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Abstract: The computational effort involved in the solatiof real-time optimization prob-
lems can be very demanding. Hence, simple but effectiveemphtation of optimal policies
are attractive. The main idea is to use off-line calculaiamd analysis to determine the
structure and properties of the optimal solution. This W# used to determine alternate
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1. INTRODUCTION In Paradigm 1, the solution and resulting centralized
implementation is very complex and is seldom used
Optimal operation of a chemical process as well asin practice. Originally, this arose out of necessity,
many other systems can generally be formulated asbecause the computing power for on-line optimizing
a dynamic optimization problem. Lete R™ be the control (paradigm 1) was not available. Today, this is
state variableg) € R™ the set of available manipula- less of an issue, but it has become clear that paradigm
tions andd € R™ denote the set of disturbances affect- 2 offers a number of additional potential advantages,
ing the plant. Let)(x,u,d) be an economic objective including robustness, simplicity and reduced cost for
that is to be minimized. The dynamic optimization modelling, implementation and maintenance.

problem that we seek to solve is: To understand this better, it is useful to consider how

x= f(x,u,d), the optimal operation of a complex continuous chemi-
minJ(x,u,d), s.t.< h(x,u,d) =0, Q) cal process is implemented in practice. The main idea
! g(x,u,d) <0 is to use time scale separation, where the central-

ized optimizing controller is broken down into several
layers, for example, into regulatory control, supervi-
sory control and optimization layer with the layers
Paradigm 1 On-line optimizing control where mea- arranged in an increasing level of hierarchy (Refer
surements are primarily used to update the model.Fig 1). Generally, the interaction between the layers
With the arrival of new measurements, the opti- is such that at the optimization layer, we try to de-
mization problem is resolved for the inputs. termine optimal values of the setpoints or reference
values by optimizing an economic cost function and
Paradigm 2 Pre-computed solutions based on off- the control layers are devoted to ensuring that the
line optimization. Typically, the measurements are setpoints are maintained (Findeisgral., 1980). The
used to (indirectly) update the inputs using feed- efficient vertical decomposition between the optimiza-
back control schemes. tion and control layers requires that the economic ob-
jective is determined largely by the slow time scale
and that near-optimal operation on the faster time
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There are two main paradigms when it comes to
implementation of the optimal solution:
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the estimation, model update and optimization is done
on-line.

Optimizer

In summary, the focus of this contribution is to derive
alternate, but effective implementation of the optimal
policies by primarily exploiting the known properties

Controller of the optimal solution. We adopt the position that in
principle, off-line calculations can be performed easily
and on-line computations need to be minimized to

Setpoints

Inputs

v achieve efficient on-line implementation. These ideas
Disturbances e are further motivated in the following sections with
7 - Measurements examples. The examples are only illustrative and not
exhaustive.

Fig. 1. Hierarchial decomposition This paper deals with both steady-state optimization

scale is possible by a constant set point policy in spite (X = 0) in (1) and dynamic optimization problems. In

of disturbances and noise. This is the Concept of self- the latter case, the addition of time as a variable adds

optimizing control (Skogestad, 2004). to the complexity, but otherwise the main idea of using
off-line calculations to obtain pre-computed solutions

Building on our previous work on self-optimizing con- ¢ itable for implementation remains the same.

trol, the objective of our present research is to broaden

the scope and take a new look at the possibilities and

advantages of Paradigm 2. The main idea is to use off- 2. INTRODUCING FEEDBACK TO THE

line analysis and computation to discover properties OPTIMIZATION

of the optimal solution that may be utilized for on-line

implementation. Some specific results for Paradigm 2 Consider the optimization problem (1). As far as im-
may be: plementation is concerned, a naive possibility is to
solve the optimization problem off-line at a nominal
value ofdy(t) for the disturbance and implement the
resulting policy, ugp (t). This feedforward strategy,
which is essentially an open-loop version of paradigm
1, is clearly not robust with respect to changing distur-
bancegd or model uncertainty.

R1 Determine the structure of the optimal solution.
Typically, this involves identifying regions where
different sets of constraints are active.

R2 Determine optimal values (or trajectories) for the
unconstrained variables.

R3 Find analytical or pre-computed solutions suitable
for on-line implementation. It is clear that some update (or feedback) needs to

R4 Find good self-optimizing controlled variables, be introduced, and the alternative ways of implemen-
associated with the unconstrained degrees of free-tation are closely related to how this is done. One
dom that satisfy the following (Skogestad, 2004): approach is to use measurements to estimate distur-

e The optimal valuecop is only weakly depen-  bances and update the model, and then resolve the op-
dent on disturbances. timization problem on-line. This is the general (feed-

e Implementation errors in these variables does back) version of paradigm 1.
not result in a large loss or equivalently the
optimum with respect ta is “flat”.

R5 Determine a switching policy between different
regions.

Another possibility is to pre-compute the solution
for various disturbances, and use some interpolation
and gridding strategy based on on-line measurements.
This very general idea may work in certain cases.
Results R3, R4, R5 and partially R1 are related to the
implementation of the optimal solution. The main idea
is to be able to implement optimal operation using
simple feedback loops with a minimal need for on-line
optimization. Result R2 and partially R1 are related to
conventional “open loop” optimization.

A third general approach is to explore the mathe-
matical conditions corresponding to optimal solution.
For example, the steady state version of the opti-
mization problem, i.ex =0 in (1), is a typical non-
linear program (NLP) and the necessary conditions
for optimality are given by the KKT conditions. One
Result R3 includes the conventional feedback con-implementation policy is to control and enforce the
trol paradigm, which may be viewed as a subclass of KKT conditions directly. In principle, this leads to a
paradigm 2. The idea is to use off-line calculations and simple feedback policy. However, it is very unlikely
analysis to obtain a pre-computed controller or solu- that a direct measurement of the KKT conditions (for
tion, which may be, for example, a PID controller or e.g., the Lagrangian) is available. Another possibility
a state feedback controller corresponding to the “opti- is to obtain an explicit expression for the KKT con-
mal control” solution. The use of a pre-computed fixed dition (Cao, 2004). However, this expression gener-
controller, may be contrasted with conventional Model ally involves unmeasured disturbances and states, so
Predictive Control (MPC) which is more in spirit with it would need to be combined with an on-line estima-
paradigm 1. Here, the model is obtained off-line, but tion procedure. In the dynamic case, the correspond-
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ing first-order optimality conditions are given by the tems (Pistikopoulot al., 2002). The authors show
Pontryagin Maximum Principle (Welet al., 2006). that the control law is a continuous piece-wise affine
Again, the problems associated with measuring or es-function of the states for the finite horizon problem
timating the necessary conditions are similar to those (model predictive control) and the infinite time hori-
for the KKT conditions. zon problem (constrained linear quadratic regulation).
The optimal solution is explicitly calculated off-line.
The critical regions corresponding to each individual
control law are polyhedral in shape. During imple-
mentation, given a measurement or estimate of the
current states, the region of the partition to which
the current state belongs is determined and the cor-
responding optimal controller is implemented.

A fourth approach, which is studied in the main part of

this paper, is to directly use the known structure of the
solution of specific problem classes. In particular, in

this paper, we focus on the control of active constraints
and policies for identifying the correct region, and

on the use and selection of “self-optimizing” uncon-

strained variables.

Example 4. Elevator dispatch: A different example is

that of elevator dispatch during uppeak traffic (Pepyne
and Cassandras, 1997), where the authors show that
the structure of the optimal dispatching policy that
minimizes the average or discounted waiting time is
a threshold based policy.

Example 1. Marathon runner. As an example of se-
lecting self-optimizing controlled variables, consider
the optimal policy employed by a marathon runner.
There is one degree of freedom, which could be
viewed as the power. Clearly, operating at maximum
power is not optimal. The optimal policy is therefore
unconstrained, and the issue is whether we can find a

self-optimizing variable to keep constant. One feed- The determination of the constant g&n(in the opti-
back policy is to select speed as a controlled vari- mal control problem) or the thresholds (in the elevator
able, and operate at constant speed. This policy maydespatch problem described above) or the piece-wise
be acceptable on a flat track, but is not optimal on controller (in explicit MPC) is non-trivial. However,
hilly terrain. Also, setting the constant (optimal) set- these essentially involve off-line calculations and are
point for the speed may be difficult. Another option examples of Result R3 mentioned in the introduction.
is to select the heart rate or lactate level (sensed as

pain) as a controlled variable. This works also on

hilly terrain, and it seems that the operation is not 4. STRUCTURE OF THE OPTIMAL SOLUTION:

very sensitive to the setpoint. This variable is easy to ACTIVE CONSTRAINTS
measure, and selecting a setpoint seems rather easy
(Skogestad, 2004). In this section, we discuss several examples where the

optimal solution can be characterized by a set of active

constraints.
3. FINDING PRE-COMPUTED SOLUTIONS

SUITABLE FOR ON-LINE OPTIMIZATION Example 5. Sorinter. Consider the “optimal opera-

tion” of a 100 m runner. It is clear that the optimal
solution (and implementation) corresponds to running
as fast as possible, i.e., the maximum power constraint
is active.

In some cases, an explicit solution to the problem
can be computed off-line, which can be implemented
effectively, as in the following examples.

Example 2. Linear Quadratic Regulator (Optimal con-

. . . Example 6. Linear Program. Consider -
trol). It is well known that the optimal solution to ample 6 ear Program. Consider a steady-state

. . L X optimization problem. The simplest case is when the
an infinite time dynamic optimization problem with P P P

. S . ._model equations, constraints and objective are linear
a quadratic performance objective and linear dynamic

model can be expressed as a time invariant feedback(l'inear Program). It is well known that the optimal
law: u— —Kx (Kalman, 1963; Bryson, 1999). The Solution (if it exists) is at a vertex of the simplex and

optimal matrixK is obtained off-line by solving Ric- therefore the optimal policy is to use all the inputs to

. . . . satisfy the active constraints,
catti equations. This alternate feedback representation fy

u = —Kx can be used for implementation and turns

out to be much more robust to disturbances than theln the above examples, the optimal solution is such

original open-loop solution. Interestingly, it seems that that all the degrees of freedom (inputsare used to

Kalman and others who first obtained this result, were satisfy active constraints.

not looking for a feedback controller but rather for the

optimal (open-loop) solution. The realization that the Example 7. Network throughput maximization. An-

optimal solution could be implemented in a feedback other example of control with constraints is the prob-

fashion was a serendipitous result. lem of maximizing throughput in a network. Under

certain conditions, optimal operation of the plant is

Example 3. Explicit MPC. Recently, this idea has equivalent to maximizing throughput. The solution

been extended to control of linear constrained sys-to the problem of determining maximum flow in a
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A straints. In more general problems, the optimum can
be unconstrained. Further unconstrained degrees of
freedom can be used to control the self-optimizing
variables as discussed previously or to switch between
regions which will be discussed subsequently.

vmax

5. SWITCHING POLICY BETWEEN DIFFERENT
REGIONS

Speed

To avoid on-line optimization, one may use off-line
Time ' calculations to 1) determine the set of regions with
v different active constraints and 2) device rules for
identifying when to switch between regions. The first
issue of determining the set of different regions was
flow network has the property that maximal amount discussed previously. The second issue is the switch-
of a flow is equal to the capacity of a minimal "9 pqllcy which is d|scusseq in this section. Ong sys-
cut (Nemhauser and Wolsey, 1999). Hence, the maxi_.tematlc approach for dgtectlng events and switching
mum flow is limited by a bottleneck and optimal oper- S @utomata theory which has been used for mod-
ation can be achieved by focussing on the bottleneck.&lling, control and diagnosis of discrete event sys-
This results in the following implementation policy: €Ms (Phillips, 2001). However, this may be compli-
identify the bottleneck and maintain maximum flow at ated and so simpler schemes may be preferred. In
the bottleneck (Asket al., 2006). The authors have MOSt problems, switching may usually be effected by
described how this can be achieved by a control hier- €ither:

archy using a coordinator MPC at the top and several (C@se A) observing when a new constraint is reached,
local MPCs at the lower levels. (Case B) observing when the self-optimizing uncon-

strained variable reaches its setpoint.
Example 8. Minimum time driving. Consider driving (Case C) In the dynamic case, we also have switching
from the origin (at rest) to final destination (with final c2used by future constraints.
speed 0) in minimum amount of time while respecting
the maximum speed limit. This is a dynamic optimiza-
tion problem and the optimal speed profile would be
as shown in Figure 2. The available manipulations are
typically the acceleration, braking and timesandt,.
As in the static optimization problem, it is possible to
determine regions corresponding to active constraints:
Regions A, B and C correspond to maximum accel-
eration, maximum speed and maximum deceleration
(braking) respectively. The timésandt, will be used
to switch between regions.

A

Y

Fig. 2. Optimal speed profile

5.1 Satic optimization

For a linear program only case A can occur, whereas
case B can occur for a quadratic program. This does
not necessarily mean that it is easy to determine when
to switch because the regions can be very complex.
In the following example (Ex. 9), we consider a class
of problems where 2 manipulations, called primary
and secondary are combined together. These pairings
are chosen so that when the primary manipulation
saturates, the secondary manipulation is used. More
It is possible that the set of active constraints and detailed information on implementing this switch-
the corresponding optimal policy changes with dis- ing policy using split range control can be found in
turbances or with time (as in Example 8). In fact, (Lersbamrungsukt al., 2006; Glemmestad, 1997).

it may not even be feasible to continue to operate

with the current strategy. The regions where a cer- Example 9. Optimal operation of heat exchanger net-

tain set of constraints remain active at optimality are works. The general mathematical model of a Heat
called critical regions. For certain classes of optimiza- Exchanger Network (HEN) is non-linear and hence,
tion problems, these regions are polyhedral in shapeoptimization of the same would involve solving a NLP.
and can be determined by treating the disturbancesHowever, under certain conditions, the problem of op-
as parameters and employing parametric program-timal operation of a HEN can be reformulated as a
ming (Gal, 1979; Pistikopoulogt al., 2002). In more  Linear Program (Aguilera and Marchetti, 1998; Lers-
general dynamic optimization problems, a solution bamrungsuket al., 2006) with obvious advantages.
model can be obtained by numerical optimization of The following HEN (Fig. 3) is a modified example

a nominal model (Welzt al., 2006) and the structure from Aguilera and Marchetti (1998).

detected using an automated method (Schlegel an . i
Marquardt, 2006). dThe network consists of 3 process-process exchangers,

3 utilities and 4 streams. The outlet temperatures of all
In summary, it is common that most of the degrees streams are to be controlled and maintained at target
of freedom are associated with satisfying active con- values. Inlet temperatures of all streams are assumed
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Fig. 3. Control structure for optimal operation of HEN(Leasnrungsulet al., 2007)

to be unmeasured disturbances. Nominal inlet and out-control performance would be important if there were
let temperatures (targets) and other relevant data arénard constraints on the outputs. In this example, this
indicated in the figure. The utility costs ar®8 /KWh would imply hard constraints on the target tempera-
for Qp, 0.02 $/KWh for Q¢ and 001 $/KwWh for Qe tures. Usually, these are not hard constraints and one is
respectively. The objective function to be minimized only interested in ensuring that the target temperatures
is the overall utility consumption. Following is a table are attained in the “average” which is possible using
listing which manipulations are saturated in different integral action in the controllers.

regions of the disturbance space, where A and | de-

notes that the corresponding manipulation has satu-

rated and not saturated respectively (Lersbamrungsuks.2 Dynamic optimization

et al., 2007). This can be determined by numerical

optimization for different values of the disturbance or Unlike in static optimization problems, switching be-

parametric programming. tween regions can occur based on a future constraint
Table 1. List of saturated manipulations (Case C mentioned in the introduction to Section 5).
This has to be predicted based on an estimate of the
Setofactive Qu Qe Qnh U1 U U current state and the disturbances and prediction of
‘1’°”St’a'“t5 — disturbances. However, it may be possible to use feed-
5 A A | | | | back solutions, for example based on self-optimizing
3 | A 1 A 1 | control. We explore this further by reverting to some
4 [ [ A A [ of the examples discussed previously.
5 [ [ A I A

Example 3, Explicit MPC, contd. In explicit MPC, the
problem of switching is addressed by using the esti-
mated or measured value of the current state (Pistikopoulos

timal solution is at a vertex and evallable degrees of et al., 2002). Each region of the state space partition
freedom are used to control active constraintg. . :
orresponds to a set of constraints that are active.

does not saturate and so does not appear in a SIOIIt:-|owever, some of these could be future constraints

rc%rr]ﬁt?ineen dd i:]S ;Sseﬂtt?agogtrailiz;’% ngnt? %ld n Sre and so, there is no direct feedback connected from the
b ge p 2out, =3 actual constraint, but only from the measurement (or

is used to controllciou, Upy IS Used 10 Controfhyon estimate) of the current state and the local feedback
and Q¢ is used when eithety; or uyz are satu- controller

rated. This results in the control structure as shown
in Fig. 3 (Lersbamrungsué& al., 2007). In a general Example 8, Minimum time driving, contd. It is clear
problem, the manipulations that need to be combinedthat the switch from regime A (acceleration) to regime
in a split range structure can be determined by solving B (maximum speed) occurs when the maximum speed
an ILP (Lersbamrungsudt al., 2007). It mustbe noted is reached (case A). However, moving from regime
that it may not be possible to implement this switching B to regime C (deceleration) is not trivial because it
strategy for all classes of linear programs. Dynamic is associated with a future constraint (case C). One
125
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solution is to use an off-line policy, i.e., start decel- Cao, Y. (2004). Constrained self-optimizing control

erating at timetp, which is however not robust and via differentiation. In:Proceedings of the 7th

may also result in infeasibility. Another solution is to International Symposium on Advanced Control

use feedback, based on the measurement of distanceto  of Chemical Processes (ADCHEM). Hong Kong.

the finish. More generally, the idea of self-optimizing pp. 63-70.

control can be used to determine the most suitableFindeisen, W., F.N. Bailey, M. Bryds, M. Malinowski,

measurement or measurement combinatioso that P. Tatjewski and A. Wozniak (1980 ontrol

the switching occurs whemreaches a given value. and Coordination in Hierarchical Systems. John

Wiley and sons.
6. DISCUSSION Gal, T. (1979) Postoptimal analyses, parametric pro-
gramming and related topics. McGraw-Hill.
mmestad, B. (1997). Optimal operation of inte-
grated processes: Studies on Heat Recovery Sys-
tems. PhD thesis. Norwegian University of Sci-
ence and Technology.

Kalman, R.E. (1963). When is a linear control system

optimal? In:Joint Automatic Control Conference,

Minneapolis, USA.

bamrungsuk, V., S. Narasimhan, S. Skogestad

and T. Srinophakun (2007). Control structure de-

sign for optimal operation of heat exchanger net-
works. In preparation.

Lersbamrungsuk, V., S. Skogestad and T. Srinophakun
(2006). A simple strategy for optimal operation
of heat exchanger networks. Ihnternational
Conference on Modeling in Chemical and Bi-

The approach of implementing optimal operation by Gle
tracking the necessary conditions of optimality (NCO)
given by the Pontryagin Minimum Principle proposed
by Srinivasan and Bonvin (2007) is similar in spirit
to Paradigm 2. They refer to their scheme and the
conventional method of on-line optimizing control
(Paradigm 1) as implicit and explicit methods respec-
tively. However, this nomenclature can be misleading Lers
as the pre-computed explicit solution to MPC is re-
ferred to as explicit MPC in literature and naturally
would be classified as an example of Paradigm 2.

7. CONCLUSIONS

We discussed with examples an alternate to the con-
ventional paradigm of on-line optimizing control, viz.,
using off-line computations and feedback solutions for ological Engineering Sciences, Bangkok, Thai-
efficient on-line implementation. It may not be known land.

apriori if an alternate implementation of the optimal Nemhauser, G.L. and L.A. Wolsey (1999teger
solution following Paradigm 2 is possible for the given and combinatorial optimization. John Wiley and
problem and hence it is natural to analyze classes of Sons.

systems. The alternate paradigm was motivated with Pepyne, D.L and C.G. Cassandras (1997). Optimal
several examples and demonstrated using a particular dispatching control for elevator systems during
case of linear programs. Current and future research uppeak traffic.|EEE Transactions on Control

is focussed on wider classes of systems, including but Systemns Technology 5, 629-643.

not limited to quadratic and general convex programs pyjjjins, P. (2001). Modelling, control and fault detec-
and batch processes such as distillation. These ideas g of discretely observed systems. PhD thesis.
can be extended to more general problems using local TU Eindhoven.

linear, quadratic or convex approximations of the cost Pistikopoulos, E.N., D. Dua, N.A. Bozinis, A. Bempo-

function. rad and M. Morari (2002). On-line optimization
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puters and Chemical Engineering 26, 175—185.
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