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Abstract: Calorimetry is a frequently used tool for monitoring and control of
chemical reactors. In the case of laboratory-scale reactors with small temperature
gradients in the jacket, an additional excitation has to be introduced in order
to get reliable estimates if both heat of reaction and heat transfer coefficient are
estimated. This is usually referred to as temperature oscillation calorimetry (TOC).
In this paper, we introduce a moving horizon estimator that evaluates the data
obtained by TOC in real time. In contrast to conventional TOC, this approach is
not restricted to sinusoidal signals. Thus the question which excitation yields the
best estimates is natural here. The standard deviation of the estimate is taken as
a reliability measure.
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1. INTRODUCTION

For the production of chemicals in batch or semi-
batch reactors, the knowledge of the concentra-
tions of the reactants is extremely important
for monitoring and control purposes. Instead of
directly measuring them (e.g. by Raman spec-
troscopy), which can be a laborious and costly
task, calorimetry provides a good and reliable
altexrnative for exothermic reactions (Elizalde et
al., 2005). In calorimetry, several temperature
measurements (reactor temperature TR, jacket
temperature TJ and jacket inlet temperature
TJ,in) are used for the estimation of the produced

heat of reaction Q̇R, which in turn can be used
for the estimation of the current concentrations
in the reactor. If the heat transfer coefficient kA

is either unknown or changes during the reaction,
both quantities can be estimated using the heat
balances of the reactor and the jacket. In the case
of batch reactors these equations read:

dTR

dt
=

Q̇R

mR cp

−
kA

mR cp

(TR − TJ) (1)

dTJ

dt
=

kA

mJcp

(TR − TJ) +
ṁ

mJ

(TJ,in − TJ) .(2)

Calorimetry is a wide-spread technique in indus-
trial applications. However, when it comes to
laboratory and pilot plant reactors, the coolant
flowrate through the jacket, ṁ, is usually set
extremely high such that a uniform tempera-
ture in the jacket can be achieved (Buruaga et
al., 1997). Thus the resulting temperature differ-
ence of the inlet and outlet temperatures of the
jacket (TJ,in − TJ) cannot be measured reliably
any more. If the temperature measurements carry
only white noise with zero mean, a suitable filter
might help to overcome this problem. However,
already a slight offset in the measurements leads
to a strongly amplified offset in the estimation of
kA.
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A solution to this problem was proposed by
(Carloff et al., 1994) and later improved by (Tietze
et al., 1996). The idea is to excite the dynamics
of the system by adding a sinusoidal signal to the
temperature trajectories. This can be done either
by using a heating device inside the reactor or by
varying the jacket inlet temperature. According to
(Tietze et al., 1996), kA can be computed from the
ratio of the amplitudes of the reactor temperature
oscillation and the jacket temperature oscillation,
δTR and δTJ as

kA =
mR cp ω

tan
(

arccos
[

δTR

δTJ

]) (3)

=
mR cp ω

√

1 −
(

δTR

δTJ

)2

δTR

δTJ

.

Once kA is known, the heat of reaction can be
estimated from Eq. (1). As the formulas exhibit,
the jacket inlet temperature measurement TJ,in,
thus the problem mentioned above does not occur.
Although this strategy has been proven to work
reasonably well, it has some drawbacks. The com-
putation of the amplitudes requires 1.5 periods
of data where the temperatures are assumed to
be perfectly sinusoidally shaped. First, this yields
a delay of the estimate of 1 period. The oscilla-
tion period can however not be chosen too short
because the attenuation of the TR signal is too
high at high frequencies. Secondly, if a disturbance
(such as the start of the reaction) is introduced
into the system, a period of several system time
constants

(

T =
mRcp

kA

)

is required to return to a
(cyclic) steady state and thus to produce more or
less perfect sine signals again. During the tran-
sient phase, the estimates are highly unreliable.

In Section 2 of this paper, an alternative algorithm
for the estimation of kA and Q̇R which does not
rely on the sinusoidal shape of the signal is intro-
duced. Chapter 3 tackles the question whether or
not a sinusoidal signal is the optimal excitation
for the system and which signal provides maxi-
mum information to the estimator. Finally, some
conclusions are drawn.

2. MOVING HORIZON ESTIMATION

It can be shown quite easily that the two quan-
tities kA and Q̇R are not linearly observable if
only Eq. (1) is used to describe the reactor. Thus,
a strategy that is based on parameter estimation
has to be used in the case of reactors with high
jacket flowrates.
One possibility is the moving horizon estimator
(MHE) (Rao et al., 2001; Diehl et al., 2006b).
In the approach used here, not only the differ-
ence between the measured and estimated reactor

temperature but also the difference between the
measured and estimated jacket temperature con-
tributes to the cost function. No weights for the
different entries are used as both temperatures are
assumed to contain similar measurement errors.
The reactor energy balance (Eq. (1)) is discretized
using finite central differences. If all reactor tem-
perature measurements in the horizon considered
TR,k−n . . . TR,k are collected in the vector r ∈
<n+1 and all jacket temperature measurements
of importance TJ,k−n+1 . . . TJ,k−1 are collected in
the vector j ∈ <n−1, this leads to the following
formulation of the MHE problem:

min
p1,p2,r̂,̂j

(

(r − r̂)T (r − r̂) + (j − ĵ)T (j − ĵ)
)

(4)

s.t. 0 = Mfutr̂ − Mpastr̂ − 2p1en

+2 p2

(

Mcurr̂ − ĵ
)

(5)

Mfut =











0 0 1 0 ... 0
0 0 0 1 ... 0

0 0 0 0
. . . 0

0 0 0 0 0 1











r =







TR,k−n

...
TR,k







Mcur =











0 1 0 0 ... 0
0 0 1 0 ... 0

0 0
...

. . .
... 0

0 0 0 0 1 0











j =







TJ,k−n+1

...
TJ,k−1







Mpast =











1 0 0 ... 0 0
0 1 0 ... 0 0

0
...

. . .
... 0 0

0 0 0 1 0 0











p1 =
h

m cp

Q̇R ; p2 =
h

m cp

kA.

It can be seen that (4) is a high dimensional

optimization problem as the vectors r̂ and ĵ are
estimated together with the system parameters
p1 and p2 (which are proportional to Q̇R and
kA, respectively). Instead of a direct numerical
solution we derived a semi analytical solution to
this problem. This solution satisfies equations of
the form:

[p1, r̂, ĵ] = f̃(p2) (Eq.(6) − (8))

f̃(p1, p2, r̂, ĵ) = 0 (Eq.(9)).

Thus the problem can be reduced to a one dimen-
sional root finding problem. The precise equations
read:

M∗ = Mfut − Mpast + 2p2Mcur

ĵ =

(

2p2 I +
1

p2

M∗ M∗T

)

−1

(6)

·

(

−2p1en + M∗ r +
1

p2

M∗ M∗T j

)
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a =−
1

p2

(

j − ĵ
)

r̂ = r −
1

2
M∗T a (7)

h̃ =

(

2p2 I +
1

p2

M∗ M∗T

)

−1

·

(

M∗ r +
1

p2

M∗ M∗T j

)

p1 =−
en

(

j − h̃
)

en

(

2p2 I + 1
p2

M∗ M∗T

)

−1

en

(8)

0 = aT (Mpastr̂ − ĵ). (9)

This scheme can be implemented by applying
a root finding strategy for p2 to Eq. (9). Each
evaluation of Eq. (9) requires the evaluation of (6)
- (8) which in turn requires one inversion of the

matrix
(

2p2 I + 1
p2

M∗ M∗T
)

. For a reasonable

number of measurements (e.g. 66 as used in the
validation example), this formulation of the MHE
can be used in online applications.

2.1 Performance of the MHE

In order to validate the performance of the MHE,
it was applied to several data sets. For the sake
of brevity, only one representative result is shown
in Figure 1. In this experiment, a jacket cooled
1l glass reactor equipped with a PI controller for
the reactor temperature TR was heated by an
electrical heating rod with variable power levels.
In order to realize the oscillations, a sine signal
was added to the TR setpoint as shown in Figure
1 (top). During the experiment, the heating rod
was set to five different power levels.

For real applications, the MHE as well as the
classical approach (3) require two parameters: The
heat capacity of the reactor contents (m cp) and
the heat loss to the environment, which is modeled
here as

Q̇loss = (kA)env (TR − Tenv). (10)

The MHE was implemented with 66 measure-
ments in the horizon. The free parameters were
adjusted such that Q̇R is equal to the known
values at t = 0.5h and t = 3.5h.
It can be seen that the estimates of the MHE con-
tain slight oscillations. This is due to the use of a
discretization (5) instead of the continuous model
(1). However, the MHE exhibits a much faster
convergence than the classical approach (3). This
can mainly be explained by the fact that in (3) - in
contrast to the MHE - a perfect sinusoidal signal
for the 1.5 periods prior to the point where the

estimation takes place is assumed. This condition
is however not fulfilled after every step of Q̇R as
TR needs time for reaching its new (cyclic) steady
state. This transition lasts for several system time
constants. The slight delay in the MHE estimate
originates from the assumption that Q̇R is con-
stant within its horizon which was chosen as half
a period in this example.

3. OPTIMAL EXCITATION

Classical oscillation calorimetry uses a sinusoidal
signal to overcome the ”loss“ of Eq. (2) in small
reactors. This choice is due to the fact that is en-
ables a straightforward computation of the desired
parameters from the resulting amplitudes in the
system (Eq. (3)).
The sine wave is introduced to excite the system
and to obtain additional information in the data
which is not available at steady state. As the MHE
is not restricted to a sinusoidal input signal, the
question arises which input signal (TJ,in) yields
most information for the estimator.
In order to answer this question, the framework of
nonlinear optimal experimental design, which has
been explained e.g. in (Körkel et al., 2004), is used.
The idea is to minimize the covariances of the es-
timates (normalized by the error variances which
are assumed here to be equal for all measure-
ments). For general nonlinear problems, the de-
termination of this normalized covariance matrix
is rather difficult, however for the linearization of
Eqs. (4) - (5), a closed form can be obtained which
is equivalent to a sensitivity analysis of the error
covariance. Here, p = [p1, p2, r̂

T , ĵT ]T represents
the full set of parameters to be estimated and ∆p
represents its deviation from the estimated value.
If instead of the central differences discretization
in Eq. (5) a forward differences approach is used,
the normalized covariance C can be computed
from

C(∆p) = E(∆p∆pT )

= J+

(

I 0
0 0

)

J+T

(11)

with J+ = (I 0)

(

JT
1 J1 JT

2

J2 0

)

−1 (

JT
1 0
0 I

)

J1 =











0 0 −1 0 · · · 0
0 0 0 −1 · · · 0
...

... 0 0
. . . 0

0 0 0 0 · · · −1











J2 =









−eT
n

(M̃pastr̂ − ĵ)T

(M̃fut − (1 − p2)M̃past)
T

(−p2 I)









T

.
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Fig. 1. Application of the MHE and conventional oscillation calorimetry to an experiment performed in
a 1 l glass reactor

The complete normalized covariance matrix C is
not of interest as it also contains the normalized
covariances of the estimated temperature vectors
r̂ and ĵ. In order to judge the quality of the
estimate, only the important covariances of the
Q̇R estimate (C1,1) and the kA estimate (C2,2) are
extracted and combined using a modified version
of the so-called A criterion

φ(C) =

√

C1,1

p∗1
+

√

C2,2

p∗2
, (12)

where p∗1 and p∗2 represent characteristic scales. In
case the true values are known, those can be used
here (p∗1 = p1; p∗2 = p2).
Using a control vector parameterization, the re-
sulting optimization problem can be written as

min
TJ,in

φ(C) (13)

s.t.
d [r̂, ĵ]T

dt
= f(TR,0, TJ,0,TJ,in, p̃) (14)

0≤ g(r̂,TJ,in). (15)

TJ,in is the vector of jacket inlet temperatures

and p̃ = [Q̇R, kA,mR,mJ , ṁJ , cp] is the vector
of parameters required for the simulation of the
system. The function g in Eq. (15) represents in-
equality constraints which restrict the amplitude
of the reactor temperature r and the maximal
slope of the jacket inlet temperature trajectory
TJ,in.
This computation is performed for the lineariza-
tion around the nominal ”true“ measurements
which are obtained from a simulation of the model
f (Eqs. (1) - (2)). As the measurement noise is

assumed to be a zero mean process, it does not
appear explicitly in the computations.

3.1 Implementation

Numerical studies have shown that the difficulty
to estimate Q̇R and kA increases with increasing
Q̇R. Therefore the optimization was performed in
a (simulated) 10 l metal reactor, similar to the one
used in the Process Control Laboratory, with a
heat of reaction of Q̇R = 1 kW . The kA value was
chosen to be kA = 0.3. As characteristic scales,

p∗2 = kA
m cp

h = 0.00357 and p∗1 = Q̇R

m cp
h = 0.12

were chosen. The initial temperatures are TJ,0 =
60 oC and TR,0 = 76.7 oC which correspond to
the steady state values. The reactor temperature
was restricted to 75.7 oC < TR < 77.7 oC and
the jacket inlet temperature to 30 oC < TJ,in <

90 oC. The maximum slope of the jacket temper-

ature trajectory was constrained to
∣

∣

∣

dTJ,in

dt

∣

∣

∣

max
=

0.14
oC
s

. One hour of experiment was considered.

3.2 Numerical results

In a first attempt, TJ,in was discretized with 20
equidistant points and interpolated linearly. The
covariance was computed from temperature data
sampled every h = 30s. The optimization problem
can be solved on a standard PC.
In order to avoid a locally optimal solution,
the problem was initialized from different initial
guesses including a flat profile, different sinusoidal
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(b) ZigZag

Fig. 3. The behavior of the cost function (Eq. (12)) with two independent parameters (amplitude,
frequency). The crossed points (x) are points that violate the constraints.
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Fig. 2. Result of the optimization with 90 dis-
cretization points

profiles and different zigzag profiles. The solu-
tions, which are omitted here for the sake of
brevity, show clearly that the optimizer tries to
introduce as much variation as possible by hitting
the constraints as often as possible. However, due
to the small number of discretization points, it
cannot be determined clearly whether a sine wave
or a zigzag profile is advantageous.
Therefore, another optimization using a parame-
terization of TJ,in by 90 points was performed us-
ing the best sinusoidal solution obtained before as
initial value. This time, the temperature data was
sampled every h = 5s. The result is depicted in
Figure 2. It can be seen that, although initialized
with a sinusoidal profile, the optimizer converges
to a zigzag profile. The explanation is that if the
maximal slope is restricted, the sinusoidal profile
has a smaller amplitude compared to the zigzag
profile which leads to a lower amplitude of the
reactor temperature TR and thus to less dynamics
in the system. In order to quantify the advantage
of the zigzag profile over the sine profile, a differ-
ent discretization was chosen: Both profiles can be
characterized by an amplitude and a cycle time.
With this discretization two more optimizations

Signal

profile Cycle Time Amplitude φ(C)

Sine 581.3 13.01 2.52
Zigzag 510 17.8 2.34

Table 1. The result of the optimization
with only 2 degrees of freedom

were performed. The results are shown in Table
1. In order to ensure global optimality, the plot of
φ(C) versus amplitude and frequency is shown in
Figure 3. The crosses denote points that violate
the constraints.
It can be seen that the zigzag profile reduces the
standard deviation by approx. 8 % compared to
the sinusoidal excitation.

4. CONCLUSIONS

When small batch reactors are considered, the
jacket flowrate is usually so high that the jacket
inlet temperature is close to to the jacket outlet
temperature. This makes the evaluation of the
jacket heat balance (Eq. (2)) practically impos-
sible and leads to the need of introduction of an
additional excitation of the system. This enables
a nonlinear estimation of the heat transfer coef-
ficient kA and the heat of reaction Q̇R from the
reactor heat balance (Eq. (1)).
In this contribution, a moving horizon estimator
and a semi analytical solution of the optimization
problem has been proposed. Its superior perfor-
mance compared to conventional temperature os-
cillation calorimetry is demonstrated.
As the MHE is not based on the assumption of
sinusoidal oscillations of the different tempera-
tures involved, the question which signal gives the
optimal excitation for the parameter estimation
was posed. It turned out that the sinusoidal signal
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is slightly suboptimal and that a zigzag signal
yields an improvement of about 8 % in terms of
the standard deviations of the estimates if the
slope of the excitation signal is constrained.

In order to improve the performance of the MHE
further, two more issues will be investigated in
the future. First, the finite differences discretiza-
tion (Eq. (5)) of the reactor heat balance (Eq.
(1)), which leads to oscillations in the estimate,
can be replaced by its analytical solution as-
suming a first order hold of the jacket tempera-
ture. Secondly, an additional regularization term
(e.g. (‖p1 − p1,old‖ + ‖p2 − p2,old‖)) as proposed
by (Rao et al., 2001) and (Diehl et al., 2006a) can
be introduced into the cost function in order to
account for knowledge from past periods. The fi-
nancial support from the Deutsche Forschungsge-
meinschaft DFG (grant EN 152/31-3) is gratefully
appreciated.

5. LIST OF SYMBOLS

5.1 Latin symbols

Symbol Explanation Unit
C Normalized covariance matrix mixed
en Unit vector [1 1 · · · 1]T ∈ <n [−]
j Vector of jacket temperatures oC

Q Energy kJ

r Vector of reactor temperatures oC

T Temperature oC

cp Heat capacity kJ
kg K

f Model (Eqs. (1) - (2))

f̃ Solution equations of the op-
timization problem (Eqs. (6) -
(8))

g Inequality constraints
h Sampling time s

kA Heat transfer coefficient kJ
K

m Mass kg

n Dimension of j
(number of considered
measurements)

[-]

p Vector of all parameters to be
identified

mixed

p̃ Vector of parameters that de-
termine the simulation of the
reactor and the jacket

mixed

5.2 Greek symbols

Symbol Explanation
δ Amplitude
ω Frequency
φ Cost function

(weighted standard deviation)

5.3 Sub-/Superscripts

Symbol Explanation

R Reactor

J Jacket

J,in Jacket inlet
˙ Time derivative
ˆ Estimated state
∗ Characteristic value
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