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Abstract: Multivariate spectroscopic calibration models can be improved by
selecting a subset of spectral variables that are identified as being the most
informative in terms of inferring sample properties. This paper proposes the
application of Gaussian processes for both variable selection and the development
of calibration models. A Gaussian process is a Bayesian regression technique that
assigns Gaussian priors over the regression functions. The covariance function of
the Gaussian process is characterized by a number of hyper-parameters and by
associating each spectral variable with a hyper-parameter, the relevance of the
corresponding variable to the prediction can be automatically determined. Prior
to the training of a Gaussian process using a Markov chain Monte Carlo approach,
a pre-processing step is proposed based on a statistical significance test to reduce
the computational time materialising from the large number of variables present
within spectroscopic data. The methodology presented is applied to two sets of
near infrared spectral data, and enhanced prediction performance is achieved when

both the pre-processing step and a Gaussian process are implemented. Copyright
© 2007 IFAC
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1. INTRODUCTION

Multivariate calibration techniques have been
widely applied to infer sample properties through
the extraction of relevant information from data
generated from spectroscopic instruments. A cal-
ibration model is constructed from the available
training data, using multivariate regression tech-
niques, such as partial least squares (PLS) or
principal component regression (PCR). The input
variables for the regression model can be of high
dimension, e.g. from several hundred to over one
thousand wavelengths. Although PLS has been
shown to be efficient when all the available wave-
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lengths are included, both theoretical and ex-
perimental evidence exists that demonstrate that
it is possible to enhance prediction performance
through the implementation of variable selection
(Bangalore et al., 1996; McShane et al., 1997).
The assumption is that there may be parts of
the spectra that contain little information about
the chemical properties. When these spectra are
included in the regression model, they may by
chance appear, in a finite training set, to be closely
associated with the chemical properties, especially
when a large number of variables are considered.
Predictive performance on unseen test cases will
then be poor (Neal, 1996). Another issue, al-



though less well documented in the literature, is
that there may exist information “redundancy”
among wavelengths, i.e. similar relevant informa-
tion for the inference of sample properties can
be provided by a number of wavelengths. There-
fore by selecting a subset of these wavelengths,
efficiency in terms of measurement costs may be
realised.

Traditionally relevant variables (wavelengths) have
been selected by using a fundamental under-
standing of the spectroscopic properties of the
test samples. More recently, researchers have fo-
cussed on automatic variable selection strategies.
Most of these strategies are based on a PLS or
MLR regression model whilst optimizing predic-
tive performance by selecting/removing spectral
variables. For example, iterative PLS (Osborne et
al., 1997) starts with the random selection of a
small number of variables, with variables being
added or removed based on the cross validation
error. An alternative approach is that of unin-
formative variable elimination. This method of
variable selection is based on an analysis of the
PLS regression coefficients (Centner et al., 1996).

A third method widely reported in the litera-
ture is that of genetic algorithms (GAs). Genetic
algorithms were originally proposed as a family
of stochastic optimization approaches that mimic
the principles of genetics and natural selection.
They have been successfully applied in spectro-
scopic applications for the selection of wavelengths
(Bangalore et al., 1996; Broadhurst et al., 1997).
A comparative study of a number of variable
selection algorithms was reported (Abrahamsson
et al., 2003), and it was shown that the GA ap-
proach demonstrated improved prediction ability
over conventional PLS and manual selection ap-
proaches.

In this paper a Gaussian process is applied for
variable selection with the aim being that of the
calibration of spectral data (Chen et al., 2007).
A Gaussian process is a non-parametric Bayesian
regression model formulated from Gaussian prior
distributions over the space of all possible re-
gression functions (Neal, 1996). The use of prior
distributions automatically addresses the issue of
over-fitting, since Bayesian inference avoids the
need for a separate validation data set or cross val-
idation strategy. The behaviour of a Gaussian pro-
cess is determined through the covariance func-
tion in terms of the underlying hyper-parameters.
By associating each input variable with a hyper-
parameter, the relevance of a variable to the pre-
diction can be automatically determined from the
training data. Consequently the relevant variables
are selected according to the magnitude of their
hyper-parameters. The training of a Gaussian
process is performed through the Markov chain
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Monte Carlo (MCMC) sampling of the posterior
probability of the hyper-parameters (Neal, 1997).
Predictions can then be achieved by averaging
over the Monte Carlo samples.

The rest of the paper is organised as follows.
Section 2 introduces Gaussian process regression
and its automatic relevance determination (ARD)
property, prior to describing how Bayesian in-
ference can be used to estimate the model pa-
rameters through MCMC simulations. One con-
sequence of the large number of available spectral
variables is that the Gaussian process may require
substantial computational time for the training
procedure. Thus a statistical significance test is
proposed in Section 3 as a pre-processing step to
select variables based on a correlation criterion.
In Section 4, a Gaussian process is applied for
variable selection prior to the development of a
calibration model for two sets of near infrared
spectral data. Compared with the widely used
genetic algorithms, the Gaussian process can im-
prove prediction performance through the selec-
tion of fewer spectral variables. Finally, conclu-
sions and future work are given in Section 5.

2. GAUSSIAN PROCESSES

Gaussian processes emerged from the area of neu-
ral networks. In the Bayesian approach to neural
networks, a prior distribution over the network
weights materialises in a prior distribution over
the functions. As discussed in Neal (1996), there is
no rationale for restricting neural network models
to a small number of hidden units to avoid the
so-called over-fitting problem. As the number of
hidden neurons tends to infinity, neural network
models with one hidden layer converge to Gaus-
sian processes, if standard “weight decay” priors
are assumed (Neal, 1996; MacKay, 1998). A brief
introduction to a Gaussian process based on re-
gression analysis is given in the next section prior
to describing the automatic relevance determina-
tion technique, which is the key to variable selec-
tion. Finally the training of Gaussian processes is
briefly discussed.

2.1 Regression with Gaussian Process

From the perspective of a regression problem, a
functional relationship is identified between the
input variables, x, and the output variable, y.
Consider a training data set consisting of N data
points, {x;,y:,4 =1,---, N}. A Gaussian process
for regression is defined such that y(x) has a Gaus-
sian prior distribution with zero mean (assuming
data are standardized to zero mean and unit stan-
dard deviation) and covariance function C(x;, x;).
An example of such a covariance function is:
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where 6 = [wy, - ,wp,vo,a0,02]7, and §;; = 1
if ¢ = j and 0 otherwise. @ is a vector of hyper-
parameters. The first term defines the correlation
between the outputs with nearby inputs, and the
remaining two terms define the bias and noise,
respectively. This covariance function has been
widely used for predicting stationary signals and
is thus adopted in this paper. Other forms of
covariance function are discussed in (Neal, 1997;
MacKay, 1998). The predictive distribution of the
output variable y*, given its input x*, is Gaussian
with mean and variance given by:

y =k (x)27y
*2 = O(x,x) — kT ()27 k(x)

(2)
3)

o —

where k(x) [C(x*,x%1), - ,C(x*,xy)]T, 3 is
the covariance matrix for the training cases: ¥;; =
C(xi,%;), and y = [y1,- - ,yn]?. The matrix in-
version step in Egs. (2) and (3) is computationally
intensive, i.e. of the order O(N?). This is feasible
for a moderate sized training data set (less than
several thousand) on conventional computers. For
larger problems sparse training strategies, such as
projection techniques (Csaté and Opper, 2002),
are required.

2.2 Automatic Relevance Determination

An important feature of a Gaussian process is
that it falls within the family of automatic rel-
evance determination (ARD) models. The idea of
ARD models was developed by MacKay (MacKay,
1998) and Neal (Neal, 1996). More recently the
ARD approach has been used to prune irrelevant
basis functions, resulting in the “relevance vector
machine” (Tipping, 2001). Likewise for the cali-
bration of spectral data, there is normally a large
number of wavelengths which potentially contain
information for predicting the material properties.
The ARD approach assesses which measurements
are more likely to be relevant to the prediction.
In the Bayesian framework, ARD is implemented
by associating each input variable with a hyper-
parameter, thereby determining the magnitude of
the relevance of the corresponding variable to the
prediction. For example, if the covariance function
in Eq. (1) is used, {w1, -+ ,wp} serves as the
relevant parameters. Fig. 1 illustrates how the
hyper-parameters determine the relevance of spe-
cific variables. Here a simple covariance function
with one input variable is considered:
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Fig. 1. Automatic relevance determination.

C(zi, x;) = exp (—0.5w(z; — xj)2) (4)
According to Fig. 1, it is evident that for a large
hyper-parameter w, the variation in the input
data, |x; — x;|, will lead to large variation in the
covariance function, indicating that this variable
significantly affects the prediction. However, for
smaller values of w, the covariance function is
insensitive to the variation in the input data,
implying lower relevance. For variable selection,
a threshold is therefore needed to remove those
variables with hyper-parameters close to zero. A
value of 1079 is adopted as the threshold since
it has been observed to retain a small number
of variables while giving good prediction perfor-
mance in initial experiments,.

2.8 Training a Gaussian Process

Given a covariance function, the log likelihood of
the training data is:

1 1 N
L= ~3 logdet X — §yT§J*1y Y log2m  (5)

Most training algorithms also require the deriva-
tive of L with respect to each hyper-parameter 6:

OL _ 1, (5 a95) 1 o 0
r(E 89)+ by

20 ~ 2 2y = 90
The hyper-parameters can be obtained by max-
imizing the likelihood of the training data, us-
ing the conjugate gradient method. However this
approach is sensitive to initializations and may
converge to local minima (MacKay, 1998). There-
fore a number of random initializations are needed
to guarantee reliable results. A more elaborate
approach is that of Bayesian inference. According
to a Bayesian framework, a prior distribution p(8)
is defined over the hyper-parameters. With the
available training data, the posterior distribution
p(0]x,y) is calculated by taking the product of
the prior and the likelihood. Predictions are then
made by integrating over the posterior:

7ty (6)
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Since it is not feasible to perform the integra-
tion analytically, the Markov chain Monte Carlo
(MCMC) method is applied. However, due to
the high dimensionality of the hyper-parameters,
the random walk search strategy in conventional
MCMC may converge very slowly. The hybrid
MCMC approach can significantly increase the
convergence speed using the gradient informa-
tion. In the present study, the MCMC method
described by Neal (1997) is implemented. After
generating a sufficient number of samples for the
hyper-parameters, the predictions can be made
by taking an average of Eqgs. (2)(3) over these
samples.

3. SIGNIFICANCE TEST

The strategy of ARD is to assign one hyper-
parameter to each input variable. When applying
ARD to a data set with a large number of input
variables, such as for the calibration of spectral
data, Gaussian processes may incur substantial
computational costs when attaining Monte Carlo
samples from the posterior probability. One pos-
sible solution is to assign one hyper-parameter
over multiple input variables. Therefore a criterion
is required to determine how to cluster multiple
input variables to a shared window, and possibly
split the window at a later stage.

In this study, a simple statistical significance test
is adopted as a “pre-processing” step to select an
initial subset of variables (Neal and Zhang, 2003).
The correlation between each input and output
variable is used, where a low correlation coefficient
implies that the corresponding variable is not
informative for the prediction. The significance
test starts by constructing a hypothesis test:

e Hj: No correlation exists between the input
and output variables.

e H;: Correlation exists between the input and
output variables.

A significance level, «, is then chosen as a thresh-
old to accept or reject the null hypothesis. Finally
the p-value, which is the probability that the null
hypothesis is true given the available data, can
be calculated and compared with the significance
level. If p < «, the null hypothesis is rejected,
and the corresponding variable is selected. « is
normally selected to be 0.05. The significance test
of correlation can be carried out in many software
packages, including the statistical toolbox in Mat-
lab, and S-Plus.

In summary, the proposed variable selection strat-
egy is as follows:
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Table 1. Summary of spectral data sets.

Property = Wavelengths  Training Test
Viscosity 401 136 116
Fat 100 210 30

(1) Perform a significance test to pre-select po-
tentially informative wavelengths.

(2) Based on the retained wavelengths from the
significance test, a Gaussian process model is
trained and the ARD strategy further selects
a subset of the retained wavelengths.

4. EXAMPLES
4.1 Spectral Data Case Studies

Two sets of spectral data are considered in this
study. The first relates to near infrared spectra
of diesel fuels measured at Southwest Research
Institute on a project sponsored by the US Army.
This data set has been published by Eigenvector
Research, Inc. (http://software.eigenvector.
com/Data/SWRI/index.html) as a benchmark for
variable selection and calibration. Of the six data
sets relating to different properties, the data set
relating to viscosity is used. Based on the rec-
ommendations by the authors, the high leverage
samples and a random set are used to train the
calibration model. A second random set is used
for testing. According to the pre-analysis, the rela-
tionship between the spectral data and associated
property is approximately linear.

The second data set was recorded using a Tecator
near infrared spectrometer which measured the
spectrum of light transmitted through a sample of
pork meat (Borggaard and Thodberg, 1992). The
spectrum consists of the absorbencies at 100 wave-
lengths in the region 850-1050 nm. The spectrom-
eter is calibrated to determine the fat content from
the spectrum. In previous studies (Borggaard and
Thodberg, 1992; Thodberg, 1996), this data set
was shown to be highly non-linear. The training
and testing sets are randomly partitioned 100
times to evaluate the robustness of the proposed
algorithm. The two data sets are summarized in
Table 1. All the data are scaled to zero mean and
unit standard deviation before the development of
the calibration model.

4.2 Results

For comparison with the proposed variable selec-
tion strategy, the results for PLS models based on
the full spectra and also following variable selec-
tion using GAs are reported. The PLS and GA
analyses were performed using the PLS Toolbox
from Eigenvector Research, Inc.. Ten-fold cross-
validation was applied to determine the number of



Table 2. Parameters for GA.

Parameter Value
Maximum number of generations 200
Chromosome population size 128
Number of splits for cross validation 10
Percentage of duplicates as convergence 80
‘Window width 1, 5, 10, 20

Table 3. Variable selection and calibra-
tion of viscosity. GA(i) represents ge-
netic algorithm (window=i).

Selected

Model Wavelengths %RMSE
PLS 401 3.96
GA(1) + PLS 73 4.17
GA(5) + PLS 85 3.74
GA(10) + PLS 90 3.75
GA(20) + PLS 100 3.70
GP(ARD) 70 3.24
Sig. Test + GP(ARD) 49 2.87

latent variables to retain in the PLS model. The
tuning parameters for the GAs are summarised in
Table 2 with a number of different values for the
window width being considered. Since there are a
significant number of tuning parameters for GAs,
it is not feasible to determine them all through
cross validation. Therefore the parameters given
in Table 2 are taken from the literature and by
using “trial and error”.

The results for the first data set are given in Table
3. The predictive performance is evaluated using
the percentage root mean square error (%RMSE)
for the test data sets. For this case study, PLS per-
forms well since the data is approximately linear.
However using variable selection with GAs and
then applying PLS to the reduced variable set, a
slightly lower prediction error is achieved (except
for the case where a window size of one was used).
On the other hand, the Gaussian process gives
further improvement in terms of the prediction
error. Seventy relevant variables are selected using
the ARD strategy. If the significance test pre-
processing procedure is applied, 201 wavelengths
are retained. Then, applying the Gaussian pro-
cess, the number of wavelengths is reduced to 49
and the smallest %RMSE is achieved.

Fig. 2 illustrates the variables selected using GAs
and the Gaussian process, following the applica-
tion of the pre-processing significance test. Al-
though the two approaches select quite different
wavelengths, both achieve acceptable results, in-
dicating that there exists information redundancy,
along with uninformative variables. In addition,
due to the effect of a fixed window, the GA tends
to select a number of variables within a region.
To address this effect, a window size of one can
be used to eliminate this effect. Although this ap-
proach can select fewer variables, it may degrade
the prediction performance, as reported for this
data set.
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Fig. 2. Variable selection for viscosity. (a): GA
(window = 10); (b): GP with significance
test.

Table 4. Variable selection and calibra-

tion of fat in minced pork meat. Results

are averaged over 100 random partitions
of training and test data sets.

Selected

Model ‘Wavelengths RMSE
PLS 100 2.38
NN 100 0.72
GP 14.9 0.51

The second data set is non-linear, therefore lin-
ear calibration algorithms, such as PLS, are not
expected to perform well. This is confirmed in
Table 4. Therefore a neural network (NN) com-
prising one hidden layer with 15 neurons was
trained using the Levenberg-Marquardt algorithm
and early stopping, giving a RMSE of 0.72. It was
suggested in (Thodberg, 1996) that the data was
pre-processed using principal component analysis
(PCA). However PCA does not reduce the num-
ber of wavelengths and thus the comparison with
variable selection techniques is not appropriate.

An interesting finding was that the significance
test showed that all the input variables are corre-
lated to the output, with correlation coefficients
lying in the range [0.4, 0.6]. This may be a good
example of information redundancy, as all input
variables are related to the output. For this data
set, the Gaussian process is capable of selecting
14.9 wavelengths on average to achieve a RMSE
of 0.51, for the 100 random experiments.



5. CONCLUSIONS AND DISCUSSIONS

This paper proposes using the Gaussian process
for variable selection and the calibration of spec-
tral data. Based on automatic relevance deter-
mination, variable selection and calibration are
sequentially realised. In addition, as a result of
Bayesian inference, a validation data set, which
is essential for the tuning of PLS and genetic
algorithm, is not required. One limitation of the
proposed strategy is the difficulty of sampling the
large number of relevance parameters in a Gaus-
sian process, in terms of both computational cost
and convergence rate of the MCMC. This issue
can be partially alleviated by the implementation
of significance test, which is introduced to elim-
inate apparently irrelevant variables prior to the
application of the Gaussian process regression.

A general conclusion of the research undertaken
is that for data with uninformative input vari-
ables, the significance test can remove apparently
irrelevant variables, and the Gaussian process can
then be applied to sequentially select the most
relevant variables for building a calibration model.
On the other hand, if high redundancy occurs in
the data set, the Gaussian process is still capable
of removing redundant variables, and providing
satisfactory calibration performance.

The present research is focused on predicting
a single chemical property. When extended to
multiple output variables, the proposed approach
may be applied separately to each output variable,
and the significance test can consider the union of
the relevant variables for each output. However a
more appropriate way would be to also consider
the relationship between the output variables.
Ongoing work is focused on variable selection
and calibration of multiple output variables by
modelling the output covariance structure.
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