, when for example, the plant is open loop 
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unstable or there are inherent feedback mechanisms
implemented for safety reasons. Another important
reason for identifying such direct models has been
towards obtaining reduced order models with a view
to achieve better control( Gevers and Ljung, 1986).
Broadly, three different approaches to closed loop
identification of the direct dynamics, viz (i) the
direct, (ii) the indirect and (iii) the joint input-output
methods, have been proposed. These methods differ
in terms of apriori knowledge assumed about the
nature of the controller and the assumptions made
regarding the noise models. The relative merits of
these strategies, in terms of consistency of estimates
and the applicability of these methods (depending on
the accuracy of the noise models) are discussed in 
Ljung (1999), Forssell and Ljung (1999). One key
aspect that is particularly relevant to the work
considered in this paper is that the presence of a 
nonlinear controller (that results for example when a 
model based controller is constrained) helps in
minimizing bias errors resulting from input-noise
correlation, and facilitates the use of the direct
method of closed loop identification.

The identification problem considered in this paper
involves both the issues discussed above, viz. the
refinement of the direct model as well as 
characterization of the interaction dynamics between
decentralized control loops. These tasks are proposed
to be performed using closed loop data. The
challenges encountered are similar to those one
would expect for identification of the direct plant in
closed loop, discussed in the earlier paragraph.
Firstly, as is the case with closed loop identification,
lack of informative data for identification is a key
problem. This problem is overcome in regular closed
loop identification, via the use of a dither signal
applied either at the controller output or at the
setpoint. For the tasks of direct model refinement
and interaction estimation, this dither signal needs  to 
be carefully designed and frugally implemented to
balance the requirements of minimum closed loop
variability as well as richness for identification.
Secondly, prior to closed loop model updating,
apriori but approximate knowledge on the direct
(local loop) dynamics is usually available based on 
which the controller is designed. This apriori 
knowledge has typically not been considered in
earlier works on closed loop identification, but does
provide useful starting points for model updation of
the direct and estimation of the interacting dynamics.
In earlier works (Gudi et al. (2004), Gudi and
Rawlings (2006)), we proposed a method to isolate
interaction channels based on the use of partial
correlation analysis and evaluated methods of
estimating the interaction in these channels. The
approach presented in the above earlier works was
based on the indirect methods of closed loop
identification.   In this paper, we propose an iterative
scheme that is based on the direct method. The
approach proposed here relaxes assumptions made
regarding the sparsity of the interaction structure and
as such is applicable to a wider class of multivariable
systems. The approach presented here is oriented
towards identification of the interaction dynamics for

use in co-ordinated control schemes. As discussed
earlier, it also addresses the additional issue of
refinement of the direct model towards enhanced,
local control performance.

This paper is structured as follows: Section 2
analyzes the above mentioned problems encountered
in identifying the interaction dynamics in large scale 
systems, with a view to achieving co-ordinated
decentralized control. The approach proposed here to 
identify the interaction is based on using closed loop
data and is discussed in Section 3. Identification
results involving the multivariable, polymerization
reactor of Congalidis et al. (1989) are presented in
Section 4, followed by a summary of the work.

2. PROBLEM DEFINITION

The identification problem that we seek to address in 
the paper is shown in Figure 1.  For purposes of
explanation, we consider the case of two 
decentralized loops and seek to identify the
interacting dynamics G12  and G21 between them as 
well as refine the estimates of the direct models G11

and G22.
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Figure 1: Schematic of interacting multivariable
controllers

Each of the individual loop outputs is assumed to be
affected by noise and unmeasured disturbances.  For
purposes of explanation again, we assume that the
controllers involved with loop I and loop II are
multivariable and of size nu x nu. These controllers
are designed based on the local dynamics G11 and 
G22, which are assumed to be approximately known
from simple, open-loop plant tests.  In general, no
other apriori knowledge is assumed about the
interaction dynamics; however the channels in which
they exist are assumed to be known using methods
presented earlier (Gudi et al. (2004)). We seek to
estimate the interacting dynamics (Gij, i j) and 
update the direct dynamics (Gii,  i,j) under closed
loop conditions. The intent is to then use knowledge
of the interacting dynamics in co-ordinated control
schemes so as to achieve centralized performance but
by using decentralized control structures as shown
above.
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In general, closed loop data is  known to be less
informative from an identification viewpoint. Hence
a dither signal d at the controller output is commonly
employed. For a general, decentralized loop I, Figure 
2 shows the block diagram with the introduction of
the dither signal.

3. IDENTIFICATION METHODOLOGY

Consider the block diagram shown in Figure 2.

Figure 2: Signals associated with a single loop.

The dynamic relationship between the plant output
and all the other inputs affecting it can be written as, 

yI = GI xI  + 
int

1

n

K
G kI xk + I  (1)

where xk are the manipulated variables (MV) from
the other controllers and nint is the number of such
interacting  MVs.  Let us assume that an approximate
estimate of the direct dynamics I is available based
on which the controller CI is initially designed. We
next consider the term I defined as the prediction
errors as,

I = yI  – I xI (2)

Using Equation (1),

I = (GI – I ) xI  + 
int

1

n

K
G KI xK + I  (3)

Due to the presence of the multivariable controller, uI
itself is related to all  kth   interacting MVs through
its interacting dynamics GkI as,

intn

0,
1

i
I I kI

k
u R G x (4)

where R i
0 is the loop sensitivity defined as,

1
0, ( )i

I I I IR I C G C

prediction error represented in Equation (2) can then
be used to setup an identification problem.

(5)

The above expressions in Equations (4) and (5) are
applicable for the linear controller case. When the
model-based controller CI is non-linear, as would be
the case when the controller is constrained, the linear 
correlation between uI and all the other interacting
MVs would be broken. The expression for the

Let the error in the approximate estimate of the direct
dynamics I is:

^
I IG G    (6)

Then from equation (3)

int

1

n

I I kI k I
k

x G x e (7)

Equation (7) above provid
output form for identification of the  and GkI. In the

es a multi-input, single-

above equation, it is evident that if the signals xI and
xk are designed to be linearly uncorrelated, unbiased,
estimates of both  and GkI can be generated. In
relation to Figure (2), if the controller is nonlinear,
any dithering in the interacting channels uK (k = 1, 2

nint) and the signal uI would be uncorrelated and
therefore unbiased estimates of both  and GKI can 
be obtained. It must be added that if there are more
that one interacting channels, the dither in each of 
them should also be designed to be uncorrelated. Let
us denote the estimate of error in the direct model as

 and the dynamics of the interacting term as kI.
Since the error signal I is generated from an
approximate identification of direct model GI, we
could refine this estimate in an iterative fashion,
using the same perturbation data. We achieve this
direct updating by using an estimate of the direct
error model ˆ as follows:

 Let I
(L) denote the Lth iterative estimate of

I and further let (L) , (L) (L)
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Figure 3: Illustration of method for generating
reduced order approximation of

YI

estimate of prediction error, error in direct dynamics
and the interacting dynamics respectively, also at Lth

iterate. To generate estimate of I
(L+1), we correct

I
(L), using the estimate of its error i.e. (L) as

^^^ )()1( (L)LL GG
II

`   (8)

d to higher order of the model at 
we propose to obtain the best

lower order estimate of the RHS term of equation (8)
by restricting the model order to be same as that at
Lth instant. The steps involved in this reduced order
approximation can be shown diagrammatically in
Figure 3. 
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The overall iterations in the framework to generate a 
refined model of I as well as the interaction
dynamics can be written s follows:

Start with an initial approximate mod ith
L = 0 as I

(0) design uncorrelated
perturbation signals ukI ; k = 1, 2 L and 
di (See Figure .

b) Using Equation (2) generate the sequence

a

a) el w

2)

I
(L).

c) Using Equation (7), generate an estim e of
) and kI

(L) by solving the concerne

) to kI
(L+1)

Rem s

at
ˆ (L d

identification problem.

d) Use Equation (8) to update kI
(L

and go to step (2). Iterate till no appreciable
changes in the estimate of ˆ (L) and kI

(L) are 
seen.
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tive methodology.

ASE STUDY: POLYMERIZATION
CASE STREACTOR

In this section we validate the proposed methodology
on 4x5 system involving a polymerization reactor 
considered by Congalidis, Richards and Ray (1989).

The concerned dynamics of the system are given as 
follows:

An RGA analysis leads to pairing y1 – u3, y2 – u2, y3 –
u , and y – u  and thus controllers are designed4 4 5

ct the application of our methodology for
revity to identifying direct and interaction dynamics
or the second loop involving the direct dynamics

G22  and the interacting dynamics G23 and G25 as
shown in Figure 4. 

Starting with the initial approximation for G22 as I
(0)

= 1.66 / (2.51 s + 1) and using the iterative method
described above, the direct model gets refined to G22

= 0.623 / (1.37 s + 1), and the interaction dynamics
are G23 = – 0.292 / (1.369 s + 1) and G25 = – 3.358 /
(0.758 s + 1). Figure 5 shows the step responses of
G22 and includes all the three, i.e. the responses of the
initial, approximate guess, the final refined model
and the true model. The figure shows that the direct
model is iteratively refined to the true model in three
iterations. In Figure 6, we show the step responses

r the interacting terms G23 and G25; again both the
sponses, i.e. the true as well as the identified model

based on the local dynamics G13, G22, G34 and G45.
We restri
b
f

fo
re
are shown.

Figure 4 Signals associated with system
considered for validation.

Figure 5 Step resp e for the direct dynamics
G22..
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(a)

(b)

Figure 6 Comparison of the step responses of the
estimated interaction models with the true
interaction dynamics. (a) G23 and (b) G25.

To examine the role o e MPC constraints in 
decorrelating the conce signals, we repeat the
runs by further tightening the saturation bounds on
the MVs.

f th
rned

(a)

(b)

Figure 7 Step response for the direct dynamics
G22, when saturation bounds (a) relaxed (b)
tightened.

Figure 7 shows that the direct dynamics are identified
more accurately, as there is negligible mismatch in 
gain of true and identified model when the saturation
bounds are tightened.

(a)

(b)

Figure 8 Comparison of the step responses of the
estimated interaction models with the true
interaction dynamics for tightened saturation
bounds. (a) G23 and (b) G25.

In Figure 8, we show the step responses for the
interacting terms for the case of tightened saturation
limits.  It can be seen that the estimated models agree
with the true models fairly well with respect to the
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dynamics but there is relatively a small mismatch in 
the estimation of the steady state gain than that in 
previous case (see Figure 6). Thus, it can be inferred 
that the presence of a nonlinear controller would 
improve the estimates using the proposed direct 
method. 

There could be two possible mechanisms by which 
the accuracy of identification could be improved by 
the presence of a constrained controller. Firstly, the 
presence of constraints makes the controller 
nonlinear and hence the linear correlation between 
the noise/ interacting signals and the manipulated 
variables of the local loop is destroyed, and this 
results in smaller biases mates. (Forsell and 
Ljung, 1999). A second ible explanation for the 

low variability in the 

on an iterative scheme to update both the 
irect local dynamics and estimate the interacting 

iljak, D.D, “Decentralized Control and 
Computations: Status and Prospects”, Annual 
Reviews in Cont 6)

). 

udi, R.D., and Rawlings J.B., “ Identification for 
Decentralized Co Journal, 52 (6), 
(2006)). 

ongalidis, J.P, Richards, J.R and Ray, W.H., “ in the esti
poss

improvement in the estimation of the steady state 
gain for the tighter saturation case could be that the 
low frequency content in the concerned signals 
would be enhanced due to 
inputs due to tighter constraints. 

5. CONCLUSIONS 

The focus of this paper was on the use of the direct, 
closed loop identification methods, for the estimation 
of interacting dynamics in large decentralized 
multivariable controllers. The proposed methodology 
is based 
d
dynamics. The presence of a nonlinear controller, 
that is typically expected in a industrial environment, 
yields more accurate estimates of both the dynamics 
(direct and interacting) due to its decorrelating effect 
on the closed loop signals. The proposed estimation 
methodology has been validated on a representative 
case study and has been shown to function 
satisfactorily. The proposed methodology would be 
useful in on-line estimation of the interacting 
dynamics for use in coordinated control schemes. 
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