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Abstract: This paper proposes an interval observer for continuous or fed-batch
chemical reactors with uncertainties related to both the heat exchange coefficient
and the kinetics. The interval observer provides an upper and a lower bound of the
state given bounds for the uncertain parameters.
The under- and over-estimators are state observers for the non-linear reactor model
with two positive tuning parameters that guarantees that the estimated interval
contains the state and that the interval width is limited.
The observer performance are illustrated with the production of a resin in an industrial
fed-batch reactor. Copyright c©2007 IFAC

Keywords: State observers, batch processes, interval observers

1. INTRODUCTION

Monitoring the components concentrations is a
key question for productivity and safety in the
chemical industry. However, in most cases the con-
centrations cannot be measured in real-time be-
cause suitable devices do not exist or are very ex-
pensive. The concentrations are then determined
via off-line analyses. The use of state observers to
estimate the concentration presents several bene-
fits in this context. They provide a real-time value
without requiring any specific device nor any hu-
man intervention. This can explain why the design
and application of state observers in chemical and
biochemical processes has been an active research
area over the past decades (Dochain, 2003).

The industrial processes can be divided in two
classes : the continuous processes and the batch
/ fed-batch processes. Although the continuous
processes have several advantages due to their
steady-state operating mode, fed-batch processes
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are an interesting option due to their flexibility to
be used for the production of different products.
This explain why fed-batch reactors are frequently
encountered in the biochemical, pharmaceutical
and chemical industry.

State estimation in fed-batch processes is subject
to difficulties inherent to their operating mode.
In particular the continuously changing operating
point can become a limitation for the application
of common state observation techniques based on
the linearized model of the system (Agarwal and
Bonvin, 1989), (Vallière and Bonvin, 1989). Fur-
thermore the physical properties of the reacting
fluid continuously evolve from those of the ini-
tial reactant to those of the final product. This
badly known evolution can be at the origin of
large uncertainties in the model parameters. For
instance the viscosity of a reacting mixture can
largely increase during a resin synthesis inmplying
the decrease of the heat exchange coefficient. In
this case the parameters values are uncertain but
not unknown and in most cases the uncertain
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parameters values can be bounded so that they
are guaranteed to lie within a given interval.

The interval observer concept has been introduced
by (Kieffer et al., 1998). It consists of providing a
set estimate guaranteed to contain all the possible
state values consistent with the observations given
the uncertainties bounds and a set containing
the initial state values. In practice, the interval
observer can be seen as a couple of state estima-
tors that respectively provides upper and lower
bounds for the unmeasured state variables (Gouzé
et al., 2000).

Interval observers have been recently developed
and applied to continuous wastewater treatment
processes where the main uncertainties are related
to the kinetics and the process inputs (Alcaraz-
Gonzales et al., 2002) and (Rapaport and
Dochain, 2005). In both cases, the authors con-
sider the change of coordinates at the origin of the
asymptotic observer (Bastin and Dochain, 1990)
to remove the dependence with respect to the ki-
netics. Then they compute two estimates that are
guaranteed to bound the state taking advantage
of cooperativity properties of the reconstruction
error dynamics.

In this paper, we propose an interval observer
for exothermic fed-batch reactors that deals with
uncertainties related to both the kinetics and the
heat exchange coefficient. The observer we pro-
pose gather two individual biased state observers
based on the nonlinear process model and does not
require any change of coordinates. Both provided
estimates are guaranteed to bound the state by
considering invariant sets and their convergence
to a neighborhood of the state is showed using a
Lyapunov-like function.

The paper is organized as follows. The first section
introduces the reactor model and the interval ob-
server design. Then the second section deals with
the convergence analysis of the observer. Finally,
the third section present application results of
the interval observer to an industrial fed-batch
reactor.

2. OBSERVER DESIGN

Let us consider an exothermic reactor whose dy-
namical model is obtained from mass and energy
balances:

Ṫ =
Q

V
(Tin − T )− ∆H

ρcp
r∗ +

UA

ρcpV
(Tj − T )(1)

Ċ =
Q

V
(Cin − C)− r∗ (2)

where T , C, Q, Tin, Cin, U , A, Tj , V , ρ, cp, r∗

and ∆H are the reactor temperature (K), the con-
centration of the limiting reactant (mol/m3), the

feed flowrate (m3/s), the inlet temperature (K),
the inlet concentration of the limiting reactant
(mol/m3), the overall heat exchange coefficient
(W/m2/K), the heat exchange area (m2), the
cooling fluid temperature (K), the volume (m3),
the density (kg/m3), the specific heat (J/kg/K),
the reaction rate (mol/m3/s) and the reaction
heat (J/mol), respectively.

Let us also consider that the reactor tempera-
ture T is measured on-line and that we have to
estimate the limiting reactant concentration C
while the main sources of model uncertainties are
related to the kinetics model and to the global
heat exchange coefficient value.

The kinetics model r∗ is commonly expressed
as the product of a kinetics constant following
the Arrhenius law by a function of the reactant
concentrations r:

r∗ = k0e
−E/RT r (3)

where k0, R and E are the kinetics constant,
the gas constant (J/mol/K) and the activation
energy (J/mol), respectively. In practice, the ki-
netics model is identified from experimental re-
sults assuming a single global chemical reaction
while the actual chemical reaction is the result
of different consecutive and parallel elementary
reactions between the different functional groups
of the molecules. The kinetics law is therefore an
approximation of the real reaction rate but it can
be assumed that all uncertainties are gathered in
the kinetics constant which is bounded as follows:

k0min
< k0 < k0max

(4)

The second source of uncertainties are related to
the global heat exchange coefficient because this
one can vary with time. These changes are quite
limited for continuous processes where they can be
due e.g. to the fouling of the heat exchanger tubes
but they can become important in fed-batch pro-
cesses due to e.g. the increase of the heat exchange
area but also due to the evolution of the reacting
fluid viscosity. Therefore the uncertainties are not
only related to the heat exchange coefficient U but
to the product UA which is bounded as follows:

UAmin < UA < UAmax (5)

The interval observer presented in the following
consists of two state observers that converge re-
spectively toward an upper and a lower bound
of the state. It is worth emphasizing that each
observer incorporates the bounds of both param-
eters. The interval observer equations are :

• for the lower bound:
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˙̂
T	 =

Q

V

(
Tin − T̂	

)
− ∆H

ρcp
k0min

e−E/RT r	

+
UA

ρcpV

(
Tj − T̂	

)
+ λ	1

(
T − T̂	

)
(6)

˙̂
C	 =

Q

V

(
CA,in − Ĉ	

)
− k0max

e−E/RT r	

+λ	2

(
T − T̂	

)
(7)

• for the upper bound:

˙̂
T⊕ =

Q

V

(
Tin − T̂⊕

)
− ∆H

ρcp
k0max

e−E/RT r⊕

+
UA

ρcpV

(
Tj − T̂⊕

)
+ λ⊕1

(
T − T̂⊕

)
(8)

˙̂
C⊕ =

Q

V

(
CA,in − Ĉ⊕

)
− k0min

e−E/RT r⊕

+λ⊕2

(
T − T̂⊕

)
(9)

where T̂	, Ĉ	, T̂⊕ and Ĉ⊕ are the under-estimate
for the temperature (K), the under-estimate for
the concentration (mol/m3), the over-estimate for
the temperature (K) and the over-estimate for the
concentration (mol/m3), respectively. And with

r⊕ = r(C⊕) (10)

r	 = r(C	) (11)

and

UA = UAmax and U = UAmin if Tj ≥ T (12)

UA = UAmin and U = UAmax if Tj ≥ T (13)

and where the observer gains λ⊕1 ,λ⊕2 , λ	1 and λ	2
are computed as follows:

λ	1 = ω	 − Q

V
− UA

ρcpV
− ∆H

cp
σ	 (14)

λ	2 =−σ	 (15)

λ⊕1 = ω⊕ − Q

V
− UA

ρcpV
− ∆H

cp
σ⊕ (16)

λ⊕2 =−σ⊕ (17)

where ω	, ω⊕, σ	 and σ⊕ are positive tuning
constants.

3. CONVERGENCE ANALYSIS

The convergence analysis of the interval observer
is achieved via the convergence analysis of each
of the over- and under-estimator. For each case
we proceed in two steps. First we show that the
under-estimator (resp., over-estimator) provides
an estimate that remains lower (resp., greater)
than the actual state. Secondly, we show that the
estimate reaches a neighborhood of the state and
remains inside this neighborhood indefinitely.

Theorem 3.1. Assuming r is an increasing func-
tion of C and Q > 0, the dynamical system de-
scribed by equations (6) and (7) (resp. (8) and (9))
with initial conditions satisfying

T	(0) ≤ T (0) (resp.T⊕(0) ≥ T (0)) (18)

C	(0) ≤ C(0) (resp.C⊕(0) ≥ C(0)) (19)

is an under-estimator (resp. over-estimator) for
the system described by equations (1) and (2)

Proof

Only the proof for the under-estimate is provided
here since the proof for the over-estimator is
similar. The first part of the proof shows that
the state variables following the dynamics (6)
and (7) remains lower than the state variables
of the system given by (1) and (2). This goal is
achieved by showing that the reconstruction errors
remains positive.

Let us define the reconstruction error x associated
to the under-estimator by

x1 = T − T̂	 (20)

x2 = C − Ĉ	 (21)

It follows from equations (1), (2), (6) and (7),
that the reconstruction errors are governed by the
following dynamical equations :

ẋ1 =−ωx1 +
∆H

cp
σx1 + θ

−∆H

ρcp

(
k0e

−E/RT r − k0mine−E/RT r	
)
(22)

ẋ2 = σx1 −
Q

V
x2

−
(
k0e

−E/RT r − k0maxe−E/RT r	
)

(23)

where θ is defined as follows

θ =
UA− UA

ρcpV
(Tj − T ) (24)

and is non-negative by definition of UA (13).

Let us define the subset U of R2 as the set of the
non-negative reconstruction errors:

U =
{
(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0

}
(25)

and show that this set is an invariant set for the
system described by (22) and (23). The set U has
a boundary ∂U which can be splitted into two
subsets defined as follows:

∂U1 =
{
(0, x2) ∈ R2 : x2 ≥ 0

}
(26)

∂U2 =
{
(x1, 0) ∈ R2 : x1 ≥ 0

}
(27)

such that
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∂U = ∂U1 ∪ ∂U2 (28)

Now let us choose an arbitrary point P of the
boundary of U , then we necessarily have either

P ∈ ∂U1 (29)

or

P ∈ ∂U2 (30)

Let us assume that P ∈ ∂U1, then x1 = 0 and
Equation (22) becomes

ẋ1 = θ − ∆H

ρcp
e−E/RT

(
k0r − k0min

r	
)

(31)

As P ∈ U , we have Ĉ ≥ C so that

k0e
−E/RT r − k0min

e−E/RT r	 ≥ 0 (32)

because r is an increasing function of C. This
shows that the second term of Equation (31)
is positive because the reaction is exothermic
(∆H < 0). As by definition (24) θ is non-negative,
it can be stated that for any point P ∈ ∂U1 we
have:

ẋ1 > 0 (33)

so that the boundary ∂U1 is never crossed by the
error dynamical system (22) and (23).

Similarly, let us assume that P ∈ ∂U2, then x2 = 0
and r = r	 and Equation (23) becomes

ẋ2 = σx1 (34)

so that we have for any point P ∈ ∂U2:

ẋ2 ≥ 0 (35)

showing that the boundary ∂U2 is never crossed.

It can be concluded from the above reasoning that
the subset U is an invariant set for the dynamical
system described by (22) and (23). As by assump-
tions (18) (19), the initial reconstruction errors
lies in U

x1(0)≥ 0 (36)

x2(0)≥ 0 (37)

it can be concluded that the reconstruction error
remains positive.

The second part of the proof shows that the re-
construction error converges toward a neighbor-
hood of the origin and remains indefinitely in this
neighborhood.

As we have shown that the reconstruction error x
remains positive, we can limit the domain of our
analysis to the set U . Let us define the following
function

V (ε) = x1 −
∆H

ρcp
x2 (38)

The above function is an increasing function that
is positive everywhere on U except on the origin :

V (0) = 0 (39)

V (x) > 0 ∀x ∈ U\0 (40)
∂V

∂x1
= 1 ∀x ∈ U (41)

∂V

∂x2
=−∆H

ρcp
∀x ∈ U (42)

The time derivative of V can be computed using
(22) and (23):

V̇ = θ − ωx1 +
∆H

ρcp

Q

V
x2

−∆H

cp
(k0max

− k0min
) e−E/RT r	 (43)

Assuming that θ, Q, r	, T and V are bounded as
follows :

θ(t) < θmax (44)

V (t) < Vmax (45)

r	 < r	max (46)

Q(t) > Qmin (47)

T (t) > Tmin (48)

so that we consider a function W such that

Ẇ = θmax − ωx1 +
∆H

ρcp

Qmin

Vmax
x2

−∆H

cp
(k0max

− k0min
) e−E/RT r	 (49)

Then, for any x ∈ U we have:

V̇ (x) ≤ Ẇ (x) (50)

Let us now define the set S by:

S =
{

x ∈ U : Ẇ (x) ≥ 0
}

(51)

which is a non-empty closed set containing at least
the origin. This allows to define two complemen-
tary sets :

P = x ∈ U : V (x) ≥ ν (52)

P⊥ = x ∈ U : V (x) > ν (53)

where
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ν = max
x∈S

V (x) (54)

As we have for any point of P⊥

∀x ∈ P⊥ : V̇ (x) ≤ Ẇ (x) < 0 (55)

this shows that any trajectory starting in P⊥

finally converges toward P . Furthermore, we have
by definition :

U = P ∪ P⊥ (56)

Therefore any trajectory governed by (22) and
(23) and starting in U converges to the closed set
P and remains inside this set indefinitely.

2

4. APPLICATION

Let us consider the industrial production of a
resin P from two reactants A and B following the
exothermic chemical reaction

A + bB → P (57)

where b > 0 is a stoichiometric coefficient and for
which the reaction rate is given by

r∗ = k0e
−E/RT Cp1

A Cp2
B (58)

with p1 and p2 two non-negative constants such
that p1 + p2 6= 0 and where CA, CB , T , k0,
E and R stand for the concentration in reac-
tant A (mol/m3), the concentration in reactant
B (mol/m3), the temperature (K), the kinet-
ics constant(mol1−p1−p2 m−3(1−p1−p2) s−1), the
activation energy (J/mol) and the gas constant
(J/mol/K), respectively.

This synthesis is carried out in the fed-batch
operating mode as follows : the reactant A is
progressively added to the reactor that initially
contains the reactant B. This operating mode
allows to control the temperature rise by limiting
the amount of reactant A available in the reacting
fluid, therefore the reactant A is also called the
limiting reactant. Such a reactor can be modeled
by the following set of four differential equations
:

Ṫ =
Q

V
(Tin − T )− ∆H

ρcp
r∗ +

UA

ρcpV
(Tj − T )(59)

ĊA =
Q

V
(CA,in − CA)− r∗ (60)

ĊB =−Q

V
CB − br∗ (61)

V̇ = Q (62)

where Q, Tin, CA,in, U , A, Tj , V , ρ, cp and ∆H are
the feed flowrate (m3/s), the inlet temperature

(K), the inlet concentration of A (mol/m3), the
overall heat exchange coefficient (W/m2/K), the
heat exchange area (m2), the cooling fluid temper-
ature (K), the volume (m3), the density (kg/m3),
the specific heat (J/kg/K) and the reaction heat
(J/mol), respectively.

Let us consider that the reactor volume and the
initial concentration of B are known. Then the
reactor model can be reduced to a second order
model using a material balance between the initial
time t0 and the present time t. Considering the
stoichiometry of reaction (57), it can be computed
that for any time t :

CB(t) = bCA(t) +
1

V (t)
· (63)(

V (t0)CB(t0)− b

∫ t

t0

Q(τ)CA,indτ

)
Introducing the above results into Equation (58)
leads to an expression with the following structure

r∗ = k0e
−E/RT r(CA, V, Q) (64)

where r is a non-negative increasing function of
CA

r≥ 0 (65)
∂r

∂CA
≥ 0 (66)

The reactor model can finally be written as fol-
lows:

Ṫ =
Q

V
(Tin − T )− ∆H

ρcp
r∗ +

UA

ρcpV
(Tj − T )

ĊA =
Q

V
(CA,in − CA)− r∗

so that the interval observer described by equa-
tions (6) to (9) can be used to estimate the con-
centration of the limiting reactant.

This interval observer has been applied to data
coming from an industrial resin synthesis carried
out in a fed-batch reactor of several tons in which
the chemical heat generation is about 25 W/kg.
An interval of ±20% around a nominal value
has been imposed for the global heat exchange
coefficient and an interval of ±10% around a
nominal value has been imposed for the kinetics
constant. The tuning parameters for both under-
and over-estimators have been respectively chosen
identical.

ω = ω	 = ω⊕ (67)

σ = σ	 = σ⊕ (68)

If σ is set to zero, the concentration estimation
((7) and (9)) is totally decoupled from the en-
ergy balance ((6) and (8)) and no information
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Fig. 1. Application of the interval observer to an
industrial exothermic reactor

are retrieved from the temperature evolution. In
this case, the interval width only depends on
the kinetics constant uncertainties. Increasing the
value of σ gives more influence to the energy
balance and makes the estimation robuster with
respect to the kinetics model, however the interval
width increases and depends on the heat exchange
uncertainty. The parameters σ and ω have been
tuned by simuylations as follows:

σ = 0.2 (69)

ω = 50 (70)

The results are shown on Figure 1 where it can
be seen that the experimental data lie inside the
estimated interval which has a narrow width.

5. CONCLUSION

In this paper we have designed an interval ob-
server to estimate the limiting component con-
centration in continuous or fed-batch exother-
mic chemical reactors with uncertainties concern-
ing both the kinetics and the heat exchange co-
efficient. This interval observer consists in two
parallel state observers providing two estimates
that are guaranteed to be respectively lower and
greater than the state assuming the reaction rate
is an increasing function of the concentration.

The performance of the interval observer have
been illustrated with an application example re-
lated to the production of a resin in an industrial
fed-batch reactor.
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