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Abstract: Wafers that fail to meet their electrical specifications lead to scrap
which negatively impacts yield and manufacturing costs. Most existing research
has focused on controlling individual steps during the manufacturing process
via run-to-run control, but almost no work has looked at directly controlling
the electrical characteristics. A control scheme is proposed to directly control
electrical parameter values. The control algorithm uses a model to predict electrical
parameter values after each processing step and determines optimal adjustments
for the future processing steps. Simulation results show significant reduction in
electrical parameter variations for both constrained and unconstrained control.
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1. INTRODUCTION

The semiconductor manufacturing industry is
constantly faced with the challenge of producing
ever-smaller devices to reduce manufacturing cost,
improve product functions, and maintain com-
petitiveness. This goal has necessitated the move
from 200mm to 300mm wafers where manufactur-
ing efficiency can be improved and manufacturing
cost per unit area of silicon can be reduced. In or-
der to justify the capital expenditures for 300mm
fabrication facilities, maintaining operational effi-
ciency and equipment utilization is critical. In the
mean time, the critical dimensions of VLSI devices
keep shrinking, making it a constant challenge

to improve yields and throughput. Two factors
that affect yield, cycle time, and manufacturing
costs are wafers that need to be reworked and
wafers that need to be scrapped. At the end of
up to 300 processing steps, electrical test data is
taken for each wafer and it is used to determine
if wafers should be scrapped. Since electrical pa-
rameter values directly affect yield, controlling the
electrical parameter variation is an important part
of the manufacturing process.

The semiconductor manufacturing process con-
sists of a series of discrete processes, each of which
determines various wafer critical dimensions, film
thickness, or doping concentrations etc. Each
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piece of processing equipment has embedded real-
time control to carry out a manufacturing speci-
fication. Most of the processing steps, each com-
posed of multiple processing tools, are equipped
with in-line metrology that measures the geomet-
ric properties of each processed feature. Run-to-
run (R2R) control is usually implemented using
in-line metrology (May and Spanos, 2006; Edgar
et al., 2000; Moyne et al., 2001) After this series of
processing steps is completed electrical properties
are measured.

Much of the research in semiconductor manufac-
turing has focused on run-to-run control strate-
gies that seek to maintain the critical dimensions
at specified values by adjusting the recipes for
the discrete processes. Geometric variables, such
as critical dimensions, directly impact electrical
parameters, therefore the use of R2R controllers
to reduce variability in wafer critical dimensions
has been a useful method for indirectly controlling
electrical parameters. However, R2R controllers
do not control every variable exactly on its tar-
get. Poorly tuned controllers, switching between
products, and metrology errors all contribute to
the manufacturing errors at each processing step.
As a result, small errors in each processing step
can accumulate in up to 300 processing steps
to produce large errors and even off-specification
products in terms of electrical parameters.

To avoid the accumulation of errors across many
manufacturing steps coordination and the shar-
ing of information among these sequential steps
must be considered. Despite all of the research
in semiconductor manufacturing control, very lit-
tle work has closely examined the coordination
of multiple processing steps to reduce variability
and improve overall quality, in terms of electri-
cal parameters. (Qin and Sonderman, 2002) first
proposed a fab-wide control framework that aims
to control the final electrical properties at the
supervisory control level. (Harrison et al., 2003)
present a detailed strategy for electrical parameter
control (EPC) of a flash memory device. (Qin et
al., 2004; Moyne, 2004; Qin et al., 2006) further
specify a three-level hierarchical control frame-
work for fab-wide control. This paper discusses
a fab-wide electrical parameter control strategy
that uses measurements of critical dimensions
from each processing step and a process model
relating critical dimensions to electrical param-
eters to determine optimal set-points for later
processing steps. This paper demonstrates the
use of regression models built from experimental
and historical data to predict electrical parame-
ter values and shows the algorithm’s effectiveness
at controlling multiple outputs with and without
constraints. Inspired from a real case study at a
major semiconductor manufacturer, the impact of

model quality on control of the electrical param-
eters is investigated.

2. ELECTRICAL PARAMETER CONTROL

The EPC scheme is a higher level of control that
coordinates the lower level R2R controllers with
the goal of reducing electrical parameter varia-
tion. R2R control at each processing step can
achieve optimality for each step in the manu-
facturing process but that does not guarantee
the optimality of the final output. A move from
process-oriented R2R control to fab-wide control
that integrates lower- level R2R controllers would
allow the end-of-the-line goals to be optimized.
Another advantage of a fab-wide control scheme is
the ability to compensate for metrology drifts and
systematic errors. R2R controllers are effective at
compensating for equipment drift but they cannot
compensate for metrology drifts (Del Castillo and
Hurwitz, 1997). A block diagram showing how
the fab-wide controller integrates with the existing
R2R controllers is shown in Figure 1.

Fig. 1. Fab-wide control block diagram integrating
electrical test data and R2R controllers

2.1 EPC Algorithm

This EPC algorithm takes a device model for the
device being manufactured and metrology data
from completed processing steps and uses this
information to predict the electrical parameter
values for the wafers currently being processed.
Based on the predicted electrical parameter val-
ues, optimized targets for the subsequent process-
ing steps are determined to ensure that the wafers
meet all of the electrical parameter requirements
at the end of processing. The optimized targets
are the set points for lower-level R2R controllers
and they are calculated by minimizing the differ-
ence between the predicted and targeted electrical
parameter values according to the objective func-
tion:

min
û
‖(yt − f(û2, u1)‖2 + λ‖û2 − u2,nom‖2 (1)
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s.t. u2,min ≤ û2 ≤ u2,max

ymin ≤ f(û2, u1) ≤ ymax

Here vector yt contains the desired electrical pa-
rameter values, u1 represents the input values
for completed processing steps, û2 represents the
input values for subsequent processing steps, and
λ is a weighting factor. The constraints set the
appropriate lower and upper limits for û2. The
variable being optimized is û2. The predicted
electrical parameter values are obtained from the
function, f , which is a model relating electrical
parameters to input parameters, u1 and û2. The
model is discussed in more detail in Section 2.2.
The second term in the objective function penal-
izes large changes in the input values, so that
the input targets will not change drastically be-
tween groups of wafers that are processed. This
helps produce stable targets for the lower-level
R2R controllers. The constraints and target values
can be specified by product specifications and re-
quirements or they can be user determined values
that are reasonable for the process. The target
re-optimization occurs after new metrology data
is measured for each processing step so only the
most recent optimized target gets used. It is not
necessary to calculate optimized targets for all
of the subsequent processing steps but it allows
the adjustments made at each step to be smaller
because no one step is attempting to bring the
outputs back on target.

2.2 Modeling

The EPC algorithm uses a model to predict elec-
trical parameter values with data collected from
completed processing and to determine the op-
timal set points for the future processing steps.
First principles models and data driven models
such as ordinary least squares and partial least
squares may be used with this algorithm. The
computation time to solve the minimization in-
creases with the complexity of the model so com-
plex first principles models for device design may
not be appropriate. A regression model based on
historical and experimental data is used for this
paper because detailed knowledge of the semi-
conductor device structure and processing is not
needed for modeling. Specific semiconductor de-
vice information is difficult to obtain and often
proprietary so regression models are an attractive
method for modeling in this situation.

The model used is a simple linear model of the
form:

y = θx + ε (2)

Where x is the n × 1 input matrix, y is the m ×
1 output vector, ε is the model residual vector,
and θ is the m × n regressed parameter vector.

To estimate the model parameters θ, data in x
and y from experimental design and historical
operations can be used to obtain least squares
estimates. Extensions of the ordinary least squares
problems, partial least squares, can be used. The
ordinary least squares solution is chosen for this
paper because of its simplicity and it adequately
demonstrates the benefits of the EPC algorithm.
When using model (2) for EPC the input matrix
x is partitioned into completed steps, u1, and sub-
sequent steps, û2. Also autoregressive and moving
average models can be used with this algorithm
but that is not addressed in this paper.

2.3 Disturbance Modeling

Process disturbances, such as drift, need to be
compensated for in order to keep the process mean
at target. This is accomplished by adding a term
to the predictive model. The term is a weighted
sum of the difference between the predicted and
actual electrical values and the previous value of
the constant.

ŷk = θxk + dk + ε (3)

where

dk = λdk−1 + (1− λ)
1
w

w∑

i=1

(yi − ŷi) (4)

where w is the number of lots that have completed
processing before the coefficient is calculated and
k is the number of processing steps before elec-
trical test data is collected. Equation (4) is also
known as an exponentially weighted moving aver-
age (EWMA) filter which comes from an IMA(1,1)
disturbance model.

3. SIMULATION

3.1 Simulation Description

To evaluate the effectiveness of the algorithm a
semiconductor fabrication process was simulated
and various test cases were run. The simulated
fab process has 13 processing steps and 4 outputs.
The simulation is a two layer process where data
for the 13 processing steps are generated using
a R2R control simulation and data for the four
electrical parameters is generated in a fabrication
simulation using the R2R simulation data. At
each step the R2R control simulation includes an
IMA(1,1) disturbance, metrology error, and R2R
controller model error. The fabrication simulation
generates electrical parameter data using a linear
model relating the 13 inputs to the four outputs.
Normally distributed measurement error and an
IMA(1,1) disturbance are added to the electrical
parameters. The error standard deviations are
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Table 1. Simulation Errors

Type Error

Metrology Error 0.015
R2R Controller Parameter Error 2.0 %
Electrical Parameter Measurement Error 0.1

shown in Table 1 and a block diagram describing
the simulation and added noise is shown in Figure
2.

Fig. 2. Block diagram of simulation data and noise

The EPC algorithm requires a process model, so
the simulation is run without the controller turned
on to generate a training data set. A process
model is derived from the training data set as
described in Section 2.2 of this paper. This ensures
that the model used for simulating the process and
the model used for control are not the same. To
demonstrate the effects of offset disturbances and
constraints on controller performance different
combinations of disturbances and constraints were
used. These test cases are described in Section
3.2. Models with low R2 values are used since it
is difficult to obtain industrial data with better
correlations. The model correlations are shown
in Table 3. To demonstrate the effects of model
quality on controller performance three test cases
with models of varying quality and no constraints
or offset disturbances were simulated. The model
correlations and results are summarized in Table
2. In a real fabrication process adjustments can
not be made at every step so in this simulation,
adjustments can be made at all processing steps
except the 1st and the 4th steps.

3.2 Simulation Results

The results of the model quality study are shown
in Table 2. The simulation included an IMA(1,1)
disturbance and process noise. It was run 100
times and the mean and standard deviation values
for Y1, Y2, Y3, and Y4 were averaged. This study
indicates that the model quality significantly im-
pacts the algorithms effectiveness but even when
using models with R2 values on the order of 0.6 -
0.7 output variations can be reduced.

Table 2. Model quality effects on con-
troller performance

Output R2 Value STD Improvement

Case 1 Y1 0.63 21.9 %
Y2 0.64 21.2 %
Y3 0.70 26.5 %
Y4 0.73 28.5 %

Case 2 Y1 0.81 43.0 %
Y2 0.82 43.6 %
Y3 0.85 49.6 %
Y4 0.87 49.0 %

Case 3 Y1 0.99 74.5 %
Y2 0.99 75.4 %
Y3 0.99 78.7 %
Y4 0.99 79.3 %

The simulation used to evaluate the EPC algo-
rithm performance with offset disturbances and
constraints tested four test cases. Case 1 shows
performance in the presence of the IMA(1,1) dis-
turbance and process noise, Case 2 shows per-
formance in the presence of the IMA(1,1) dis-
turbance, process noise, and a metrology offset
of 0.008 in the 2nd step and -0.008 in the 4th
processing step, Case 3 is the same as Case 1
except that the controller constrains the calcu-
lated set point value, ∆ûk = ûk − ûk−1, and
the difference between the last set point and the
calculated set point value, and Case 4 applies the
same constraints to Case 2. The constraints for
Cases 3 and 4 are

−0.035 ≤ û ≤ 0.035

−0.02 ≤ ∆ûk ≤ 0.02
The simulation was run 100 times and the mean
and standard deviation values for Y1, Y2, Y3,
and Y4 were averaged. A summary of this data
is shown in Table 3. Figures 3-6 show a sample
output for each case. The first 100 data points
are the training data set and the second 100 data
points show the improvement after the controller
has been turned on. For all 4 cases the EPC algo-
rithm kept the outputs very close to their set point
values of 0 and significantly reduced variations in
the outputs as shown by the reduction in standard
deviation values. As expected the controller is less
effective when constraints are in place as indicated
by less improvement in the standard deviation
for Cases 3 and 4 as compared to Cases 1 and
2 respectively.

4. INDUSTRIAL APPLICATION

Industrial data obtained from Texas Instruments
is used to further demonstrate the effectiveness
of the EPC algorithm. The data set used consists
of 13 input variables, such as gate lengths and
doping concentrations, and four outputs variables,
such as parametric transistor drive current and
leakage current. The data is taken when no inline
set points are manipulated with a supervisory
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Table 3. Output mean and standard
deviation improvements with control

R2 Mean STD Improvement

Case 1 Y1 0.63 -0.039 21.9 %
Y2 0.64 -0.034 21.2 %
Y3 0.70 -0.043 26.5 %
Y4 0.73 -0.031 28.5 %

Case 2 Y1 0.63 0.032 17.6 %
Y2 0.64 0.029 21.0 %
Y3 0.70 0.0086 24.1 %
Y4 0.73 0.026 27.1 %

Case 3 Y1 0.63 -0.042 9.0 %
Y2 0.64 -.04 12.0 %
Y3 0.70 -0.053 14.1 %
Y4 0.73 -0.023 16.7 %

Case 4 Y1 0.63 -0.047 10.8 %
Y2 0.64 -0.052 13.8 %
Y3 0.70 -0.052 15.8 %
Y4 0.73 -0.028 19.8 %
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Fig. 3. Case 1 - IMA(1,1) disturbance and process
noise
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Fig. 4. Case 2 - IMA(1,1) disturbance, process
noise, and metrology offset at Steps 2 and
4
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Fig. 5. Case 3 - IMA(1,1) disturbance and process
noise with constraints on the manipulated
variable
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Fig. 6. Case 4 - IMA(1,1) disturbance, process
noise, and metrology offset at Steps 2 and 4
with constraints on the manipulated variable

controller and the data is modeled using ordi-
nary least squares. To determine the change in
the process output values with EPC applied, the
difference between the actual set point and the
optimized set point calculated by the controller is
multiplied by the corresponding coefficient in the
least squares model. For this particular process
the controller was only allowed to determine the
set point for the 13th step of the process. Results
are summarized in Table 4. Figure 7 shows the
N channel leakage current values before and after
control is applied. The horizontal lines indicate
the standard deviation before and after control is
applied. The data shows that the EPC algorithm
effectively reduces the output variation in all four
process outputs.

This industrial example is still an idealized case
since real production fabs have multiple products
running on multiple tools and metrology delay
impedes the access to real time information. In a
real manufacturing environment a different model
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Table 4. Industrial Data Improvements

Output STD no control STD with EPC

Y1 1.0 0.70
Y2 1.0 0.63
Y3 1.0 0.77
Y4 1.0 0.74
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Fig. 7. Industrial Data with and without control

would be required for each product and various
tool offsets and biases would need to be kept track
of and included in the models. If a processing step
has metrology delay the process target or average
value can used for prediction purposed until the
data becomes available.

5. CONCLUSION

The proposed EPC algorithm demonstrates the
ability to maintain multiple output targets while
reducing output variations in the face of distur-
bances, process noise, and metrology offsets. The
algorithm can be used with or without constraints
and a simple linear regression model is adequate
for control. This algorithm directly controls elec-
trical parameters and shows promise as supervi-
sory controller that can be integrated into semi-
conductor manufacturing to help achieve desired
electrical properties. Electrical test delay in the
EPC framework will be investigated in the future.
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