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1. INTRODUCTION

There has been a large amount of work to search
for optimal H2 filtering, also called minimum vari-
ance filtering, with a large spectrum of practical
applications in control engineering, signal process-
ing, system failure detection, etc, since the seminal
work of Kalman filtering Anderson and Moore
(1979). In recent years, enhancing robustness in
filtering has attracted much attention because the
consideration of uncertainty, which is present in
most physical systems almost inevitably, is of a
prime importance for applications to real systems.
The purpose of robust H2 filtering is to design
a filter such that the worst case mean square
estimation error is minimized for all admissible
uncertainties under the assumption that the pro-
cess noise input is a white noise with zero-mean
and known covariance. In Xie and Soh (1994);
Shaked and de Souza (1995); Sayed (2001); Sun
and Packard (2005), the Riccati equation ap-
proaches were presented to deal with systems with
norm-bounded parameter uncertainty. In Geromel
(1999); Geromel and de Oliveira (2001); Geromel

et al. (2000); Yang and Hung (2002), the linear
matrix inequality (LMI) approaches were applied
for systems with norm-bounded parameter uncer-
tainty or convex polytopic type uncertainty.

As is well known, most robust filtering techniques
rely on employing a single quadratic Lyapunov
function over all uncertainty domain. Obviously
there exists conservativeness in this type of design.
Several attempts have been made in the past
few years toward reducing conservativeness in
existing robust filtering algorithms, particularly
for uncertain discrete-time systems. In Shaked
et al. (2001); Geromel et al. (2002), an LMI
approach was applied to improve robustness of
optimal H2 filtering by using a robust stability
condition established in de Oliveira et al. (1999),
which enables the use of a parameter dependent
Lyapunov function and consequently leads to a
less conservative design for uncertain discrete-
time systems. In Xie et al. (2004), a nonconvex
bilinear matrix inequality optimization method
with scaling parameters was proposed to solve the
optimal H2 filtering problem by using a robust
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stability condition established in Peaucelle et al.
(2000), which offers extra degree-of-freedom in
optimization. In Xie et al. (2004), a parameter
search is necessary to find the best values for
scaling parameters that lead to the best filter
performance.

On the other hand, there have been few attempts
for uncertain continuous-time systems. This is be-
cause of the difficulty in obtaining new LMI char-
acterizations for robust stability in continuous-
time and the problem still remains open. In Tuan
et al. (2001), an LMI approach with a parameter
dependent Lyapunov function was presented for
continuous-time systems with convex polytopic
uncertainty by applying an LMI characterization
for robust stability found by Projection Lemma.
In Barbosa et al. (2005), a nonconvex matrix
inequality method with searching parameters was
proposed to produce a less conservative result as
in Xie et al. (2004). In Gonçalves et al. (2006),
a domain search method using the branch and
bound algorithm was applied directly in the space
of filter parameters over a set of polytopic points
in order to avoid conservativeness in robust filter-
ing design at the expense of the computational ef-
fort. Note that the nonconvex optimization meth-
ods or the domain search methods, which were
developed in Xie et al. (2004); Barbosa et al.
(2005); Gonçalves et al. (2006) at the expense of
the computational cost, are not prohibitive for the
design of robust filters with high order; however,
in many applications, an LMI solution may be pre-
ferred due to the less computational complexity.

In this paper, an LMI solution is proposed for ro-
bust H2 filtering of continuous-time systems with
polytopic parameter uncertainty. A new sufficient
robust stability condition, which is expressed as
LMIs, is presented for uncertain continuous-time
stochastic systems. Using the robust stability con-
dition presented in this paper, a new continuous-
time robust H2 filter is obtained by solving a
sufficient linear matrix inequality condition char-
acterizing a solution of a minimum variance fil-
tering problem which takes into account convex
parameter uncertainty. In case when there is no
uncertainty, the proposed robust H2 filter is re-
duced to the standard Kalman filter. Numerical
comparisons with existing results are given.

2. MAIN RESULTS

2.1 Problem Description

Consider a plant described by

Σ : ẋ = Ax + Bv,
y = Cx + Dv,

(1)

where x ∈ Rn is the state of the plant to be esti-
mated, v ∈ Rm is the white noise input with zero

mean and unit covariance matrix, and y ∈ Rp is
the measured plant output. The system matrices
in (1) are assumed to be unknown but belong to a
known convex compact set of polytopic type, i.e.,

S , (A, B, C, D) ∈ Ω,

Ω ,

{

S |S =

r
∑

i=1

τiSi, τ , (τ1, . . . , τr) ∈ Γ

}

(2)

where Γ , {(τ1, . . . , τr)|
∑r

i=1
τi = 1, τi ≥ 0}.

In this paper, a new robust H2 filter will be
developed for the stochastic system (1) and (2).

2.2 Robust Stability Condition

A robust H2 performance condition is suggested
first for continuous-time systems. Our LMI-based
robust condition will play an important role in
implementing a robust continuous-time H2 filter.

Lemma 1. Boyd et al. (1994) Given a system
Σ1 : ẋ = Ax+Bv, y = Cx, where P , (A, B, C),
P ∈ Ω, the following statements are equivalent:

(i) A is stable and ‖T (τ) , C(sI −A)−1B‖2
2 < ν,

∀τ ∈ Γ.

(ii) ∃P (τ) = PT (τ), W (τ) = WT (τ) such that
(

AT P (τ) + P (τ)A P (τ)B
BT P (τ) −νIm

)

< 0, (3)

(

P (τ) CT

C W (τ)

)

> 0, (4)

tr(W (τ)) < 1 (5)

for all τ ∈ Γ such that P ∈ Ω. ♦

A sufficient condition for Lemma 1 is proposed
based on linear matrix inequalities (LMIs) in the
following theorem:

Theorem 1. Given system Σ1, if there exist ma-
trices Pi = PT

i , Y , and Wi = WT
i satisfying the

following LMIs























1

2
Pi −

1

2
(I − AT

i )Y

−1

2
Y T (I − Ai)






∗ ∗

BT
i Y −νIm ∗

1

2
(I + AT

i )Y 0 −1

2
Pi

















< 0, (6)

(

Pi CT
i

Ci Wi

)

> 0, (7)

tr(Wi) < 1 (8)

for all i = 1, 2, . . . , r, then the system Σ1 is
robustly stable and ‖T (τ)‖2

2 < ν for all τ ∈
Γ. Moreover, for any P ∈ Ω, P (τ) given by
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P (τ) ,
∑r

i=1
τiPi is a parameter dependent

positive-definite Lyapunov function such that (3)-
(5) hold.

Proof: Assume that there exists a solution
{Pi, Y, Wi} by (6)-(8) for all i = 1, 2, . . . , r. Let
P (τ) ,

∑r

i=1
τiPi, i.e. P (τ) is a linear parameter

dependent function. Multiplying each LMI in (3)
by τi > 0 and adding them to get a convex
combination for τi, i = 1, 2, . . . , r, we have the
inequality (9),
























































1

2
P (τ)

−1

2
(I −

r
∑

i=1

τiA
T
i )Y

−1

2
Y T (I −

r
∑

i=1

τiAi)



















∗ ∗

r
∑

i=1

τiB
T
i Y −νIm ∗

1

2
(I +

r
∑

i=1

τiA
T
i )Y 0 −1

2
P (τ)







































< 0,

(9)
where

∑r

i=1
τiAi = A(τ) and

∑r

i=1
τiBi = B(τ)

according to the definition of the convex set (2).
Pre- and post-multiplying (9) by

(

Y −T 0
0 I

)

,

(

Y −1 0
0 I

)

,

respectively, Inequality (9) is converted to



































1

2
Y −T P (τ)Y −1

−1

2
Y −T (I − A(τ)T )

−1

2
(I − A(τ))Y













∗ ∗

B(τ)T −νIm ∗
1

2
(I + A(τ)T ) 0 −1

2
P (τ)























< 0.

(10)
Applying Schur complement to the above inequal-
ity yields








































1

2
Y −T P (τ)Y −1

−1

2
Y −T (I − A(τ)T )

−1

2
(I − A(τ))Y −1

+
1

2
(I + A(τ))P−1(τ)(I + A(τ)T )



















∗

B(τ)T −νIm























< 0.

(11)
It is noted that the inequality (I − A(τ)T −
P (τ)Y −1)T P (τ)−1(I − A(τ)T − P (τ)Y −1) ≥ 0
holds for all τ ∈ Γ because P (τ) > 0. Hence it
is clear that

(I−A(τ))Y −1+Y −T (I−A(τ))T −Y −T P (τ)Y −1

≤ (I − A(τ))P−1(I − A(τ))T . (12)

In (11), replacing the terms 1

2
Y −T P (τ)Y −1 −

1

2
Y −T (I − A(τ)T )− 1

2
(I − A(τ))Y −1 by its lower

bound, it follows that

0 >









































1

2
Y −T P (τ)Y −1

−1

2
Y −T (I − A(τ)T )

−1

2
(I − A(τ))Y −1

+
1

2
(I + A(τ))P−1(τ)(I + A(τ)T )



















∗

B(τ)T −νIm























≥

















1

2
(I + A(τ))P−1(τ)(I + A(τ)T )

−1

2
(I − A(τ))P (τ)−1(I − A(τ))T






∗

B(τ)T −νIm











.

Therefore we have the following inequality:
















1

2
(I + A(τ))P−1(τ)(I + A(τ)T )

−1

2
(I − A(τ))P (τ)−1(I − A(τ))T






∗

B(τ)T −νIm











< 0.

(13)
After manipulations, pre- and post-multiplying
(13) by

(

P (τ) 0
0 Im

)

, (14)

we have
(

AT (τ)P (τ) + P (τ)A(τ) P (τ)B(τ)

B(τ)T P (τ) −νIm

)

< 0, (15)

which is the same as (3). Applying the same
steps as the above to (7) yields C(τ)P (τ)CT (τ) <
W (τ), which is converted to (4) by Schur com-
plement. Finally, (5) is obtained by the following
inequality: 1 > maxi=1,2,...,r tr(Wi) > tr(W (τ)) >

tr(C(τ)P (τ)CT (τ)), where W (τ) ,
∑r

i=1
τiWi.

This completes the proof.

2.3 Robust H2 Optimal Filtering

Consider the synthesis of a continuous-time robust
filter for system (1)

Σ̂ : ˙̂x = Âx̂ + B̂y,

ẑ = Ĉx̂,
(16)

where x̂ ∈ Rn is an estimate of the state x of the
system (1). Define a system matrix R of the filter
Σ̂ as

R ,

(

Â B̂

Ĉ 0

)

. (17)

A system state vector to be estimated by (16)
is defined as z = Lx, where L is known, for
example, L = In for state estimation. The filtering
error dynamics is then given by the following state
equations:

Σe : ẋe = A xe + Bv,
ze = Cxe,

(18)
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where xe ,
(

xT x̂T
)T

and ze , z − ẑ is the esti-
mation error. Σe can also be defined by the esti-
mation error transfer function Tvze

(τ, s) , C (sI−
A )−1B. The filtering error dynamic system Σe is
given by

(

A B

C 0

)

=





A 0 B
0 0 0
L 0 0



+





0 0
In 0
0 Ip



R

(

0 In 0
C 0 D

)

,

(19)
where S , (A, B, C, D) ∈ Ω is defined as in (2).

Our aim is to design a robust H2 filter, also called
robust minimum variance filter, by minimizing

max
S∈Ω

‖Tvze
‖2

2, (20)

which is given in the following theorem:

Theorem 2. The H2-norm of the estimation error
transfer function for all admissible systems de-
scribed in (2) is less than

√
ν, i.e., ‖Tvze

(τ)‖2
2 < ν

for all τ ∈ Γ, if there exists a solution {P̄i, Ā, B̄, C̄,
X , Q, R, Z, ν, ∀i = 1, 2, . . . , r} of the following
LMI Problem 1. Given a solution, a robust H2

filter is constructed as

TR(s) = C̄U−1(sI − V −T ĀU−1)−1V −T B̄ (21)

by choosing nonsingular matrices U and V such
that

UT V = Q. (22)

Problem 1.

Minimize{P̄i,Ā,B̄,C̄,X,Q,R,Z,ν} ν

subject to (23), (26),




P̄i

(

LT

−C̄T

)

(

L −C̄
)

Zi



 > 0, (24)

tr(Zi) < 1, (25)

for all i = 1, 2, . . . , r.

Proof: Using Theorem 1, we have the fol-
lowing robust synthesis condition for the filtering
error dynamics (18).


































1

2
Pi

−1

2
(I − A

T
i )Λ

−1

2
ΛT (I − Ai)













ΛT
Bi

1

2
ΛT (I + Ai)

B
T
i Λ −νIm 0

1

2
(I + A

T
i )Λ 0 −1

2
Pi























< 0,

(27)
(

Pi C
T
i

Ci Zi

)

> 0, (28)

where Λ ∈ R2n×2n is an instrumental variable as
in Theorem 1. Partition Λ, in accordance with the
partition of A in (19), and define Π as follows:

Λ =

(

X Y
V W−1

)

, Π =

(

In 0
0 U

)

where X, W ∈ Rn and U , WV . Then the
following identities hold:

ΠT Y T Π =

(

XT V T U

UT Y T V T U

)

(29)

ΠT Y T
AiΠ =

(

XT Ai + V T B̂Ci V T ÂU

UT Y T Ai + V T B̂Ci V T ÂU

)

(30)

ΠT Y T
Bi =

(

XT Bi + V T B̂Di

UT Y T Bi + V T B̂Di

)

(31)

CΠ =
(

L −ĈU
)

(32)

Define Γ1 and Γ2 as

Γ1 =





Π 0 0
0 Im 0
0 0 Π



 , Γ2 =

(

Π 0
0 Ip

)

Pre- and post-multiplying (27) by ΓT
1 and Γ1,

respectively, and again performing the congruence
transformation ΓT

2 to (28), we have



































1

2
ΠT PiΠ

−1

2
ΠT (I − A

T
i )ΛΠ

−1

2
ΠT ΛT (I − Ai)Π













∗ ∗

B
T
i ΛΠ −νIm ∗

1

2
(I + A

T
i )ΛΠ 0 −1

2
ΠT PiΠ























< 0,

(

ΠT PiΠ ΠT
C

T
i

CiΠ W

)

> 0.

Now applying the following linearizing changes of
variables: Ā , V T ÂU , B̄ , V T B̂, C̄ , ĈU ,
Q , UT V , R , Y U , and P̄i , ΠT PiΠ, to the
identities (30)-(32), we obtain the LMI solution in
Problem 1. A robust H2 filter for the stochastic
uncertain system (1) is then parameterized as Â =
V −T ĀU−1, B̂ = V −T B̄, Ĉ = C̄U−1. Hence the
transfer function (21) is obtained. This completes
the proof.

3. ILLUSTRATIVE NUMERICAL EXAMPLES

3.1 Example 1

Consider an uncertain two masses-spring sys-
tem studied in Iwasaki (1996); Geromel and
de Oliveira (2001), where the system model is
described by

ẋ =









0 0 1 0
0 0 0 1
−2 1 −c 0
2 −2 0 −2c









x +









0
0
1
0









v,

y =
(

1 0 0 0
)

x +
(

d
)

v,

(33)

where c and d are bounded constant uncertain
parameters with 0.5 ≤ c ≤ 3.5 and 0.5 ≤ d ≤ 1.5,
respectively.
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(1, 1)

(

XT Bi + B̄Di

RT Bi + B̄Di

)

1

2

(

XT + XT Ai + B̄Ci QT + Ā
RT + RT Ai + B̄Ci QT + Ā

)

∗ νIm 0

∗ ∗ −1

2
P̄i











< 0, (23)

(1, 1) ,
1

2
P̄i +

1

2





(

−(X + XT ) + XT Ai + AT
i X

+B̄Ci + CT
i B̄T

)

−(R + QT ) + AT
i R + CT

i B̄T + Ā

−(Q + RT ) + RT Ai + B̄Ci + ĀT −(Q + QT ) + Ā + ĀT



 . (26)

Table 1. Comparison of robustness of H2

optimal filters

LMI Methods ν

Geromel and de Oliveira (2001) 0.4339
Tuan et al. (2001) 0.4045
LMI Problem 1 0.2646

The design of a robust H2 optimal filter shall
be addressed for the uncertain two masses-spring
system (33) with L =

(

0 1 0 0
)

in the sense
of minimizing the upper bound ν on the error
variance. Using the proposed LMI Problem 1, we
obtain a robust H2 optimal filter

TR(s) =
0.04973s3 + 0.1783s2 + 0.575s + 0.7281

s4 + 2.889s3 + 5.429s2 + 4.275s + 1.648
.

guaranteeing ‖Tvze
(τ)‖2

2 < ν = 0.2646, ∀τ ∈ Γ.

For comparison purpose, robust optimum filters
have also been implemented using the existing
LMI methods Geromel and de Oliveira (2001);
Geromel (1999); Tuan et al. (2001). Using the
robust filtering methods Geromel and de Oliveira
(2001); Geromel (1999), we obtain a minimum ν =
0.4339 for the uncertain system (33). Using the
recent parameter dependent Lyapunov function
approach Tuan et al. (2001), we obtain a minimum
of ν = 0.4045 for the parameter uncertainties.
Hence, it is clearly shown that the proposed LMI
solution produces a less conservative result than
that of the existing LMI results of Geromel and
de Oliveira (2001); Geromel (1999); Tuan et al.
(2001) for this example. The comparative result of
robustness of H2 optimal filters is given in Table
1. The computational cost of the LMI methods
is comparable and not compared here due to the
page limitation.

3.2 Example 2

Consider an uncertain system model studied in
Shaked and de Souza (1995); Geromel (1999);
Tuan et al. (2001), where the system model is of
the form

ẋ =

(

0 −1 + 0.3a
1 −0.5

)

x +

(

−2 0
1 0

)

v,

y =
(

−100 + 10b 1
)

x +
(

0 1
)

v,
(34)

Table 2. Comparison of robustness of H2

optimal filters

LMI Methods ν

Geromel and de Oliveira (2001) ∞ (infeasible)
Tuan et al. (2001) 103.5490
LMI Problem 1 17.9417

where a and b are bounded constant uncertain
parameters with |a| ≤ α and |b| ≤ β, respectively.
It is noted that the system is stable if and only if
a < 10

3
. Thus we consider α < 10

3
.

A robust H2 optimal filter shall be designed
for the uncertain system (34) for a given α, β.
Consider system (34) with L =

(

1 0
)

. Using the
proposed LMI Problem 1, we obtain a robust H2

optimal filter for the uncertain system (34) with
α = β = 3 as

TR(s) =
2.6490 · 10−5s − 1.3540 · 10−4

s2 + 0.6044s + 0.3240
.

guaranteeing ‖Tvze
(τ)‖2

2 < ν = 17.9417, ∀τ ∈ Γ.

We also implemented robust optimal filters for
the uncertain systems (34) using the existing
LMI methods of Geromel and de Oliveira (2001);
Geromel (1999); Tuan et al. (2001). Using the
existing robust filtering methods of Geromel and
de Oliveira (2001); Geromel (1999), in contrast,
no feasible robust optimal filter is obtained for
the uncertain system (34). Using the recent pa-
rameter dependent Lyapunov function approach
of Tuan et al. (2001), we obtain a minimum ν =
103.5490 for the parameter uncertainties. Hence,
it is clearly shown that the proposed LMI method
significantly reduces conservativeness in the exist-
ing LMI methods Geromel and de Oliveira (2001);
Geromel (1999); Tuan et al. (2001) in this exam-
ple. The comparative result of robustness of H2

optimal filters is given in Table 2.

Let α = β = γ and for different values of γ, a
robust H2 optimal filter shall be designed for the
uncertain system (34). Fig. 1 shows achievable op-
tima ν obtained from different LMI approaches in
Geromel and de Oliveira (2001); Geromel (1999);
Tuan et al. (2001). It is shown that the proposed
LMI solution for this example is superior to that
of Tuan et al. (2001) for all values of γ.
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1 1.5 2 2.5 3 3.3333
10

0

10
1

10
2

(a) (b) (c)

ν

γ

Fig. 1. (a) Geromel et al. Geromel (1999); Geromel
and de Oliveira (2001). (b) Tuan et al. Tuan
et al. (2001). (c) The proposed LMI solution.

4. CONCLUSIONS

A linear matrix inequality based approach has
been studied for robust H2 optimal filtering of
continuous-time stochastic systems with polytopic
type uncertainty. A new robust H2 performance
condition has been developed, which enables us
to use a linear parameter dependent Lyapunov
function in robust design. Using the robust H2

performance condition presented in this paper, a
new LMI solution for continuous-time robust H2

optimal filtering has been proposed that guaran-
tees asymptotic stability and an upper bound on
the the variance of the estimation error for all un-
certain parameters. The applicability of the pro-
posed LMI method has been illustrated through
numerical examples. Consequently, the proposed
method can deal with a wider class of uncertain-
ties for real physical systems.
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