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Abstract: Ill-conditioned processes often produce data of low quality for model iden-
tification in general, and for subspace identification in particular, because data vectors
of different outputs are typically close to collinearity, being aligned in the “strong”
direction. One of the solution that can be adopted is the use of appropriate input signals
(usually called “rotated” inputs), which must excite sufficiently the process in the “weak”
direction. In this paper open-loop (uncorrelated and rotated) random signals are compared
against closed-loop signals with the aim of finding the most appropriate ones to be used
in multivariable subspace identification of ill-conditioned systems. As a result it is shown
that closed-loop data give superior models, both in the sense of frequency response and in
terms of performance when used to design a model predictive control system. Copyright
2007 IFAC c©
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1. INTRODUCTION AND PREVIOUS WORK

The research on consistent, reliable and efficient iden-
tification algorithms is currently focused on two dif-
ferent approaches: Prediction Error methods (PE) and
Subspace IDentification methods (SID). Conceptually,
PE is the simplest one, and is based on the idea of
minimizing the gap between plant and model outputs,
called prediction error. SID, instead, involves matrices
obtained from output and input data and performs their
projection onto subspaces that guarantee particular
properties with respect to system noise.

The increasing popularity of Model Predictive Control
(MPC) has been leading to utilization of state-space
models, particularly suitable in predictive control al-
gorithms, so that SID methods, which were explicitly
developed to obtain this kind of process description,

1 Corresponding author: Tel.: +39 050 511238. Fax: +39 050
511266. Email: g.pannocchia@ing.unipi.it

gained increasing success in the last decade. SID is
a relatively young technique: the first examples use-
ful in practice were presented by Van Overschee and
De Moor (1994) with N4SID algorithm, Verhaegen
(1994) who developed MOESP, and Larimore (1994)
with CVA family methods. Several new subspace ap-
proaches were recently developed to enhance numeri-
cal stability and efficiency, as well as theoretical prop-
erties (Qin et al., 2005). In particular, the algorithm by
Huang et al. (2005) is used in the present work, with
some modifications introduced to improve results in
system matrix recovery.

It is well-known that multivariable systems may show
“directions” (in the input vector space) in which
the (steady-state and/or dynamic) effect of the in-
puts on the process outputs is much larger than in
other directions. In such situations the process is
said to be ill conditioned, and frequent examples
of ill-conditioned systems are high-purity distillation
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columns. Ill-conditioned processes represent a chal-
lenge from a control point of view since conventional
decentralized controllers are typically inadequate but
model-based controllers may suffer from robustness
issues (Pannocchia, 2003). Moreover, ill-conditioned
processes may be difficult to deal with from an identi-
fication point of view, because traditional uncorrelated
open-loop step tests tend to excite the system mostly in
high-gain directions (Koung and MacGregor, 1993),
and so information in low-gain directions may be poor,
often resulting in a model not suitable for control pur-
poses (Koung and MacGregor, 1994).

This work focuses on test design, being it basilar to
obtain good models even if, traditionally, it received
less attention than other aspects of the “identification
problem” (Zhu, 2001). Structured inputs considered in
this work can be also called “rotated” from their own
construction, because they are designed considering
the angles of “strong” and “weak” directions of the
process, whose correct value should be derived by
a Singular Value Decomposition (SVD) of the gain
matrix. In practice, however, the rotation angle must
be recovered by a trial and error method (Misra and
Nikolaou, 2003). In the present work the use of ro-
tated inputs is criticized for a number of reasons.
This approach in fact, besides being time consuming,
may lead to poor results when the correct rotation
angle is not used. Moreover, structured inputs could
be inappropriate when specific SID methods are used,
especially for system order recovering, and in general
closed-loop identification tests may be more effective.

2. SUBSPACE IDENTIFICATION METHOD

2.1 Basic definitions

Linear discrete time-invariant state-space systems in
the following form are considered:

xk+1 = Axk + Buk

yk = Cxk + ek ,
(1)

in which x ∈ Rn is the state, u ∈ Rm is the
input, y ∈ Rp is the output, e ∈ Rp is stochastic
noise, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are
system matrices. The following standing assumptions
are made.

Assumption 1. The pair (A,B) is stabilizable, the pair
(A,C) is observable, the noise ek is white and sta-
tistically independent of past outputs and inputs, i.e.
E{yke′j} = 0 and E{uke′j} = 0 for all j > k.

Given a positive integer r, assumed to satisfy r > n,
let the vector of “future” (w.r.t. time k) outputs be:

ȳk =
[
y′k y′k+1 . . . y′k+r−1

]′
(2)

and similarly for “future” inputs (ūk) and noise (ēk).

Assumption 2. Data vectors (u, y) are collected for
L = M + 2r − 1 sampling times.

From the model (1), one can obtain:

ȳk = Γrxk + Hrūk + ēk , (3)

in which Γr is the extended observability matrix and
Hr is a lower block-triangular Toeplitz matrix:

Γr =


C

CA
CA2

...
CAr−1

 ,Hr =


0 0 · · · · · · 0

CB 0 · · · · · · 0
CAB CB 0 · · · 0

...
. . . . . .

...
CAr−2B · · · · · · CB 0


(4)

where 0 denotes the full zero matrix of suitable dimen-
sions (identity matrix is denoted with I).

2.2 Obtaining the system matrices

Projecting input and output data matrices onto a sub-
space orthogonal to noise, subspace methods “clean
up” data from stochastic information, leaving the de-
terministic part. Each SID method is mostly character-
ized by the matrix used to perform these projections.
In this work a variant of that introduced by Huang et
al. (2005) is proposed.

Writing (3) for k = r, r + 1, . . . , r + M − 1 gives:

Yf = ΓrX + HrUf + Ef , (5)

where Yf (and similarly Xf , Uf and Ef ) is

Yf =
[
ȳr ȳr+1 . . . ȳr+M−1

]
. (6)

Projection onto the space W , orthogonal to noise, is
performed post-multiplying both sides of (5) by an
appropriate W ′, designed in such a way that

lim
M→∞

1
M

EfW ′ = 0 . (7)

Now (5) is rewritten as follows:[
I −Hr

]
ZfW ′ = ΓrXW ′ , (8)

in which Zf =
[
Y ′

f U ′
f

]′
.

Choosing W = W ′ = Z+
p Zp, where Zp is the “past”

data matrix (built as Zf but considering data shifted r
sampling times in the past) and Z+

p is the right pseudo-
inverse of Zp (computed via SVD), an orthogonal
projection onto the row space of Zp can be performed
[see (Huang et al., 2005) for more details]. This choice
of W can be seen as equivalent to that in (Wang and
Qin, 2002) with a suitable column weighting (Wang
and Qin, 2006).

Now, since all terms in (8) are deterministic, estimates
of A and C can be calculated from Γr [obtained
from (8)] with good results, whereas it was found that
estimation of B with the original method in (Wang
and Qin, 2002; Huang et al., 2005) produces poor
outcomes in a relevant number of cases. An alternative
approach is here proposed to recover B (and x0 as
well), which is a sort of PE method applied to (1).
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2.2.1. Estimating A and C Pre-multiplying (8) by
a matrix Γ⊥r orthogonal to Γr, one can obtain

Γ⊥r
[
I −Hr

]
ZfW ′ = 0 . (9)

Let Z = ZfW ′, it is clear that Γ⊥r
[
I −Hr

]
= Z⊥;

thus, Z⊥ can be computed performing an SVD of Z
(i.e. Z = USV ′) and selecting a matrix U2, composed
by the columns of U that correspond to zero singular
values in the S matrix, i.e.

Z =
[
U1 U2

] [
S1 0
0 0

] [
V ′

1

V ′
2

]
, (10)

in which the dimension of the square diagonal matrix
S1, i.e. the rank of Z, should be mr + n (Wang and
Qin, 2002, Lemma 1) in absence of noise (rank Z >
mr + n otherwise). The dimension of S1, and con-
sequently the system’s order n, is obtained in this
work using a heuristic Principal Component Analysis
(PCA) approach as described below. The first mr sin-
gular values of Z are considered, and then subsequent
n̂ singular values are selected according to:

σmr+n̂∑n̂
j=1 σmr+j

> ρ, σj ∈ diag S1, 0 ≤ n̂ ≤ pr ,

(11)
in which ρ is a (small) positive scalar. Model order n
is considered equal to the largest value of n̂ for which
(11) holds.

Next, combining (9) and (10) leads to:

Γ⊥r
[
I −Hr

]
= TU ′

2 , (12)

where T is a nonsingular transformation matrix (usu-
ally I). Finally, by partitioning:

TU ′
2 =

[
P ′

1 P ′
2

]
, (13)

in which P1 ∈ Rpr×(pr−n), it results that:

P ′
1Γr = 0

−P ′
1Hr = P ′

2 ,
(14)

which can be solved to find estimates of Γr and Hr.

Estimate of A and C are therefore obtained observing
that (in a MATLAB notation)

C = Γr(1 : p, :) (15a)
Γr(1 : (r − 1)p, :)A = Γr(p + 1 : rp, :) , (15b)

solving equation (15b) for A in a least square sense.

2.2.2. Estimating B and x0 Given the computed
estimates of A and C, let ŷk|B,x0 be the estimate of
yk given an input matrix B and initial state x0, i.e.

ŷk|B,x0 = C

k−1∑
j=0

AjBuj + CAkx0 = fk(ϑ) , (16)

where ϑ =
[
(Vec B)′ x′0

]′
, Vec B is a vector ob-

tained by stacking each column of B on top of the next
one, and fk(·) is suitably defined. Being fk(·) linear in
its argument and fk(0) = 0, it follows:

ŷk|B,x0 = ϕkϑ , (17)

where ϕk ∈ Rp×n(m+1) is the Jacobian matrix of fk

(computed from A, C and known inputs). An estimate
of B and x0 comes from least-square problem

min
ϑ

(Ψ− Φϑ)′ (Ψ− Φϑ) (18)

where

Ψ =
[
y′0 . . . y′L−1

]′
, Φ =

[
ϕ′0 . . . ϕ′L−1

]′
.

(19)
The solution of (18) is given by:

ϑ∗ = Φ+Ψ = (Φ′Φ)−1Φ′Ψ . (20)

It can be demonstrated that estimates of B and x0

asymptotically converge to their true value if the es-
timates of A and C are consistent [see (Ljung, 1999;
Qin et al., 2005)].

2.3 Open-loop and closed-loop test design

Open-loop (OL) tests are widely used in industrial sys-
tem identification for their simplicity, even if closed-
loop (CL) tests may be preferred for some practical
and theoretical reasons, such as they maintain outputs
in range, they contains information over the most sig-
nificant frequencies for control, and they seem to be
superior in system model recovery.

However, some problems could be experienced with
CL test data, when subspace identification is per-
formed. In fact, if Zp is used for projection, the space
orthogonal to Z may also contain controller model
information, and so the process model identification
procedure may be erroneous [see (Huang et al., 2005)
for details]. A valuable solution could be to adopt a
matrix Y c

f constructed as Yf using “future” set-point
changes vectors ȳc

k built as in (2), because (7) still
holds (being Y c

f and Ef independent), and is such that
the controller model does not show up in the decompo-
sition of Z. By stacking the matrices Y c

f and Zp and
following the same pattern for projection and matrix
recovery, CL data can be handled without problems.

3. ANALYSIS OF INPUT SIGNALS FOR
ILL-CONDITIONED PROCESSES

Ill-conditioned systems, as previously said, represent
one of the most difficult kind of processes to be identi-
fied: models obtained for these processes often suffer
from errors in order and gain matrix recovery. Sys-
tem order, in particular, cannot be retrieved properly
because identification matrices may have collinear
columns (Misra and Nikolaou, 2003). A possible an-
swer to this issue is an appropriate input design that
“excites” the unfavorable direction to make its contri-
bution magnitude similar to that of favorable direction.
In particular, the so-called “rotated” inputs can be used
to overcome order recovering issues in ill-conditioned
systems (Koung and MacGregor, 1994; Misra and
Nikolaou, 2003), as explained below. A slightly more
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general investigation, which considers (possibly) non-
square multivariable systems of arbitrary dimensions,
can be found in (Micchi and Pannocchia, 2006). In
the present section, a 2 × 2 system is considered for
simplicity of exposition. Performing an SVD on the
steady-state gain matrix

ys = Gsus =
[
cos (φ) − sin (φ)
sin (φ) cos (φ)

]
·

·
[
σ1 0
0 σ2

] [
cos (θ) − sin (θ)
sin (θ) cos (θ)

]
us ,

(21)
where s subscript indicates steady state. Calling us =[
u1 u2

]′
, ys =

[
y1 y2

]′
, computing and approxi-

mating the expression in (21), it follows that[
y1

y2

]
≈ σ1

[
cos (φ)(u1 cos (θ)− u2 sin (θ))
sin (φ)(u1 cos (θ)− u2 sin (θ))

]
,

(22)
because σ1 � σ2 for an ill-conditioned process. This
leads directly to

y2 ≈ y1 tanφ , (23)

which shows that outputs are “almost” collinear, al-
ways aligned in the favorable direction. It is important
to point that the above analysis shows strong correla-
tion of the outputs in steady-state conditions, whereas
correlation may be different in transient conditions if
the outputs have fairly different dynamics. Nonethe-
less it is useful to motivate the adoption of “rotated”
input signals (Koung and MacGregor, 1994; Misra and
Nikolaou, 2003).

In order to evaluate the effects of output collinearity
on subspace identification, a rank analysis is here
presented. Starting from (3), it is possible to obtain

Zf =
[
Γr Hr

0 I

] [
Xf

Uf

]
+

[
Ef

0

]
, (24)

where Ef represent noise contribution in outputs. The
maximum rank of the deterministic part of Zf is mr+
n, because

rank
[
Xf

Uf

]
≤ n+mr, rank

[
Γr Hr

0 I

]
≤ pr+mr ,

(25)
with pr > n (notice that r > n). If strong collinearity
of outputs is present, an SVD of Zf leads to mr +
n̂ non-zero singular values, where n̂ ≤ n, typically
excluding weaker directions. In noisy systems, the
term on the right of the sum in (24) must not be
neglected: the effect of its presence is to increase the
rank of Zf , so it is possible that n̂ > n, although still
without no significant information regarding weaker
directions which are “covered” by noise.

To avoid collinearity of output data it is possible to
construct an input for which (Koung and MacGregor,
1994; Misra and Nikolaou, 2003)

ξ2

ξ1
= κ =

σ1

σ2
, (26)

where

ξ1 = (cos (θ)u1 − sin (θ)u2) (27a)
ξ2 = (sin (θ)u1 + cos (θ)u2) . (27b)

Substituting (27a) in (26), it results

u2 =
κ cos (θ)− sin (θ)
cos (θ) + κ sin (θ)

u1 ≈ cot (θ)u1 . (28)

Now, using these inputs, no terms can be neglected in
equation (29), and so outputs are not collinear[

y1

y2

]
=

[
cos (φ)σ1ξ1 − sin (φ)σ2ξ2

sin (φ)σ1ξ1 + cos (φ)σ2ξ2

]
. (29)

A rotated signal can be constructed, respecting this
condition, in three steps:

(1) define a binary signal u1 with L samples;
(2) select a value for θ;
(3) construct uk,2 = cot (θ) uk,1 + ζk, where ζ is a

random signal (Zhu, 2001) with small amplitude.

Clearly, the dithering signal is introduced to avoid
exact collinearity of the inputs.

4. CASE STUDIES

4.1 Introduction

OL identification data are constructed by using Gen-
eralized Binary Noise (GBN) signals (Zhu, 2001), ei-
ther uncorrelated or correlated in the case of “rotated”
inputs. CL identification data are constructed in two
different ways: with an MPC algorithm (Pannocchia
and Rawlings, 2003) based on an “erroneous” model
and with a decentralized multivariable PI controller.
Output setpoints are generated by GBN signals.

The identified models are evaluated by comparing
their frequency response with that of the real process.
A monotonically decreasing weight function:

δ(ω) =
1− erf (ω)∫∞

0
(1− erf (ω))dω

(30)

was selected to increase the importance of low-middle
frequencies, which are the most significant in control.
Defining Gr(z) and Gid(z) as the real and identified
transfer function models, respectively, the following
scalar parameter is computed to measure the quality
of the identified model:

ε = sup
ω

δ(ω)σ1

(
Gid(eiωTs)−Gr(eiωTs)

)
(31)

with Ts being the sampling time.

The “classical” high-purity LV distillation column
studied by Skogestad and Morari (1988), modified
with a 10 minute time delay, is chosen as first example
of ill-conditioned system (the steady-state condition
number is 142). The sampling time is 5 minutes, the
outputs are logarithmic distillate purity and logarith-
mic bottom impurity, and the inputs are reflux and
boil-up rates.
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Table 1. Skogestad & Morari example: val-
ues of identified systems order (M&N: Misra
& Nikolaou algorithm; M&N w. a.:Misra & Nikolaou

algorithm with incorrect θ)

Type of input Data collection SID algorithm order
random OL proposed 8
rotated OL proposed 10
rotated OL M&N 2
rotated OL M&N w. a. 1
random CL-MPC proposed 2
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Fig. 1. Uncorrelated (top) and rotated (bottom) GBN
inputs

A 3 input, 5 output model (with order 30) of another
high-purity LV distillation column was chosen as sec-
ond (non square) example. The steady-state condition
number is 164, outputs are head and bottom product
impurity and opening percent of three control valves,
while inputs are reflux rate, boil-up rate and feed rate.
A 10 minute time delay was considered on head and
bottom impurity, and a sampling time of one minute
was adopted.

4.2 Model order recovering

Order recovering is verified only for the 2×2 example,
because it is more significant than in a more complex
system such as the 3 × 5 example. A value of 0.05
for ρ in (11) is assumed to pick out of singular val-
ues for system order recovering: results are shown in
Table 1. As previously said, rotated inputs generate
mistakes when used with algorithms which project
also the future input matrix (such as the one adopted
here), because of high correlation in rotated inputs
(see Figure 1). As a cross-check, using the SID algo-
rithm proposed in (Misra and Nikolaou, 2003), which
projects only future outputs matrix, gives the correct

Table 2. Values of ε for different identified
models

Type of input Data collection 2× 2 system 3× 5 system
random OL 0.0167 0.1688
rotated OL 0.0699 0.2399
random CL-MPC 0.0144 0.0284
random CL-PI 0.0299 0.0229

order with the same data. In CL scheme, uncorrelated
set-point changes are used: it can be seen from Table 1
that they work better of every other kind of inputs.

4.3 Quality of identified models and their effects on
MPC closed-loop behavior

Quality of the identified models can be measured
using the index ε. From Table 2 it is clear that the
models identified starting from CL data are to be
preferred in terms of frequency response. In Figure 2
closed-loop inputs and outputs (for the Skogestad &
Morari example) obtained with MPC regulators based
on different models (as specified in the legend) during
a set-point change in the unfavorable direction are
plotted. It is clear that regulators based on models
obtained from OL rotated and CL uncorrelated signals
are superior, indeed very close to that based on the true
model.

In conclusion, models obtained in CL are to be pre-
ferred, also because this kind of inputs does not suffer
of problems experienced with correlated OL signals
(see 4.4). These advantages obtained over other test
design methods can be associated to the fact that ran-
dom set points force the outputs in many different
directions, thus avoiding correlation of outputs over
the high gain direction but also avoiding correlation of
the inputs.

4.4 Practical issues in implementing rotated inputs

Rotated inputs guarantee good performance in order
recovery when used with specific identification meth-
ods [e.g that in (Misra and Nikolaou, 2003)], but until
now it has not been shown their behavior if there are
errors in the rotation angle. Referring to the Skogestad
& Morari example, it is possible to show that the
region in which the correct order is recovered with the
Misra and Nikolaou (2003) algorithm is quite narrow
(approximately between θ = 2π

9 and θ = 5π
18 ). Effects

of errors on rotation angle can be seen in Table 1,
where it is shown that even if Misra & Nikolaou’s
method is used, the system order is not well recovered
if θ differs from the correct value (π/3 instead of
π/4). Since in general the true order is unknown, in
practice it is not straightforward to define a simple
way of choosing the correct angle, and often several
trails may be required. In addition, it is important to
consider that, increasing the number of system inputs
and outputs, this approach becomes more and more
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Fig. 2. Skogestad & Morari example: control inputs u1, u2 (top); process outputs y1, y2 (bottom)

complicated, because of the growing number of “an-
gles” to be selected.

5. CONCLUSIONS

Ill-conditioned processes are difficult to be identified
from data because of problems that derive mainly from
the lack of information in the “weak” direction. A
possible solution, proposed in the literature, is the
use of tailored inputs such as “rotated” inputs, that
excite the system sufficiently in the weak direction. To
construct these inputs, the system gain matrix (which
is however unknown) has to be decomposed via SVD,
and inputs are designed to generate signals of the same
magnitude both in the weak and in the strong direc-
tion. This method was applied to two ill-conditioned
distillation examples, and was compared with the use
of uncorrelated random inputs, both in open-loop and
closed-loop operation. Results clearly show that, with
OL data, rotated inputs grant better models only when
specific subspace identification algorithms are used
and if the correct rotation angle is chosen. On the other
hand, using CL data obtained from uncorrelated set
points offers superior outcomes, especially for design
of model-based controllers. This test design approach
is also to be preferred, because random set points can
be easily generated without necessity of several trials
to find the most appropriate rotation angle.
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