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Abstract: The problem of jointly designing the estimation structure and algorithm for 
binary distillation columns is addressed within a constructive framework that combines 
structural and robustness concepts in the light of system characteristics. The model sensor 
location and number, the innovated-noninnovated state partition, and the model 
dimension are regarded as structural design degrees of freedom. The geometric and 
extended Kalman filter estimators are regards as algorithms to perform the data 
assimilation task. The high-order Lie derivation applicability obstacle of the geometric 
estimation technique is removed, and the equivalence between geometric and extended 
Kalman filter is established. The methodological findings and the estimator functioning 
results are illustrated and tested with experimental data. Copyright © 2007 IFAC 
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1. INTRODUCTION 
 
The study of the distillation column estimation 
problem is motivated by the need of improved 
monitoring and control schemes. The idea is to infer 
the concentration profile on the basis of a model with 
temperature measurements. The subject has been 
extensively studied, the related state of the art can be 
seen elswhere (Joseph and Brosilow, 1978; Lang and 
Gilles, 1990; Baratti et al., 1995; Baratti et al., 1998; 
Oisiovici et al, 2000; Castellanos et al, 2005, Tronci 
et al, 2005), and here it suffices to mention that: (i) 
distillation column have large state-to-measurement 
ratios, meaning high observability indices, (ii) the 
best estimator behaviors have been attained with the 
extended Kalman filter (EKF) technique, including 
ternary systems, (iii) the Luenberger and geometric 
estimation approaches become inapplicable due to 
the intractability of high-order Lie derivative 
calculations, (iv) the estimator design involves both 
structure and algorithm decisions, (v) some model 
reduction techniques have been employed (Mejdell 
and Skogestad, 1991), and (vi) in spite of some 
efforts via observability measures, the selection of 
the number of sensors and their locations is still an 
open subject of research. These considerations 
motivate the study of joint structure-algorithm 
estimation problem. According to the constructive 
approach, an optimality-based robust control design, 

over a set of candidate structures, can be tractably 
pursued by combining geometric and error 
propagation analysis tools in the light of specific 
systems characteristics (Sepulchre et al, 1997; Krstić 
et al, 1990). These ideas have been developed mostly 
in the context of control problems for mechanical and 
electrical systems, and have been recently applied to 
distillation column (Castellanos et al, 2005; 
Castellanos and Alvarez 2006, Castellanos et al, 
2006) and polymer reactor (Alvarez et al, 2004; 
Gonzalez and Alvarez, 2005; Alvarez and Gonzalez 
2007) control schemes with interlaced estimator-
control designs made of PI and inventory control 
components. 
 

Along this constructive line of thought, the 
adjustable-structure geometric estimation technique 
has been developed in the context of systems with 
low state-to-measurement ratios like chemical 
reactors (Alvarez 2004; Lopez and Alvarez, 2004). 
This technique (i) does not need to on-line solve 
Riccati equations, but cannot be applied to systems 
with large state-to-measurement ratios with high 
observability indices, like distillation columns, 
because the computation of high-order Lie 
derivatives becomes an intractable task (Tronci et al, 
2005; Röbenack, 2005; Venkateswarlu and Kumar, 
2006), and (ii) lacks a formal connection with the 
EKF that is the one that better handles the distillation 
column estimation problem. Recently (Fernandez, 
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2007; Alvarez and Fernandez, 2007), the high 
estimation order applicability obstacle of the 
geometric estimator has been removed, and the 
geometric estimator (GE) has been formally 
connected with the EKF. These considerations are 
points of departure for the present study. 
 

In this paper, the problem of jointly designing the 
estimation structure and algorithm for binary 
distillation columns is addressed within a 
constructive framework that combines structural and 
robustness concepts in the light of system 
characteristics. The model sensor location and 
number, the innovated-noninnovated state partition, 
and the model dimension are regarded as structural 
design degrees of freedom. The geometric and EKF 
estimators are regarded as candidate algorithms to 
perform the data assimilation task. The removal the 
high-order Lie derivation applicability obstacle of the 
geometric estimation technique, and its equivalence 
between geometric and EKF are verified. The 
methodological findings and the estimator 
functioning results are illustrated and tested with 
experimental data. 
 

2. ESTIMATION PROBLEM 
 

2.1 Estimation problem 
 

Consider the N-tray binary distillation column, 
where a binary mixture, with molar flow F and light-
component mole fraction composition cF, is fed at 
tray nF, yielding effluent flow B (or D) with 
composition (cB) (or cD). V is the internal vapor flow 
(proportional to the heat rate exchanged in the 
reboiler), R is the reflux flow rate, and Ti is the 
temperature measurement at the i-th stage. Without 
restricting the approach, a total condenser is 
considered. Under standard assumptions (constant 
pressure, equilibrium in all stages, level control in 
the reboiler, constant molar flows, and liquid flow 
dynamics in quasi steady-state), the column model is 
given by (Luyben, 1990) 

c. 1 = {(R +F)(c2 -c1) -V[ε(c2) -c1]}/M1:= f1,     cB = c1 

c. i = {L(ci+1 -ci)-V[ε(ci) -ε(ci-1)] +δi,nFF(cF -cnF)}/η-1(L) 
 
      := fi, 2 ≤ i ≤ n;      Tj = β(csj),        1 ≤ j ≤ m 

c
.

n = {Rε(cn) -V[ε(cn) -ε(cn-1)]}/η-1(L):= fn,  cD = ε(cn) 
 
L = R + F ∀ i ∈ [2, nF],   L = R ∀ i ∈ [ nF+1, n] 
 

where ε, β, and η denote the liquid-vapor, bubble 
point, and (Francis weir) hydraulics functions, 
respectively. In vector notation, this column model is 
written as follows: 

x.  = f(x, u),  ym = h(x);  x = (c1,…,cn)',  up = (d',u')' (1) 

d = (F, ce)',        u = (R, V)',      hi = β(csj),   1 ≤ j ≤  m 

The estimation problem consists in inferring the 
composition profile on the basis of a sensor set with 
number and locations to be determined. We are 
interested in: (i) verifying the functioning of the 
above mentioned redesigned GE, without needing 
Lie derivatives, and its connection with the EKF 
estimation, (ii) the comparison of the geometric 

approach-based detectability measures with previous 
ones, and (iii) the extent to which the structure and 
algorithm estimation choices affect the estimator 
behavior.  
 

2.2 Experimental run 
 

Apparatus. A laboratory glass column (model IC18-
DV/92, Didacta-Italy) was employed to generate the 
experimental data, with: 11 oldershaw-type trays, 
evaporator, total atmospheric condenser, thermo-
siphon type boiler, and electric heating. The feed and 
bottoms flows were set with digital peristaltic pumps, 
and the reflux flow was regulated with a solenoid 
valve. A binary methanol-water mixture was 
separated, temperature was on-line monitored in six 
stages (trays 1, 3, 5, 7, 9 and 11, evaporator, and 
condenser), and composition were sampled (each 5 
min) at the same stages, and off-line determined via 
densitometry. The corresponding experimental data 
are shown in Figures 1, 4 and 5.  
 

 
Fig. 1. Experimental temperature profiles evolution 
 

Test motion. To subject the estimators to a severe 
test, with state evolutions over an ample region of the 
column state-space, a drastic transient column 
response was set as follows. The (saturated) feed was 
set at F = 40 ml/min, with light component 
composition ce = 0.2 and temperature 57oC. Initially 
the column was at a steady-state with low reflux ratio 
(R/D = 0.2) and poor separation (cB ≈ 0.0, cD ≈ 0.57). 
Then, at time t = 0, a step increase (up to ce = 0.4) of 
feed composition was introduced, yielding a response 
that settled in about 40 min with intermediate 
separation (cB ≈ 0.01, cD ≈ 0.79). Finally, at t = 40 
min, a reflux step increase (up to R/D = 1.5) was 
introduced, yielding a response that settled in about 
40 min., with high separation (cB ≈ 0.15, cD ≈ 0.98). 
The corresponding temperature profile evolution is 
presented in Figure 1.  
 

3. GEOMETRIC AND EKF ESTIMATION 
 

In this section the redesigned GE method is applied 
to our distillation column, with one difference: the 
thermodynamic and staged characteristics of the 
distillation process are exploited. Emphasis is placed 
on the verification of the feasibility of removing of 
the high-order Lie derivation obstacle and shows the 
GE-EKF connection.  
 

3.1. Geometric Estimator 
 

Assuming the column model (1) motion x(t) is 
detectable with structure σ (σ-detectable), the 
corresponding (redesigned) geometric estimator is 
given by:  
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x̂
.
ι = fι(x̂, u) + Ο-1(x̂, u){Πι̂ + Ky[y(t) - h(x̂)]}    (2a) 

ι̂
.
 = Kι[y - h(x̂)],       x̂

.
ν = fν(x̂, u)     (2b) 

 

where (Ix is a column-permuted identity matrix) 
 

 (fι', fν')' = Ixf,       dim (x̂ι, x̂ν, ι̂) = (κι, n - κι, m) 
κι = κ1 + … + κm ≤  n,                 κi >  1 
O(x, u) = [O1'(x, u) …, Om' (x, u)]'       (3) 
Oi'(x, u) = [ci(x, u),…, ci(x, u)Ακi-1(x, u)] 
A(x, u) = ∂xf(x, u),  ci(x) = ∂xhi(x) 
 

x̂ι (or x̂ν) is the innovated (or noninnovated) state and 
ι̂ is an augmented state that eliminates the output 
mismatch, O is the estimation matrix, and Π, Γu and 
Δu are zero/one-entry matrices with structure 
determined by κ (Lopez and Alvarez, 2004). The 
matrix gain pair (Ky, Kι) (4), and the related output 
quasi linear noninteractive pole assignable (qLNPA) 
estimation error dynamics (5) are given by 
 

Ky = bd[k1
y, …, km

y],         ki
y = (a1

iωi, … , aκim
ω i
κi)'  (4a) 

Ki = (ω1
κ1+1, … , ω m

κm+1)',  ci = (aκim+1
,…, a1

i)           (4b) 

Lyiỹi := ỹi
(κi+1)+ (a1

iωi)ỹi
(κi)+ …+ (aκi i+1ω1

(κi+1))ỹi ≈ 0   (5) 
                 ỹi = ŷi - yi, 1 ≤  i ≤ m 
where ci is the coefficient set of a monic, unit 
frequency, normalized (κi+1)-order polynomial set 
by a prescribed pole pattern, and ωi is the 
characteristic frequency, or equivalently, the speed 
parameter of the of the i-th output error dynamics. 
The estimation structure σ  is given by 
 

σ = (κ, xι-xν): κ = (κ1,…, κm)',  (xι', xν')' = Ixx   (6) 
 

where κ is the estimation order vector, xι-xν is the 
innovated-noninnovated state partition, and κι is the 
estimation order associated with the i-th output.  
 
Basically, σ-detectability is a robustness-oriented 
coordinate-dependent version of the coordinate-free 
definition of k-differential nominal detectability 
(Sontag, 2000). In our distillation column, structure 
means: the sensor number and locations, the 
innovated-noninnovated state partition, and the 
innovated states per measurement. When the n (or 
less than n) model states are innovated, the structure 
is said to have complete (or partial) innovation with 
κ = n (or κ <  n) 
 

3.2. Conventional EKF (CEKF) 
 

Motivated by the GE form (2), let consider the 
stochastic version 

x.  = f(x, u) + B(x, u)w(t), x̂(0) = x̂o, y = h(x) +v(t) (7) 
 

of the column model (Eq. 1), where w (or v) is a 
zero-mean Gaussian white noise with intensity 
matrix R (or Q). The corresponding EKF is given by: 

x̂
.
 = f(x̂, û) + SxC'(x̂)R-1[y - h(x̂)],  x̂(0) = x̂o    (8a) 

S
.
ι = Q - Sι[hx'(x̂)R-1hx(x̂)]Sι,     Sι(0) = Sιo    (8b) 

S
.
ιx = SιxF(x̂, ι̂, u) + SιxH(x̂, u)        (8c) 

  - Sιx[C'(x̂)R-1C(x̂)]Sx,         Sιx(0) = Sιxo 

S
.

x = F(x̂, ι̂, u)Sx + SxF'(x̂, ι̂, u)        (8d) 

  + B(x̂, û)SιB'(x̂, û) + H(x̂, u)Sιx + Sι'xH'(x̂, u) 
  - Sx[C'(x̂)R-1C(x̂)]Sx,          Sx(0) = Sxo 
 

where   F(x, ι, u) = ∂x[f(x, u) + B(x, u)ι] 

     H(x, u) = ∂ι[B(x, u)ι],     



Sι Sιx

Sι'xSxo
 = S 

ι is a colored noise, and xιo (or ιo) is a random vector 
with mean x̂ιo(or ι̂o) and error covariance matrix Sxo 
(or Sιo). In most distillation column studies (Barati et 
al, 1995, Oisiovici et al, 2000): (i) (B, ι) = (I, w) (ι is 
a white noise, and the i-th error wi enters the i-th state 
dynamics), (ii) the matrix Rmxm (or Qnxn) is set in 
diagonal (or block diagonal) form with a reduced 
number of adjustable entries, and (iii) So = 0 because 
the EKF is quite robust with respect to the choice of 
So. In most cases, the adjustable entries of (R, Q) are 
tuned by trial-and-error, and occasionally with off-
line optimization procedures. 
 

3.3. Geometric-EKF equivalence 
 

The GE and EKF designs coincide if: (i) The gain 
pair of the GE (Eq. 4) is set with Butterworth pole 
patterns, (ii) the noninnovated dynamics are in slow-
varying regime with respect to the innovated 
dynamics, and (iii) The EKF (Eq. 8) is set with (Σ is 
the solution of Eq. 9c) 
 

R = dg(r1,…,rm),Q =dg(q1,…,qm),qi = ri(ωi)2(κi +1) (9a) 
B(x, u)=O-1(x, u)Π,So = O-1(x̂o, ûo)ΣzO-1'(x̂o, ûo)  (9b) 

0 = ΓΣ + Σ Γ' + ΠQΠ' - ΣΔ'R-1ΔΣ,Σ = 



Σι  Σιz

Sι'z  Σz
 (9c) 

dim Σ = (κι + 1, κι + 1),  m ≤ κι ≤  n 
 

{Γ, Δ, Π} is a set of zero/one-entry matrices. From 
this equivalence, the stochastic geometric estimator 
follows: 

x̂
.
ι = fι(x̂, u) + Ο-1(x̂, u){Πι̂ + Ky[y(t) - h(x̂)]} (10a) 

ι̂
.
 = Kι[y - h(x̂)],       x̂

.
ν = fν(x̂, u)  (10b-c) 

Sx = O-1(x̂, û)Σz(ωe) O-1'(x̂, û), x̃ = x̂ - x  (10d-e) 
 

where the dynamic-decoupled component (10a) 
yields the mean state estimate (x̂), and the static 
component (10d) yields the estimate uncertainty 
assessment (Sx). 
 

4. STRUCTURE DESIGN 
 

Following the constructive approach, the structure 
choice, over a large number of candidates, must be 
done by exploiting the staged nature of the column as 
well as its material balance and thermodynamic 
features in the light of the adjustable-structure feature 
of the geometric estimation approach and of its 
detectability measures (Lopez and Alvarez, 2004). 
 

4.1 Estimation structures 
 

The set of admissible structures σ is denoted by SA, 
and the subsets of detectable (or passive) structures 
is denoted by SD (or SP) (Lopez and Alvarez, 2004):  
 

SA = {σ| x(t) is κ-detectable} 
SD = {σ ∈ Sσ | κd =  SA

max κι}; SP = {σ ∈ Sσ | κi = 1} 
 

The detectable (or passive) structure signifies 
maximum (or minimum) innovated state dimension 
κd (or m), largest (or smallest) state reconstruction 
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rate, and smallest (largest) robustness. The structure 
choice amounts to a suitable compromise between 
state reconstruction speed and robustness. In our 12-
state distillation column example with up to 12 
sensors (i.e., n= 12, 1 ≤ m ≤ 12, and 1 ≤ κι ≤ 12) we 
have: card SA = 527,345 admissible structures with 
card SD (or SP) = 4,095 observable (or passive) 
structures. 
 

4.2 Structural assessment 
 

Next the structure selection is performed on the basis 
of: (i) the staged nature of the process, in the sense of 
the profile monotonicity (Sontag, 2000), or 
equivalently, the order feature of the compositions 
and their unidirectional change with the exogenous 
inputs, and (ii) the geometric approach-based 
detectability measures (Lopez and Alvarez, 2004): 
 

µc = cn[O(x, u, κ)],      µs = σmin
-1 [O(x, u, κ)]    (11a-b) 

µc
ν = cn[J(x, u, κ)],       J(x, u, κ) = (F + F')/2      (11c) 

    F(x, u, κ) = (∂xνfν + ∂xιfν)(∂xνxι)(x, u, κ) 
λν = min [-Re(λ1),…,-Re(λn-κ)],     Fxi = λixi       (11d) 
 

where cn (or σmin) (.) is the condition number (or 
minimum singular value) of (.), µc (or µs) measures 
the ill-conditioning (or singularity) of the estimation 
matrix O, and µc

ν (or λν) measures the ill-conditioning 
(or stability-speed) of the noninnovated dynamics. 
As the innovated state dimension (κ) is increased: (i) 
the ill-conditioning (µc) and singularity (µs) of O 
grow, or equivalently, the model error propagation 
by measurement injection grows, and (ii) the ill-
conditioning (or stability margin) of the 
noninnovated dynamics decreases (or increases). 
These error propagation features must be considered 
in the light of the before stated nominal features: as 
the estimation (κ) order grows, the innovated state 
dimension grows, signifying a fastest reconstruction 
speed. 
 

For comparison purposes, let us regard the 
detectability measure pair (µc, µs) (11) on the basis of 
the Grammian matrix (Hahn and Edgar, 2002) Wo 
which is given by the solution of the matrix equation: 
 

W(x, u, κ)  ∍  A'(x, u, κ) Wo + Wo A(x, u, κ) 
             - C'(x, u, κ)C(x, u, κ) = 0  (12) 
 

It has been claimed that, for measurement choice 
purposes, the observability and Grammian matrices 
yield the same results (Johnson, 1969).   
 

Single-sensor analysis. The application of the 
preceding detectability measures (11) to our case 
example yielded that: (i) the binary column is 
(nominally) completely observable with at least one 
sensor located at any stage, and this agrees with 
previous reports drawn from linear analyses (Joseph 
and Brosilow, 1978), (ii) the measures (µc

ν and λν) 
associated with the noninnovated dynamics do not 
change significantly with structure, (iii) the 
singularity measure µs (11b) (that, in an IS stability 
framework, signifies the asymptotic estimation error 
gain) reflects the estimator behavior-structure 
dependency in a better way better than the ill-
conditioning measure µc (11a), and (iv) the 
singularity   measures   (11b)   on   the   basis   of  the 

 
 
 
 
 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 

 

 
Fig. 2. Single-sensor singularity measure (µ2) dependency 

on sensor location (πi) and estimation order (κ), at t = 
40 min, using estimation (a) and Grammian (b) 
matrices. 

 

observability (3) and Grammian matrices (12) yield 
the same structural assessments. 
 

In Figure 2 are plotted the dependencies of the 
singularity (µs) measure on the single-sensor location 
and the estimation order (i.e., dim xι), showing that: 
(i) as expected, low innovation dimensions yield the 
smallest error propagation by measurement injection, 
(ii) for complete innovation structures order (with κ 
=12) the sensors in stages 2 (1st tray) and 12 (11th 
tray) yield the smallest error propagation, or 
equivalently, the maximum robustness, and these 
locations coincide with the largest stage-to-stage 
temperature and concentration changes, and (iii) for 
partial innovation structures (i.e., with 1 < κ <  12) a 
single sensor should be located either in the stripping 
(or enriching) section location set {1, 2, 3, 4}  (or {9, 
10, 11, 12}. Moreover, the comparison of Figures 2a 
and 2b verifies the above stated claim drawn from 
theoretical arguments: that the singularity measures 
with estimation and Grammian matrix yield the same 
structural result. 
 

Multiple-sensor structure. Due to the column staged 
nature and monotonicity property (Sontag, 2000), 
from the preceding single-sensor structural analysis 
in conjunction with Figure 2a the multiple-
measurement structural suggestions follows: (i) two 
measurements should be used, one per section, (ii) in 
each section, the sensor must be located in the (above 
delimited) most sensitive region, and (iii) no more 
that three innovated states per measurement are 
needed to perform the full profile estimation task. 
These suggestions were ratified on the basis of the 
results presented in Figure 3, that presents the 
changes of the ill-conditioning and singularity 
estimation matrix measures with the number of 
optimally located sensors, showing that: (i) there is a  
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Fig. 3. Ill-conditioning and singularity measure 

dependencies on the number of optimally placed 
sensors. 

 

significant improvement from one to two sensors, 
and (ii) the incorporation of more sensors does not 
yield an appreciable improvement. 
 

5. ESTIMATOR BEHAVIOR 
 

In this section the functioning of the redesigned GE 
(without Lie derivation) is tested, the GE-EKF 
equivalence will be assessed, and the structural 
findings will be tested with geometric and EKF 
algorithms (dynamic data processors). 
 

5.1 Tuning 
 

Following the structural assessment conclusions, the 
estimation scheme was set with two sensors located 
at stages 2 and 12. The GE was tuned with complex 
Butterworth pole placement (i.e., damping factor ζ = 
21/2), and frequency pair (ωs, ωe) ≈  (2/5, 2/10) found 
by starting at ωs = ωe := ω ≈ 10λc (the dominant 
column frequency), increasing until an ultimate value 
ω* ≈ λh (hydraulics frequency) with oscillatory 
behavior, followed by backoff ω*/2, and final 
refinement. The CEKF (8) was set with the block 
diagonal structure (Baratti et al, 1995): 
 

B(x, u) = I12x12,    Q = bd(qsI6x6, qeI6x6)  (13) 
qs = r(ωs)14,  qe = r(ωe)14,   r = 0.5 
 

with one difference: here, (qs, qe) was not set by trial-
and-error, but with the value of (ωs, ωe) of the GE 
tuning in conjunction with the GE-EKF equivalence 
formula (9a), verifying that not appreciable 
improvement was obtained by further adjusting (qs, 
qe). The value of (ωs, ωe) was kept fixed over 
different estimation structures and algorithms.  
 

5.1 SGE, CEKF and GEKF estimation with complete 
innovation. 
 

In a comparison between the GE (2, 10) and CEKF 
(8, 13) approaches with two optimally located 
sensors, the complete-innovation structure represents 
the most unfavorable situation for the GE. This is so 
because, while the CEKF can be implemented and 
tuned for an adequate functioning, the original Lie 
derivative-based GE could only be implemented up 
to three innovated states per sensor, meaning three 
Lie derivations less than the ones required by the 
complete innovation structure. The SGE (10) and 
GEKF (9) were implemented with the structure 
 

σ = (κ, xι = x),  x = (c1,…, c12)',   κs = κe = 6 

 
 

Fig. 4. SGE, CEKF and GEKF estimation with complete 
innovation. 

 

The behaviors of the GE (13 ODEs), GEKF (104 
ODEs) and CEKF (with 104 ODEs) are presented in 
Figure 4, showing that: (i) the redesigned GE 
effectively removes the Lie derivation applicability 
obstacle of the original geometric estimator (Alvarez, 
2000), (ii) the GE and GEKF yield the same 
behavior, verifying the GE-EKF equivalence, and 
(iii) the GE estimator without Riccati equations 
(REs) yields the same estimates than the CEKF with 
REs. As it can be seen in Figure 5, the CEKF and 
SGE yield the same uncertainty assessment, which 
closely resemble the actual ones drawn from the off-
line concentration measurements. 
 

5.2 SGE and GEKF estimation with partial 
innovation. 
 

Following the structure assessment results, let us 
consider the partial-innovation estimation structure: 
 
σ = (κ, xι-xν), xι = (c1, c2, c3, c10, c11, c12)' 
    xν = (c4, c5, c6, c7, c8, c9)' 
 
meaning that only six states undergo direct 
measurement injection. The resulting behaviors with 
GE (14 ODEs) and GEKF (34 ODEs) is presented in 
Figure 5, showing that: (i) the two estimators yield 
the same behavior, and (ii) such behavior is not 
significant different from the ones drawn with 
complete innovation (Figure 4). 
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Fig. 5. SGE and GEKF estimation with partial innovation 
 

6. CONCLUSIONS 
 

The structure-algorithm estimation problem for 
binary distillation columns has been addressed via a 
constructive approach. The estimation structure was 
a priori assessed according to detectability measures 
and staged process features in the light of estimator 
functioning. It was verified that the redesigned GE: 
(i) eliminates the cumbersome or intractable Lie 
derivations of its original counterpart, (ii) is 
equivalent to an EKF with a special model injection 
uncertainty model, (iii) circumvents the need of on-
line integrating Riccati. The GE-EKF equivalence 
enabled the uncertainty assessment capability of the 
GE. 
 

It was found that (i) the structural decisions plays a 
key role in the estimator behaviour, regardless of the 
particular estimation algorithm employed (i) the best 
estimator functioning is obtained by injecting the 
temperature measurement-based information over a 
few column states and this is in agreement with the 
industrial practice on sensor location distillation 
control criteria. The methodological findings and the 
estimator functioning results were illustrated and 
tested with experimental data. 
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