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Abstract: Formulating the nonlinear model predictive control (NMPC) problem
using nonlinear differential equations has been gaining attention recently, with
the promise of improved performance. NMPC requires a knowledge of the states,
which are rarely available directly. Hence, the role of a state estimator is crucial to
provide state information from noisy process measurements. Earlier attempts to
combine variants of the Kalman filter with NMPC met with limited success due to
debilitating effects of linearization. Currently, moving horizon estimation (MHE) is
the most popular choice since it is seen as a dual to the control problem. However,
MHE typically makes simplifying assumptions about the nature of stochastic
variables and lacks an efficient recursive formulation. Most importantly, MHE is
an optimization burden in addition to the regulation problem to be solved online.
We propose using the sequential Monte Carlo (SMC) filter for state estimation
in NMPC since it is significantly faster and at least as accurate as MHE. More
accurate and fast estimation results in faster control optimization for realtime use
of NMPC and improves the performance. In this paper a comparison of NMPC
performance is detailed with MHE and SMC state estimation in a nonlinear CSTR
simulation study. Copyright c© 2007 IFAC.

Keywords: Model predictive control, Moving horizon estimation, Sequential
Monte Carlo.

1. INTRODUCTION

This paper is concerned with the problem of reg-
ulation of nonlinear processes. The first part of
the nested control problem is a state estimator
whose job is to optimally compute current esti-
mates of measured and unmeasured states from a
history of inputs and noisy process measurements.
The second part is the model predictive control
(MPC) regulator, which computes an optimal con-
trol signal to drive the estimated states to their
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respective setpoints. Figure 1 shows the scheme
for feedback MPC regulator with state estimation.

Consider the following discrete time process model
and measurement equations,

xk = f(xk−1, uk−1) + wk−1, (1)

yk = h(xk) + νk (2)

where f and h are nonlinear vector valued func-
tions, xk is the state vector, uk is the control
vector, yk is the measurement vector and wk and
νk are white Gaussian noise processes distributed
according to N(0, Q) and N(0, R) respectively.
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Fig. 1. Closed loop nonlinear model predictive control.

The knowledge about the initial condition is sum-
marized as the estimate x̃0 with covariance P̃0.

The Bayesian approach to state estimation is
the most general problem statement. However,
for nonlinear and non-Gaussian systems, the
Bayesian solution is impossible to implement
without approximations. Originally the extended
Kalman filter (EKF) was used as a state esti-
mator in conjunction with nonlinear model pre-
dictive control (NMPC) and it is still popular in
industrial applications due to its simplicity (Lee
and Ricker, 1994). More recently, moving horizon
estimation (MHE) has gained popularity due to
its superior estimation properties (Tenny et al.,
2004). Both EKF and MHE have been shown
as suboptimal Bayesian estimators. The choice of
MHE is also motivated by recognizing that MHE
is a dual to the MPC control problem. The MHE
is a computationally demanding approach, which
requires careful tuning for good performance.

In recent years, advances in Monte Carlo tech-
niques revived the interest in implementing the
true Bayesian solution without simplifying as-
sumptions. Sequential Monte Carlo (SMC) filter
has been shown to be superior to MHE and orders
of magnitude faster than the online optimization
based methods (Chen et al., 2004). To date SMC
studies have been limited to open loop estimation.
In this paper, for the first time we demonstrate
the efficacy of the SMC filter as an alternative
to MHE for closed loop NMPC regulation. Two
important points motivate the use of SMC, (1)
accurate estimates close to true states can help
the control optimization converge faster and (2)
fast estimation takes NMPC one step closer to
realtime implementation.

In the following sections the estimators are briefly
discussed along with NMPC. A CSTR case study
compares state estimation accuracy, minimized
control cost and speed of execution, all of which
favor the SMC over MHE.

2. STATE ESTIMATION

2.1 Sequential Monte Carlo Filter

The Bayesian formulation of state estimation aims
to construct the conditional pdf of the state,

p(xk|yk) ∝ p(yk|xk)p(xk|yk−1), (3)

where p(xk|yk−1) is a priori knowledge, which is
modified into the a posteriori pdf p(xk|yk) with
the likelihood function p(yk|xk). The prior is com-
puted using the Chapman-Kolmogorov equation,

p(xk|yk−1) =
∫
p(xk|xk−1)p(xk−1|yk−1) dxk−1(4)

where the transition probability density is ob-
tained from the process model as,

p(xk|xk−1) =
∫
δ(xk − f(xk−1, uk−1))

×p(wk−1) dwk−1, (5)

and the likelihood function is,

p(yk|xk) =
∫
δ(yk − h(xk))p(νk) dνk. (6)

where p(wk−1) and p(νk) are the probability den-
sity functions of the noise processes. A point es-
timate such as the mean (minimum variance) or
the mode (maximum a posteriori) of the posterior
pdf is typically taken as the state estimate.

Sequential Monte Carlo methods are recursive
algorithms, where N random samples of the states
are recursively generated from which summary
statistics of p(xk|yk) are readily obtained,∫

φ(xk)p(xk|yk) ≈ 1
N

N∑
i=1

φ(xi
k), (7)

where, xi
k are samples drawn according to p(xk|yk).

The filter algorithm is summarized here (Gordon
et al., 1993):

32



Algorithm: Sequential Monte Carlo

(1) Initialize: start with N samples distributed
according to posterior p(xk−1|yk−1).

(2) Predict: pass each particle through the sys-
tem model along with samples drawn from
noise pdf pw(wk−1), to generate particles dis-
tributed according to the prior pdf p(xk|yk−1).

(3) Update: using the datum yk, evaluate the
likelihood of each particle and assign weights.
Resample N times from the discrete distri-
bution of the weights to generate samples
according to the posterior pdf p(xk|yk).

(4) Infer: compute moments and the associated
confidence intervals. Return to step 2

The great advantage of this simple algorithm is
that no restrictions are placed on the model or
the noise processes, which means linearization
is not necessary and non-Gaussian systems are
readily tackled. The algorithm is fully recursive
and computationally efficient. There is no need for
optimization in realtime and the computational
burden is largely due only to N computations of
the model at each time. In the open loop setting
the SMC has been compared with MHE both for
estimation accuracy and speed of execution, both
of which were shown to favor the SMC (Chen et
al., 2004).

It is possible to restrict the samples of the states
and noise processes to obey constraints since the
ability to impose constraints is one of the primary
motivating factors for the use of MPC (Chen et
al., 2007). The convergence of the SMC methods
has also been well established and extended to
constrained systems.

The SMC is a recursive method to provide samples
distributed according to the unknown posterior
pdf. Typically the mean, the median or the mode
(from kernel density estimators) are chosen as the
point estimates according to various loss func-
tions. This choice has no influence on the estima-
tor performance unlike in EKF and MHE where
the mode is the only choice, which also affects the
recursion equations causing stability problems.

2.2 Moving Horizon Estimation

As an alternative to constructing the a posteri-
ori conditional density of the current state and
solving for its minimum variance or maximum
a posteriori estimate, a conditional joint density
may be constructed for a sequence of the discrete
state trajectory and then the joint density can
be maximized. In this manner the integration in
the Chapman-Kolmogorov equation is avoided.
However, the optimization problem becomes much
larger since the joint probability is a function of
the state trajectory instead of one point. From a

probabilistic interpretation of moving horizon es-
timation, the state trajectory of a dynamic system
is estimated by solving an optimization problem
with the following objective (Haseltine and Rawl-
ings, 2005),

max
xk−H,..., k

p(xk−H,..., k|y0,..., k), (8)

subject to appropriate constraints on the decision
variables. The function p(.) is the joint probability
of a sequence of discrete trajectory over the most
recent time horizonH, conditioned on all available
measurements.

In order to establish a tractable convex objective
function, which is amenable for local optimiza-
tion, the MHE problem formulation makes sev-
eral simplifying assumptions. The MHE problem
statement in its most popular format is as follows,

min
xk−H ,
{w}

(xk−H − x̃k−H)T P̃−1(xk−H − x̃k−H) +

k−1∑
j=k−H

wT
j Q

−1wj +
k∑

j=k−H

νT
j R

−1νj , (9)

where x̃k−H and P̃ summarize the past informa-
tion represented as the arrival cost. It is common
to use inequality constraints on the noise vari-
ables. State inequality constraints are also more
commonly invoked than equality constraints on
the states.

A quadratic form for the arrival cost function
is typically desired for ease of implementation
using algorithms for solving convex optimization
problems. At worst, the arrival cost is not known,
corresponding to a uniform prior pdf, and at best
it is represented by the first two moments of
variants of Gaussians such as truncated Gaussian
and half-Gaussian pdfs due to upper and lower
bounds imposed on states (Robertson and Lee,
2002). Although one may use any pdf as prior
information as long as it generates a convex arrival
cost function, a poor choice can easily lead to loss
of accuracy and even divergence.

As the horizon is moved forward, the arrival cost
must be updated at each time instance for the new
horizon. Since the transition probability density is
not known, analytical expressions are not possible
to recursively update the arrival cost. Generally a
filter such as the extended Kalman filter is used
based on a linear time-varying process model with
additive Gaussian noise terms. The arrival cost is
recursively approximated by relying on the shape-
invariance of the Gaussian prior pdf subject to
linearized dynamics. This is a source of potential
instability of the estimator. The problem of accu-
rately summarizing the past information as arrival
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cost remains an open issue in MHE. The stability
can be assured under certain restrictive technical
conditions (Rao et al., 2003). In practice, the use
of forgetting factors and smoothing over large
horizons are reported to improve the estimator’s
stability properties.

3. MPC REGULATION

The MPC regulation is implemented by a con-
trol profile computed from an open loop optimal
control problem solved online in a finite horizon.
Only the first control action is implemented at
a given time instance and a new control profile
is obtained the next time instance based on the
available state information. The optimal control
profile is generally obtained by minimizing the
deviations of chosen variables from their setpoints.
The objective function for the typical MPC formu-
lation is chosen as a sum of quadratic functions of
the form,

min
uk,...,uk+M−1

(xk+P − xsp)TQc(xk+P − xsp)

P−1∑
j=0

Jk+j(xk+j , uk+j) (10)

whereM is the control horizon, P is the prediction
horizon and,

J = (x− xsp)TQc(x− xsp)

+(u− usp)TRc(u− usp) + ∆uTSc∆u(11)

where xsp and usp are the setpoints and Qc, Rc

and Sc are symmetric positive definite penalty
matrices. The optimization may be subjected to
constraints or bounds on state and control vectors.
The prediction of future states is carried out by
equation 1 with the assumption that the stochas-
tic variable wk takes the mean value.

4. SIMULATION EXAMPLE

Consider a continuous stirred tank reactor (CSTR)
with an irreversible first order exothermic reaction
with the following nonlinear model of the reactor
concentration and temperature,

dC

dt
=
q

V
(Cf − C)− k0Ce

−E
RT (12)

dT

dt
=
q

V
(T0 − T )− k0∆H

ρcp
Ce

−E
RT

+
ρccpcqc
ρcpV

(
1− e

−hA
qcρccpc

)
(Tc0 − T ) (13)

The reactor is cooled by a coolant stream qc and
the parameters are shown in Table 1 (Biagiola et
al., 2005).

Table 1. CSTR parameters.

Parameter Value

Process flow rate, q, l/min 100

Feed concentration, Cf , mol/l 1

Feed temperature, T0, K 350

Inlet coolant temperature, Tc0, K 350

Reactor volume, V , l 100

Heat transfer term, hA, cal/min K 7 × 105

Reaction rate constant, k0, /min 7.2× 1010

Activation energy term, E/R, K 104

Heat of reaction, ∆H, cal/mol −2× 105

Liquid densities, ρ, ρc g/l 1000

Specific heats, cp, cpc, cal/g K 1

Only the reactor temperature is sampled at ∆t =
0.05 min, which is corrupted by zero mean Gaus-
sian noise with variance R = 4.52.

4.1 Open Loop Results

The performance of MHE and SMC estimators are
compared in the open loop case first. The system
is simulated from the initial condition C = 0
mol/l and T = 300 K. The prior information
available to the estimators is the initial estimate
[C̃, T̃ ]T0 = [0, 300]T and the associated covariance
matrix P̃0 = diag(0.5, 1). The discrete time model
available to the estimators is of the form,

[
C
T

]
k+1

=
[
C
T

]
k

+
[
dC/dt
dT/dt

]
∆t+ wk (14)

where wk ∼ N(0, Q), with Q = diag(0.12, 2.52).
The MHE is formulated in a horizon H = 5 with
the error covariance matrices Q and R and the
initial state covariance matrix P̃0. The SMC filter
is initialized with 500 samples. Simulations were
performed in MatLab on a 3GHz Intel Linux com-
puter. Average results over twenty realizations are
reported in Table 2, which indicate that the SMC
filter provides greater accuracy faster than MHE.

Table 2. Average estimation MSE and
CPU time.

Estimator MSE CPU sec

MHE 1.14 23

SMC 0.16 7

4.2 Closed Loop Results

Given the initial condition C = 0.06 mol/l and
T = 449 K, the objective of the controller is to
drive the concentration to setpoint Csp = 0.1
mol/l and to keep the manipulated variable at
qc = 103.411 l/min, where the corresponding re-
actor temperature is T = 438.54 K. The objective
function for control signal optimization is,
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Fig. 2. NMPC reference case

J =
p∑

i=1

400(Ci − Csp)2 +
m∑

i=1

0.005(qci − qcsp)2

m∑
i=1

0.05(qci − qc(i−1))2 (15)

where Csp and qcsp are the setpoints. A step
change is introduced in the setpoint at time in-
stance k = 60 with Csp = 0.12 mol/l and qcsp =
108.1 l/min for evaluating setpoint tracking per-
formance. The control horizon is M = 2 and the
prediction horizon is P = 5. The state estimators
estimate both the concentration and temperature
to pass to the control signal optimizer. The prior
information available to the estimators is the ini-
tial estimate [C̃, T̃ ]T0 = [0.06, 449]T and the
associated covariance matrix P̃0 = diag(0.12, 1).
The mean of the prior pdf is the same as the
initial condition, which is not an unreasonable
assumption because control loops are almost never
closed without a reasonable certainty about the
initial condition.

A reference cumulative cost is computed for the
ideal case of perfect temperature measurements
and noiseless process model. The cumulative cost
is simply the sum of the minimized costs at each
stage for the length of the simulation, J ref

cumu =
6.0883. Figure 2 shows the states and the control
signal for the reference case. If the states are
perfectly known, this is the best control profile.

Figure 3 shows setpoint tracking by the controller
based on state estimates provided by MHE. The
estimator shows slow convergence initially but
tracks the true states successfully later. When the
estimates are far from true values it is important
to note that, (1) the NMPC optimizer takes longer
to minimize the cost function and (2) the mini-
mized cost is far from the reference cost computed
with true states.

Figure 4 illustrate the superior performance of
NMPC based on SMC state estimation. Since the
estimates track the true states more closely than
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Fig. 3. NMPC based on MHE state estimates
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Fig. 4. NMPC based on SMC state estimates

MHE, the optimized control signal is closer to
the reference case. Average results over twenty
realizations are reported in Table 3. The SMC
based NMPC runs noticeably faster with smaller
estimation error and results in a minimized cost
closer to the reference cumulative cost of 6.0883.

Table 3. Average cumulative cost, esti-
mation MSE and CPU time.

Estimator JEstimator
cumu MSE CPU sec

MHE 88 9.5 346

SMC 7.3 0.5 228

5. CONCLUSIONS

In this paper we propose to use the sequential
Monte Carlo (SMC) filter as a true Bayesian state
estimator for nonlinear model predictive control
(NMPC). In comparison with the currently used
moving horizon estimation (MHE), the SMC filter
is more accurate and runs significantly faster than
MHE. The SMC filter does not use simplifying
assumptions about the process model and no real-
time optimization is necessary. The results of the
CSTR case study indicate that SMC is a viable
state estimator for NMPC for realtime implemen-
tation. Current work is focused on formulating
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efficient SMC filter for cases where prior infor-
mation about initial condition are poorly known,
which may lead to poor convergence. Future re-
search will be focused on disturbance estimation
using SMC.
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