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Abstract: Prime areas in model based process control are process identification and
optimization. This paper presents their linkage for a binary batch distillation pilot plant
using minimum experimental data which is necessary in practice if the batch column is to
be used as a multiproduct unit. Here, minimum experimental data from plant runs is used
to determine the model parameters with minimum error. The main motivation behind this
work is the efficient state and parameter estimation for which measurement locations play
an important role. Hence optimum measurement locations are first determined and model
identification is done based on these measurements. Copyright © 2007 IFAC
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1. INTRODUCTION

Efficient model based control demands a sufficiently
accurate model. The main areas in model based
process control are process identification and
optimization. Both these areas could depend on each
other as optimization needs a model and model is
obtained by identification. This paper presents the
linkage of these two areas for a six tray binary batch
distillation pilot plant unit in Nottingham’s L3 lab. At
the same time the focus has been on using minimum
experimental data (which is necessary if the batch
column is to be used as a multiproduct plant) and also
to study the behaviour of the column in minimum
runs to set up initial batches to achieve desired
product purity. Here, run based optimization
addresses this issue and identifies the model structure
and its parameters by minimising the process-model
mismatch under steady state, total reflux operation of
the batch distillation system. More recently, the
identification of nonlinear systems, from process
measurements was addressed by application of artifi-
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cial intelligence techniques (Dutta and Rhinehart,
1999; Ruiz-Gomez et al. 2000). Mujtaba and Hussain
(1998) presented the optimization framework by
using process-model mismatch. Alvarez-Ramirez et
al. (2000) have used a modelling error compensation
technique to counteract the effects of process-model
mismatch, by estimating modelling error using
observer. As model plays an important role in
prediction of future states, in fact this is the main
motivation behind the presented work, the optimum
measurement locations are determined first, so as to
increase the state estimation accuracy. Here,
optimum sensor locations are determined for
estimation of states only and compared with optimum
locations obtained for state and parameter estimation
(Wilson and Guhe, 2005). Also, the minimum
number of sensors required has been justified using
the Extended Kalman Filter (EKF) algorithm. The
temperature sensor probes have been installed on the
pilot plant at the optimal tray locations and finally,
the model identification has been carried out using
the temperature profiles obtained from these
optimally placed sensors. The strategy of minimum
number of sensors and minimum number of batch
runs resulted in capital and operational cost savings
respectively.



2. BATCH DISTILLATION SYSTEM

The system under study is a single product binary
batch distillation pilot plant unit with a reboiler and
six trays in Nottingham’s L3 Laboratory. Sixth tray is
the top tray. A binary mixture of Methanol-Water is
separated and methanol is recovered as top product.
The product composition can be controlled by
manipulating the reflux ratio, using tray temperatures
as secondary measurements. A PI control algorithm
has been developed (Wilson and Zou, 2003) and
installed on the pilot plant control architecture. The
random disturbances in the system are varying
cooling water temperature in the overhead condenser,
ambient temperature variations, a slight variation in
feed composition due to recycling of bottom product
with the fresh batch of feed and the fluctuations in
steam line pressure to the reboiler. The system is
operated at fixed reboiler duty and atmospheric
pressure. The characteristics of the initial model
representing the pilot plant are based on simple
vapour-liquid equilibrium (VLE) calculations using
fixed relative volatility, considering minimum
information availability of the pilot plant behaviour.
At a later stage Antoine and VanLaar equations are
used in the model for rigorous VLE calculations.
Both models incorporate simplifying assumptions.
The process state in the model is methanol mole
fractions in the liquid phase on each tray together
with or without relative volatility as a parameter,
augmented as a state. The efficiency of all six trays is
60%. The pilot plant has empty slots between the
reboiler and the physical tray number one.

3. OPTIMIZATION AND IDENTIFICATION

Steady-state analysis of the batch distillation system
ie. at total reflux has been considered for
determination of the optimum sensor location and
their number. Next the model identification has been
done by the optimization based on experimental data
from plant runs. This section is divided in three parts.
First part explains the optimum sensor location
strategy considering state estimation with or without
estimation of parameter as an augmented state.
Second part suggests the criterion for deciding the
optimum number of sensors and finally the method
for model identification based on optimization has
been presented.

3.1 Optimum sensor location

More recently the determination of sensors location
has been addressed by Wilson and Guhe (2005).
Here, the same approach of observability matrix
condition number has been extended to compare the
sensor locations for state estimation, with or without
inclusion of parameter as an augmented state in a
process model, provided system is fully observable
which is required for implementation of state
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estimation sequence. The continuous time dynamic
model can be represented as a set of nonlinear
equations of the form:

X(t) = & (x(6),u(t), w(t)) (1)

where, &(.) is a non-linear m valued function, x(t)

is m x 1 vector of state variables, u(t) is r x 1 vector
of input variables, w(t) is the vector of Gaussian
white noise with zero mean and covariance Q. Here,
the discrete-time, time invariant linearised model of
the system (Eq. (1)) can be written as

x(k+1) = A x(k) + B u(k) + C w(k) (2)
where x is a state vector of order m with or without
augmentation of unknown parameter vector of order
p. For the steady state analysis of the system, at total
reflux, B and C are null. x relates to measurement y
which is of the order n and it is given by

y(k+1) =H x(k+1) 3)
Here matrix A can be written as
A X A]><
_ |i Am m A p i| (4)
px1 pxp

where m is the number of states and p is the number

of parameters as an augmented state. The
observability matrix is given by (Ray, 1981)
O:[H' A'H' A”H' .. A H'] (5)

Actually O relates x(0) with the number of
measurements acquired over M samples. The
standard test for system to be observable is that the
rank of O must be equal to order of x. Different
sensor location are tested in H to check the
observability of the system. The optimality of
selection of sensor location is given by

min JI=cond(O)
[

(6)

where, cond(O) represents the condition number of O
and @ represents the combination of locations of one
or more sensors. cond(QO) is the ratio of maximum
and minimum singular values of O.

It is worth mentioning here that proposed method has
been used aiming at efficient estimator design by
optimum sensor location and not for controller design
e.g. determining actuator location. The approach in
this study can easily be extended to jointly improving
the state observability and controllability in terms of
observer-controller design considering balanced
realization (Marx et al., 2004) through maximization
of respective Gramians. Note, this technique cannot



be applied here as the presented approach is at total
reflux and autonomous ie. B is null and
controllability has no relevance.

3.2 Optimum number of sensors

The number of sensors to be installed on the pilot
plant has been proposed by employing a state
estimator namely Extended Kalman Filter (EKF). It
can be described as: Given a current best estimate of
the process state x«(k), and its error from x(k) has an
associated covariance G(k), then the prediction
xp(k+1) of the state at the time k+1 can be obtained
using linearised model as
x,(k+1) = A x(K) (7)
at steady state total reflux (autonomous) and its error
about x(k+1) has an associated covariance P(k+1)
given by

P=AG(k) A +CQC’ (8)
where, CQC" represents process noise covariance.
As the non-linear model is available, prediction
xp(k+1) is achieved by numerical integration of &(.)
across a single sample period with initial conditions
x¢(k), instead of using Eq. (7). The operation is
presented symbolically as
xp(k+1) = ¥(x) ©)
where W(.) is in effect a non-linear, discrete time, m-
valued function. Eq. (8) then represents only an
approximation to the non-linear prediction error
covariance associated with W¥(.) which is
computationally straight forward and adequate. At
each sample instant, in addition to having a
prediction of the system state x,(k+1), added
information is available in the form of the n-vector of
available process measurements y(k+1) which is
taken to relate to the actual state by the model
y(k+1) = H x(k+1) + v(k+1) (10)
where v(k+1) contains stochastic measurement error,
having zero mean and error covariance R. The
minimum error variance estimate of system state at
the current time interval xd(k+1) is then given by the
filter equation
x(ktl)=x,+F(y-Hx,) 11
where values now refer to time interval (k+1) unless
stated. The term (y — H x,) is called innovation
sequence i.e. if this term is zero the best estimate is
the predicted state. F is the Kalman Filter gain matrix
which is in turn given by

F=PH'S' (12)

where S, the covariance of the innovation sequence is
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S=HPH +R (13)
Finally, G(k+1) the error covariance of the new best
estimate x(k+1) is given as
G =P -FHP (14)
Equations 7 — 14 define the Extended Kalman Filter
Algorithm (Wilson and Zorzetto, 1997).

The EKF is used to estimate the states and unknown
parameters based on different optimally located
number of sensors. Here, a property of error
covariance matrix G has been used as a measure of
optimality. As G indicates the accuracy of the
estimate and since it is a non-negative matrix, the
optimal policy is considered which minimises its
trace (Kumar and Seinfeld, 1978). The optimality
index for a number of measurements is given by

min J2 = trace(G)
Y

(15)

where, y is the number of optimally located sensors.
It is noted that here the EKF has been implemented
under steady state condition of the plant.

3.3 Model identification

In the context of obtaining an appropriate
mechanistic/mathematical model of the system, the
process-model mismatch is minimised by proper
selection and adjustment of an appropriate model
structure and parameters. In this section the steady
state measurement profiles from optimum sensor
locations are considered to identify the model
structure and its parameters to achieve minimum
process-model mismatch. The task is to minimise
root mean square error (RMSE) between
experimental and simulated measurement at steady
state operation as a generalised case. Biases in
experimental measurements are also taken into
consideration during the minimization. The loss
function to be minimised at steady state operation is:

arg min V(0,Z,N) =

1 N AN N
—(iZI(T(t) = T(1) *(T() - T(t))j
9 =

Z*N
(16)

where N - number of batches over which
optimization is carried out, @ - global parameter
vector. Z - number of process outputs T(t). The

prediction of measurement T(t) is given by T(t).

4. RESULTS AND DISCUSSION

The basis for model identification of batch distillation
pilot plant is to get tray temperature profiles from it.



Here, instead of getting temperature profiles from an
arbitrary set of trays, a systematic approach of
deducing the optimum sensor location has been
adopted using observability matrix condition number
for the state and parameter estimation (Wilson and
Guhe, 2005) and further extended to notice variations
in sensor location from the case of state estimation
only to state and parameter estimation. This analysis
has been carried out considering the availability of
minimum information of the plant at initial stage.
Hence a process model representing the pilot plant
having reboiler and six trays has been developed
using simple VLE calculations based on fixed
relative volatility. The relative volatility has been
considered as an unknown parameter to be estimated
as an augmented state. The observability matrix O
given by Eq. (5) is evaluated for both cases based on
all combinations of temperature sensors at various
trays in the column provided the system is fully
observable in terms of the rank test. Sensor locations
with minimum cond(Q) are chosen to be optimal
because a large condition number is undesirable as it
indicates numerical ill-conditioning. Table 1 shows
the optimum sensor location and their numbers along
with comparison of two cases viz. state estimation
only and state and parameter estimation, highlighting
fully observable system even with one sensor in
former case but unobservable with one sensor in the
latter. The effect of ‘relative volatility’ as a parameter
on optimal measurement location was studied and
compared with state estimation only. The comparison
of results shows that unknown relative volatility
influences the observability of the system.

Table 1 Optimum tray locations for various numbers
of temperature sensors in a batch distillation pilot
plant for ‘state estimation’ and ‘state and parameter
estimation’ (Wilson and Guhe, 2005)

Measurement Locations (Tray Nos)

No. of
Sensors State Estimation State an_d Pa_rameter
Estimation
1 0 (Reboiler) 0 (Reboiler) *
2 0,6 0,4
3 0,5,6 0,2,4
4 0,2,4,6 0,2,3,6
5 0,2,4,5,6 0,1,2,3,6
6 0,2,3,4,5,6 0,1,2,3,4,6
7 0,1,2,3,4,5,6 0,1,2,3,4,5,6

EJ .
Unobservable system with one sensor

The analysis shows that the optimal sensor locations
vary by addition of relative volatility as a parameter
to be estimated. However, it is observed that in all
optimal sensor locations, in both cases, one sensor is
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always located at the reboiler. This indicates that the
reboiler temperature sensor is essential for the system
to be observable. It is noted that these results are
obtained on the hypothesis of 100% tray efficiency
and distillation column operating at total reflux,
steady state. As it is always significant to establish a
robust estimation sequence and relative volatility
plays a vital role in separation, the sensor locations
based on state and parameter estimation are preferred
over the case of state estimation only. In case of a
state and parameter estimation the number of sensors
required to make the system observable is more than
for state estimation alone (i.e. here, 2 instead of 1).

Secondly, to justify the minimum number of sensors
to install on the plant, EKF strategy is employed. The
steady state system under total reflux has been
considered with measurement and process noise. The
methanol compositions on trays are considered as
states of the system and relative volatility as a
parameter to be estimated. The trace property of the
error covariance matrix G is considered for selection
of minimum number of temperature sensors on batch
distillation column. To obtain better performance of
the estimation sequence, a criterion of minimizing a
cost associated with temperature sensor and their
quantity has been adopted. Although, here two
temperature measurements are competent to satisfy
observability criteria, the effects of more
measurements on the EKF speed of convergence has
been considered. Fig.1 indicates that less error of
states and parameter estimate can be obtained using
more measurement sensors. Thus capital cost and
maintenance cost can be optimized by selecting
above the minimum number of sensors through faster
or more accurate estimation. Fig. 1 shows simulation

trace(G) vs Time for 'state and parameter estimation’
T T

]

e
o

—+— One sensor
—=—Two sensors
—=— Three sensors
—=— Four sensors
—— Five sensors
Six sensors
—+>— Seven sensors

trace(G)

Time (hrs)

Fig. 1. trace(G) for different number of optimally
located sensors.

results of  frace of G for different numbers of
sensors, clarifying that except the cases of one and
two measurements all other cases from three to
seven, the values of trace of G converge quite closely
to each other. But the time taken by five, six and
seven measurements to converge is slightly less than
three and four measurements. From economic point



of view it is always good practice to choose
minimum number of measurements which will give
comparatively better performance. Here, it is
observed that three measurements is the economic
choice giving approximately the same performance in
comparison with other cases of higher number of
measurements. It is noted that only one parameter i.e.
relative volatility has been estimated. Moreover, after
deciding the sensor location and their number a check
on the results has been repeated again by using
random scaling of temperature measurements. It has
been found that though the value of condition number
of observability matrix changes with different scaling
constants the optimum sensor location remains the
same.

Finally, after deciding the optimum number of
sensors and their location (which are at reboiler, Tray
2 and Tray 4) the temperature probes are installed on
the respective trays in the pilot plant and temperature
profiles have been obtained by using PI control
strategy. The initial model representing the pilot plant
has been amended with inclusion of rigorous VLE
calculations. The temperature profiles of process and
model at different trays under steady state operation
have been compared. Based on steady state reboiler
temperature, Methanol composition in the column
has been calculated from reboiler up the column
using bubble point calculations. And thus Methanol
temperature on trays by model has been generated
from respective tray composition using bubble point
calculations. The process-model mismatch at steady
state on Tray 2 and Tray 4 has been noticed around 6
°C and 2.34 °C respectively as a result of empty slots
in the pilot plant between the reboiler and actual Tray
one, which is equivalent to four physical trays. Here,
the task of modeling the pilot plant by taking care of
the effect of empty space which is termed as a
‘notional tray’ has been addressed by optimization
and identification of the model, mainly the efficiency
of notional tray and the possible bias in experimental
Tray 2 and Tray 4 process temperatures due to empty
tray space in the column. Objective has been to
minimize the process-model mismatch during the
dynamic response. First, the notional tray efficiency
‘eff01°, and temperature bias are manually looked at
by drawing a McCabe-Thiele diagram based on
steady state temperatures at reboiler, Tray 2 and Tray
4 and back calculating respective Methanol
composition profile across the column using rigorous
VLE. This approach has given the range of values of
‘eff01’ and biases as an initial guess, which are used
in optimization sequence as constraints.  Four
different batch runs spanning the random process
disturbances in the system has been considered for
optimization. The criteria of minimum RMSE of
temperatures at Tray 2 and Tray 4 using particular
‘eff01’ and respective biases over 3-dimensional
numerical grid points in a finite space has been
adopted to minimize the objective function subject to
prescribed constraints for this case. The RMSE has
been determined by calculating temperature
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difference between steady state temperature profile
by model and the process for all four pilot plant batch
runs at the same time. The grid point at which the
model parameter vector 0 i.e. eff01, bias on Tray 2
(bias2), bias on Tray 4 (bias4) gives minimum RMSE
has been selected and considered as approximate
vector @ covering four batches. These biases are
adjusted on the pilot plant. Thus, the Eq. (16) is
interpreted in terms of T = (T, T4)". Where,

T2 = (Experimental temperature on Tray 2 — bias2)
T4 = (Experimental temperature on Tray 4 — bias4)

A
T - predicted temperatures on Tray 2 and Tray 4
respectively.

Therefore, the approximate 6 has been used as initial
guess to find the truly global 0 using Simplex-
Marquardt method as a direct search method. This
method attempts to minimize a RMSE as a function
value based on an approximate @ as an initial guess.
Fig. 2 shows the global minimum model parameter
vector O found. The optimum values of parameters
which are given in the caption to Fig. 2 are therefore
implemented into the model.

Minimised global model parameter

=

RMSE of Temperature ( °C)

Tray 4 Temperature bias (°C) Tray 2 Temperature bias (°C)

Fig. 2. Optimized global model parameters (eff01 =
149.24%; Overall RMSE = 0.3311 °C; bias in
Tray 2 =1.5094 °C; bias in Tray 4 =0.2137 °C)

To demonstrate the effectiveness of the model
derived above, its dynamic response has been tested
against the experimental one during pilot plant runs
taken on partial offtake using PI action to control the
Methanol composition by manipulating the reflux
ratio using tray temperature as a secondary
measurement. The Methanol temperature profile on
trays has been generated by the amended model i.e.
inclusion of notional tray and its efficiency using
rigorous VLE calculations based on tray
compositions. The dynamic response by the model
has been generated taking the reflux ratio value from
the pilot plant. Fig. 3 shows the performance of the
new identified model with inclusion of optimum 0
against process under partial offtake condition for
Methanol temperature on Trays. As model follows
the experimental profile, it clearly shows that the



process-model mismatch has been reduced to the
minimum. Here, only reflux ratio has been used as a
manipulated variable to govern the performance of
process and the model.

Model Identification - Methanol Temperature Profiles

=
3

Tray Temperature ( ° C)

64 ! .
0 12 24 36
Time (min)

Fig. 3. Performance of the new model in terms of

dynamic response under partial offtake.

5. CONCLUSIONS

Based on the results presented it can be concluded that
the proposed model identification strategy coupled
with optimization method which uses the experimental
temperature profile based on optimal sensor location
has been successful to identify a model and its
parameters which represents the dynamics of the batch
distillation pilot plant with minimum process-model
mismatch. The effect of inclusion of relative volatility
as a parameter to be estimated as an augmented state
clearly demonstrated the advantage of optimal sensor
location. Also the strategy of inclusion of notional tray
and its efficiency has clearly illustrated a vital role in
identifying a model which can predict the plant
behaviour. Furthermore, the number of sensors has
been shown to provide a tradeoff between sensor
number and state estimation speed and accuracy.
Scaling of temperature measurement had no effect on
optimum sensor choice. It is also noted that the model
has been identified using a low number of
experimental runs, thus reducing the operating cost.
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