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Abstract: This paper demonstrates the identification of underlying nonlinear ordinary 
differential equation (ODE) models that represent chemical reaction networks. The 
proposed method uses species’ concentration and rate of heat evolution data which can be 
obtained from a reaction calorimeter. The identification procedure is demonstrated for a 
simulated Van de Vusse reaction system. It is shown that accurate estimates of the 
network rate constants and individual heats of reactions may also be generated. Copyright 
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1. INTRODUCTION 

One of the key issues for fine chemical and 
pharmaceutical companies is to reach the market 
with many new products as quickly as possible. 
Within these industries multi-purpose plants which 
are suitable for a variety of customer specifications 
are often used. This leads to fast changing 
discontinuous processes incorporating batch or semi-
batch reactors. A major problem facing these 
companies is the scale up of a process from 
laboratory to full-scale production in the shortest 
possible time, preferably avoiding pilot-plant testing.  

Modelling and simulation studies are often used to 
assist scale-up. For conventional equation-based 
modelling software it is necessary to formulate 
mathematical equations in order to describe the 
process dynamics. In general, the behaviour of 
process design variables such as flow-rates, reactor 
volumes and inlet concentrations of species are well 
understood. However, obtaining knowledge of the 
chemistry, in particular the chemical reaction 
network remains a limiting step.  

Traditional methods for determining reaction 
networks involve postulating a number of different 

reaction networks which are then fit to experimental 
data. The reaction network whose model provides the 
highest prediction accuracy with respect to the 
experimental data is taken to be the correct structure. 
This is a time consuming procedure requiring both 
chemistry and modelling expertise. 

More recently a semi-automated procedure has been 
proposed (Burnham et al. 2006, 2007). This method 
involves specifying a global ODE model structure 
capable of representing the entire set of possible 
chemical reactions. Mathematical and statistical tests 
are then used to reduce the ODE model structure to a 
subset of reactions, which can be combined to give 
the reaction network. However, the disadvantage of 
this approach was the need for a model 
rationalisation procedure relying on exploiting the 
basic rules of reaction chemistry. This model 
rationalisation procedure was not automated and 
relied on the judgment of the user. 

In this paper the method is modified in order to 
develop a less subjective and more automated 
procedure.  It is also extended to incorporate the rate 
of heat evolution (Qr) data. The benefit of this 
approach is demonstrated using a simulated Van de 
Vusse reaction network.  
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2. CHEMICAL REACTION NETWORKS AND 
RATE EXPRESSIONS 

Chemical reaction networks are composed of a 
number of elementary reactions. For example, 
consider the reaction network (1). 
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The network involves five chemical species, x1, x2,
…, x5. There are three elementary chemical reactions 
a) an addition reaction of x1 with itself to form x2, b) 
x2 rearranges to form x3, c) an addition reaction of x1
and x2 to form the two products x4 and x5. k1, k2 and
k3 are the rate constants (for an isothermal 
system).The reaction rates ri, describe the rate of 
consumption or formation of each species in the ith

reaction. Under the assumption of mass action 
kinetics, for network (1) the reaction rates are shown 
by (2). 

r1 = 2k1[x1]2      r2 = k2[x2]      r3 = k3[x1][x2] (2)

Where [x1], [x2] are the respective species 
concentrations. For the purposes of this paper the set 
of concentration terms {[x1]2, [x2], [x1][x2]} that 
appear within the rate expressions (2) will be referred 
to as complexes. 

3. IDENTIFICATION OF ODE MODELS THAT 
REPRESENT CHEMICAL REACTION 

NETWORKS 

In a constant volume batch reactor the rate of change 
of each species at any time may be determined by a 
set of ODEs. These ODEs must be physically 
consistent with each other in the sense of 
conservation of mass. 

For network (1) the set of ODEs are shown by (3). 
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For an unknown reaction network, not only must the 
correct rate terms be selected for each ODE but the 
rate constants and complexes for each rate term must 
also be determined. Hence the task of identifying a 
useful network is one of determining the structure as 
well as the parameters of a set of non-linear ODEs. 
This is a non-trivial system identification task.  

To make this identification task tractable it may be 
partitioned into simpler subtasks. Firstly, the number 
of reactions, i.e. the number of rate expressions, is 
estimated. Secondly, best subsets regression against 
the Qr-time profile data is performed to identify the 
concentration complexes associated with each rate 
expression. Thirdly, an additional regression stage is 

used to determine the structure of the individual 
species’ ODEs. Finally, the kinetic rate constants and 
the individual heats of reactions are determined using 
standard kinetic fitting software.  

4. DETERMINING THE NUMBER OF 
INDEPENDENT REACTIONS 

Bernard and Bastin (2005) and Brendel et al. (2006) 
describe an approach to estimate the number of 
reactions in a biotechnological process. This method 
is applicable to data from a constant volume, 
isothermal batch reactor. If it is assumed that a) all 
species are measured b) the number of reactions is 
less than the number of species, then the number of 
independent reactions may be determined through 
assessment of the linear dependence of the ODEs. 
Let X be defined as a matrix with column vectors that 
represent the individual species ODEs. Then the rank 
of X is equal to the number of linearly independent 
columns and this rank is the number of independent 
reactions, l. For the ODEs described by (3) X is given 
by (4). 
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These rate terms are not known in advance, however, 
the individual species’ ODEs may be approximated 
as the rate of change of concentration of the 
individual species due to reaction. Hence, it is 
necessary to estimate a) the rate of change of 
concentration of the each species b) the rank of 
matrix X.

4.1 Estimating the rate of change of concentration.

The rate of change of concentration of each species 
may be approximated from the slopes, S[xi]t, of the 
measured concentration data. These may be 
calculated for all measured time points t = 1,…., N.
For network (1), this allows X to be approximated to 
the matrix X̂  defined by (5). 

][,][][ˆ
521 xSxSxSX (5)

Obtaining a good approximation of the first 
derivatives for the concentration of each chemical 
species is important to the success of the method. 
Several options are available for determining the 
slope of the measured concentration data. For 
example, Almeida and Voit (2003) and Voit and 
Almeida (2004) have demonstrated that with 
artificial neural networks it is possible to obtain 
sufficiently accurate approximations to the 
derivatives, for the purposes of determining useful 
biochemical pathway information. Burnham et al.
(2007) describe the fitting of rational polynomials to 
the concentration profiles in order to obtain estimated 
derivatives. 
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4.2 Determining the rank of a matrix.

In the presence of noise, the matrix X̂  will be full 
rank. However, it is possible to decompose X̂  using 
the singular value decomposition (SVD) given by 
(6). 

X̂ =U VT (6)

Where U is a matrix of the eigenvectors of TXX ˆˆ
and V is a matrix of the eigenvectors of the data 
correlation matrix, XX ˆˆ T . The elements of the 
diagonal matrix are the positive square roots of the 
eigenvalues, i, of XX ˆˆ T  and are called the singular 
values.  The eigenvalues correspond to the variance 
associated with the corresponding eigenvector. With 
SVD the singular values are normally arranged in 
descending order. The largest singular value will 
explain the most variation in the data set; the second 
explains the next level of variation etc. To determine 
the number of linearly independent columns, it is 
necessary to determine the number of singular values 
that must be taken into account. The generally 
accepted method consists of selecting the set of 
largest singular values which represent a summed 
variance larger than a fixed threshold. The number of 
singular values, l̂ , contained in this set represents 
the estimated rank of matrix X̂  hence the estimated 
number of independent reactions. 

5. DEFINING THE SET OF POSSIBLE 
COMPLEXES

Once the estimated number of reactions (and hence, 
number of rate expressions) l̂ is known, it is 
necessary to define the structure of the individual 
rate expressions. This may be achieved by, firstly, 
specifying a set of possible complexes that may be 
used to construct the rate expressions. If it is 
assumed that a) the reactions are at most the result of 
bimolecular collisions and the total reaction order is 
no greater than two b) the complexes are of integer 
order with respect to each species concentration c) 
there are no terms consisting of purely zero order 
elements. Then, given the n species, all possible 
complexes are given by (7). 
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Where the total number of possible complexes, m, is 
given by (8). 

2
)1(2 nnnm (8)

Whilst (7) represents the set of all possible 
complexes, the number of actual complexes that 
comprise the individual rate expressions is l̂ (the
estimated number of independent reactions). One 

way to determine these l̂ complexes is to regress 
against the Qr-time profile data obtained from a 
reaction calorimeter. 

6. CALORIMETRY 

Regenass (1997) defines two types of calorimetry 
methods, namely heat accumulation and heat flow. In 
the heat flow method, feedback control is used to 
compensate for any temperature changes, 
maintaining isothermal conditions or following a 
predefined temperature profile. The power required 
to achieve isothermal conditions equates to the total 
heat generated by the reactions.  

With the heat flow method, (Qr)t, is equivalent to the 
sum of individual heats of reaction multiplied by the 
rates of reaction. For l reactions (Qr)t (kJs-1) is given 
by (9). 

l

i
ititr )H()(r(Q

1

) (9)

Where )H( i  is the heat of ith chemical reaction 
(kJkmol-1) and (ri)t is the rate of the ith chemical 
reaction at time t.

7. BEST SUBSETS REGRESSION OF THE 
Qr -TIME PROFILE DATA 

Best subsets regression allows a number of models 
containing different predictors and different numbers 
of predictors to be compared. Hence, it is possible to 
compare models comprised of all possible 
combinations of l̂  terms from the set of m
concentration complexes given by (7). Note that this 
procedure does not produce a regression equation but 
identifies the best combination of l̂  concentration 
terms that describe the variability in the Qr
expression. The adjusted R2 value and Mallow’s C-p
statistic are used to determine the better model. 

The adjusted R2 value is the coefficient of 
determination describing the relative explanatory 
power of the overall model (% variability explained 
by the model), but contains a penalty for models 
containing many terms. Hence, high adjusted R2

values suggest accurate models.  

Mallow’s C-p statistic is given by (10). 

C-p lN
MSE
SSE

m

l ˆ2ˆ
(10)

Where lSSE ˆ is the sum of squared error for the 

model with l̂  particular parameters, and MSEm is the 
mean squared error for the model with all m
predictors and N is the number of observations. A 
smaller value of Mallow’s C-p statistic, of the order 
of l̂ , indicates that the model is relatively precise. 
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Once the best subset of complexes have been 
identified the structures of the Qr expression and the 
ri expressions are known with respect to the 
concentration complexes. To elucidate reaction 
mechanism it is still necessary to determine the 
combinations of the ri expressions that comprise the 
ODEs.  

8. BEST SUBSETS REGRESSION OF THE ODES 

Given that the derivatives of the concentration 
profiles have been estimated it is possible to identify 
the complexes (thus, the rate expressions) associated 
with each ODE. This is achieved by comparing 
models comprised of all possible combinations of 1 
to l̂  terms from the subset of concentration 
complexes determined in section 7. Again this 
procedure does not produce a regression equation but 
identifies the best combination of 1 to l̂ complexes 
that describe the variability in each ODE.  

9. CALCULATION OF THE KINETIC RATE 
CONSTANTS AND THE INDIVIDUAL HEATS 

OF REACTION 

Once the structure of the ODEs has been determined 
it is then necessary to accurately estimate the kinetic 
rate constants. This involves the repeated simulation 
(integration) of the ODEs whilst adjusting the kinetic 
parameters using an optimisation algorithm, until the 
simulation closely matches the experimental data.  

The kinetic rate constants are obtained by 
minimisation of the cost function, given by (11). 
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Where the tix ][  and tix ][  are the measured and 
simulated concentration values respectively. Having 
obtained the kinetic rate constants, multiple linear 
regression (MLR) of equation (9) may be completed 
in order to determine the individual heats of reaction. 

10. CASE STUDY 

The four species Van de Vusse reaction network 
(Van de Vusse, 1964) is given by (12). In this 
scheme x1, reacts to produce two products x2 and x3
and x3 further reacts to form x4.
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The rate expressions are shown by (13). 
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The rate of change of concentration of each species 
due to reaction is given by (14). 
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The Qr expression is given by (15). 

)()()( 332211 rrrr HrHrHrQ (15)

For the purpose of generating simulated data, it was 
assumed that the reaction was performed in a 1litre
reactor at 60°C with water as the solvent. The rate 
constants were assigned as k1 = 1.00e-3 min-1mol-

1dm3 and k2 = 6.85e-3min-1, k3 = 2.48e-3 min-1.  The 
heats of reaction were assumed to be Hr1=-8.0e4,

Hr2=-1e4 and Hr3=-1e5 kJkgmol-1. It was assumed 
that only the initial concentration of the reactant x1
may be altered. Two simulated batch reactions were 
carried out and the initial concentrations for x1 were 
arbitrarily chosen to be 0.30 and 0.80moldm-3, the 
initial concentrations of the other species’ were 
specified as 0.00moldm-3.

Eleven concentration measurements of each species 
were generated for both of the simulated batch 
experiments by integrating the true system ODEs, 
using the initial reactant concentrations. The 
simulated batch reactions were run for 20 hours with 
sampling every 2 hours. Using (13) and (15), Qr was 
calculated at the same sampling times. 

The concentration measurements and the Qr values 
were subjected to additive Gaussian noise with zero 
mean and a variance equal to 10% of the maximum 
absolute value of the signal during the experiment. 
To avoid conditioning problems and give the same 
weighting to all variables, improving subsequent 
numeric computations, all data sets were normalised. 
This is achieved by centring the data at a zero mean 
and scaling to unit standard deviation. Note that all 
figures show re-scaled data.  

The curve fitting toolbox in MATLAB® v. 7.1 was 
used to approximate the concentration profiles and in 
turn obtain accurate estimates of the derivatives. 
There are a number of potential model structures that 
may be used, in this case polynomial models were 
chosen. MLR was completed to fit polynomials to 
the noisy simulated data using the MATLAB® v. 7.1 
curve fitting toolbox. For example, for the second 
batch (initial concentration of x1 at 0.80moldm-3), the 
simulated noisy concentration data and the fits of this 
data are given by figure 1.  

The derivatives were estimated by differentiating the 
polynomial expressions, at the specified sampling 
times giving X̂ . The estimated first derivatives for 
the first batch are plotted in figure 2 alongside the 
actual derivatives for the system. It can be seen that 
reliable estimates have been achieved for the 
derivatives. Note that, although the actual derivatives 
are plotted alongside the estimates for comparison, 
they would in practice be unknown. 

228



     

0 2000 4000 6000 8000 10000 12000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (min)

co
nc

en
tra

tio
n 

(m
ol

/d
m

3)
[x1]
[x2]
[x3]
[x4]

Fig. 1. Concentration-time profiles for a single batch 
experiment (measured and estimated). 
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Fig. 2. Actual and estimated rate of change of 
concentration of species over time for a single 
batch of measured data. 

X̂  was decomposed using SVD, to obtain the 
singular values of X̂ . The cumulative percentage 
variance represented by each singular value is  
shown in figure 3. 
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Fig. 3. Cumulative variation explained by the 
singular values of the matrix X̂ .

The number of largest singular values which 
represent a summed variance larger than a fixed 
threshold of 95% was then determined. This 
corresponded to the first three singular values which 
accounted for 96.18% of the variation, hence l̂ is
three.

As the number of species n is four, the set of fourteen 
possible complexes are defined by (16). 
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MINITAB®, Release 14.1, was used to perform best 
subsets regression of the fourteen complexes defined 
by (16) against the Qr data. Given that it was 
estimated that the reaction scheme contained three 
reactions, the number of predictors for the regression 
models was specified as three. With an adjusted R2

value of 99.6% and a Mallow’s C-p statistic of 5.4 
the Qr expression was taken to be proportional to the 
three complexes, [x1]2, [x1], [x3]. Thus the form of the 
Qr reaction is given by (17). 
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From this, the rate expressions are shown by (18). 
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In order to determine the reaction network, best 
subsets regression of models containing one, two and 
three of the complexes [x1], [x3], [x1]2 was performed 
against the individual species’ ODEs. This suggested 
that the individual ODEs were proportional to the 
complexes shown in table 1.  

As each ODE expression must be physically 
consistent with the others in the sense of 
conservation of mass and adherence to the law of 
mass action kinetics, it is possible to extract the 
reaction network by finding matching complex terms 
in the rate expressions. Through logical application 
of basic chemical heuristics it can be concluded that 
x1 is consumed in two ways, through rearrangement 
to form x3 and reaction with itself to form x2. It can 
be further concluded that x3 rearranges to produce x4.
This gives the reaction network to be (19). 
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Given that (19) is the same as (12) the correct 
reaction network has been constructed.  

Table 1 The complexes of each ODE along with the
R2 adjusted values and Mallow’s C-p statistics.

ODE Complexes R2 adj. (%) Mallow’s C-p

dt
][d 1x

][,][ 3
2

1 xx 99.5 2.0 

dt
][d 2x 2

1 ][x 99.8 2.6 

dt
][d 3x ][],[ 31 xx 96.4 2.5 
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dt
][d 4x ][ 3x 98.6 1.1 

In this work the BatchCAD v. 8.0 (Copyright © 
1995-2004, Aspen Technology, Inc.) was used to fit 
the kinetic rate constants using a Simplex 
optimisation algorithm to minimise (11) and an 
adaptive Runge-Kutta integrator was used to 
simulate the set of ODEs that represent the reaction 
network (19). These were fitted to the concentration 
measurements in order to determine the kinetic rate 
constants. The rate constants were estimated to be k1
= 9.826-4 min-1mol-1dm3 and k2 = 6.936e-3, k3 = 
2.494e-3 min-1, very close to the rate constants 
specified for simulation. 

Having determined the rate constants, regression of 
the [x1], [x3], [x1]2 terms against Qr allowed the 
calculation of the individual heats of reaction. These 
were calculated as Hr1=-9.20e4, Hr2=-9.33e3 and 

Hr3=-9.45e4 kJkgmol-1, which approximate to those 
specified for simulation. 

The prediction model is plotted against the measured 
concentration points for a validation batch, figure 4. 
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Fig. 4. Prediction of a validation batch profile using 
the final rationalized model for the Van de Vusse 

reacion scheme 

11. CONCLUSIONS 

A method for the identification of the underlying 
nonlinear ODE model representing a reaction 
network has been presented. A case study using 
simulated data from an isothermal constant volume 
batch processes was used to demonstrate the 
technique. It was shown that it is possible to identify 
the ODEs that represent the underlying reaction 
network. Furthermore accurate estimates of the 
network rate constants and individual heats of 
reactions were obtained. 

Future work will aim to a) test the sensitivity of the 
threshold value in SVD for determining the number 
of chemical reactions b) determine the benefit of the 
use of confidence bounds on the value of l̂  c) 
evaluate the robustness of the mechanism deduction 
process with respect to unmeasured intermediates 
and catalysed chemical reactions d) assess of the 

robustness of the method when Qr data is unavailable 
e) apply this technique to real data obtained from a 
reaction calorimeter.  
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