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Abstract: The computational effort involved in the solution of real-time optimization prob-
lems can be very demanding. Hence, simple but effective implementation of optimal policies
are attractive. The main idea is to use off-line calculations and analysis to determine the
structure and properties of the optimal solution. This willbe used to determine alternate
representations of the optimal solution that are more suitable for implementation.
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1. INTRODUCTION

Optimal operation of a chemical process as well as
many other systems can generally be formulated as
a dynamic optimization problem. Letx ∈ R

nx be the
state variables,u ∈ R

nu the set of available manipula-
tions andd ∈R

nd denote the set of disturbances affect-
ing the plant. LetJ(x,u,d) be an economic objective
that is to be minimized. The dynamic optimization
problem that we seek to solve is:

min
u

J(x,u,d), s.t.







ẋ = f (x,u,d),
h(x,u,d) = 0,
g(x,u,d) ≤ 0

(1)

There are two main paradigms when it comes to
implementation of the optimal solution:

Paradigm 1 On-line optimizing control where mea-
surements are primarily used to update the model.
With the arrival of new measurements, the opti-
mization problem is resolved for the inputs.

Paradigm 2 Pre-computed solutions based on off-
line optimization. Typically, the measurements are
used to (indirectly) update the inputs using feed-
back control schemes.

1 Corresponding author. Email: skoge@chemeng.ntnu.no

In Paradigm 1, the solution and resulting centralized
implementation is very complex and is seldom used
in practice. Originally, this arose out of necessity,
because the computing power for on-line optimizing
control (paradigm 1) was not available. Today, this is
less of an issue, but it has become clear that paradigm
2 offers a number of additional potential advantages,
including robustness, simplicity and reduced cost for
modelling, implementation and maintenance.

To understand this better, it is useful to consider how
the optimal operation of a complex continuous chemi-
cal process is implemented in practice. The main idea
is to use time scale separation, where the central-
ized optimizing controller is broken down into several
layers, for example, into regulatory control, supervi-
sory control and optimization layer with the layers
arranged in an increasing level of hierarchy (Refer
Fig 1). Generally, the interaction between the layers
is such that at the optimization layer, we try to de-
termine optimal values of the setpoints or reference
values by optimizing an economic cost function and
the control layers are devoted to ensuring that the
setpoints are maintained (Findeisenet al., 1980). The
efficient vertical decomposition between the optimiza-
tion and control layers requires that the economic ob-
jective is determined largely by the slow time scale
and that near-optimal operation on the faster time
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Fig. 1. Hierarchial decomposition

scale is possible by a constant set point policy in spite
of disturbances and noise. This is the concept of self-
optimizing control (Skogestad, 2004).

Building on our previous work on self-optimizing con-
trol, the objective of our present research is to broaden
the scope and take a new look at the possibilities and
advantages of Paradigm 2. The main idea is to use off-
line analysis and computation to discover properties
of the optimal solution that may be utilized for on-line
implementation. Some specific results for Paradigm 2
may be:

R1 Determine the structure of the optimal solution.
Typically, this involves identifying regions where
different sets of constraints are active.

R2 Determine optimal values (or trajectories) for the
unconstrained variables.

R3 Find analytical or pre-computed solutions suitable
for on-line implementation.

R4 Find good self-optimizing controlled variables,c
associated with the unconstrained degrees of free-
dom that satisfy the following (Skogestad, 2004):
• The optimal valuecopt is only weakly depen-

dent on disturbances.
• Implementation errors in these variables does

not result in a large loss or equivalently the
optimum with respect toc is “flat”.

R5 Determine a switching policy between different
regions.

Results R3, R4, R5 and partially R1 are related to the
implementation of the optimal solution. The main idea
is to be able to implement optimal operation using
simple feedback loops with a minimal need for on-line
optimization. Result R2 and partially R1 are related to
conventional “open loop” optimization.

Result R3 includes the conventional feedback con-
trol paradigm, which may be viewed as a subclass of
paradigm 2. The idea is to use off-line calculations and
analysis to obtain a pre-computed controller or solu-
tion, which may be, for example, a PID controller or
a state feedback controller corresponding to the “opti-
mal control” solution. The use of a pre-computed fixed
controller, may be contrasted with conventional Model
Predictive Control (MPC) which is more in spirit with
paradigm 1. Here, the model is obtained off-line, but

the estimation, model update and optimization is done
on-line.

In summary, the focus of this contribution is to derive
alternate, but effective implementation of the optimal
policies by primarily exploiting the known properties
of the optimal solution. We adopt the position that in
principle, off-line calculations can be performed easily
and on-line computations need to be minimized to
achieve efficient on-line implementation. These ideas
are further motivated in the following sections with
examples. The examples are only illustrative and not
exhaustive.

This paper deals with both steady-state optimization
(ẋ = 0) in (1) and dynamic optimization problems. In
the latter case, the addition of time as a variable adds
to the complexity, but otherwise the main idea of using
off-line calculations to obtain pre-computed solutions
suitable for implementation remains the same.

2. INTRODUCING FEEDBACK TO THE
OPTIMIZATION

Consider the optimization problem (1). As far as im-
plementation is concerned, a naive possibility is to
solve the optimization problem off-line at a nominal
value ofd0(t) for the disturbance and implement the
resulting policy,uopt(t). This feedforward strategy,
which is essentially an open-loop version of paradigm
1, is clearly not robust with respect to changing distur-
bancesd or model uncertainty.

It is clear that some update (or feedback) needs to
be introduced, and the alternative ways of implemen-
tation are closely related to how this is done. One
approach is to use measurements to estimate distur-
bances and update the model, and then resolve the op-
timization problem on-line. This is the general (feed-
back) version of paradigm 1.

Another possibility is to pre-compute the solution
for various disturbances, and use some interpolation
and gridding strategy based on on-line measurements.
This very general idea may work in certain cases.

A third general approach is to explore the mathe-
matical conditions corresponding to optimal solution.
For example, the steady state version of the opti-
mization problem, i.e., ˙x = 0 in (1), is a typical non-
linear program (NLP) and the necessary conditions
for optimality are given by the KKT conditions. One
implementation policy is to control and enforce the
KKT conditions directly. In principle, this leads to a
simple feedback policy. However, it is very unlikely
that a direct measurement of the KKT conditions (for
e.g., the Lagrangian) is available. Another possibility
is to obtain an explicit expression for the KKT con-
dition (Cao, 2004). However, this expression gener-
ally involves unmeasured disturbances and states, so
it would need to be combined with an on-line estima-
tion procedure. In the dynamic case, the correspond-
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ing first-order optimality conditions are given by the
Pontryagin Maximum Principle (Welzet al., 2006).
Again, the problems associated with measuring or es-
timating the necessary conditions are similar to those
for the KKT conditions.

A fourth approach, which is studied in the main part of
this paper, is to directly use the known structure of the
solution of specific problem classes. In particular, in
this paper, we focus on the control of active constraints
and policies for identifying the correct region, and
on the use and selection of “self-optimizing” uncon-
strained variables.

Example 1. Marathon runner. As an example of se-
lecting self-optimizing controlled variables, consider
the optimal policy employed by a marathon runner.
There is one degree of freedom, which could be
viewed as the power. Clearly, operating at maximum
power is not optimal. The optimal policy is therefore
unconstrained, and the issue is whether we can find a
self-optimizing variable to keep constant. One feed-
back policy is to select speed as a controlled vari-
able, and operate at constant speed. This policy may
be acceptable on a flat track, but is not optimal on
hilly terrain. Also, setting the constant (optimal) set-
point for the speed may be difficult. Another option
is to select the heart rate or lactate level (sensed as
pain) as a controlled variable. This works also on
hilly terrain, and it seems that the operation is not
very sensitive to the setpoint. This variable is easy to
measure, and selecting a setpoint seems rather easy
(Skogestad, 2004).

3. FINDING PRE-COMPUTED SOLUTIONS
SUITABLE FOR ON-LINE OPTIMIZATION

In some cases, an explicit solution to the problem
can be computed off-line, which can be implemented
effectively, as in the following examples.

Example 2. Linear Quadratic Regulator (Optimal con-
trol). It is well known that the optimal solution to
an infinite time dynamic optimization problem with
a quadratic performance objective and linear dynamic
model can be expressed as a time invariant feedback
law: u = −Kx (Kalman, 1963; Bryson, 1999). The
optimal matrixK is obtained off-line by solving Ric-
catti equations. This alternate feedback representation
u = −Kx can be used for implementation and turns
out to be much more robust to disturbances than the
original open-loop solution. Interestingly, it seems that
Kalman and others who first obtained this result, were
not looking for a feedback controller but rather for the
optimal (open-loop) solution. The realization that the
optimal solution could be implemented in a feedback
fashion was a serendipitous result.

Example 3. Explicit MPC. Recently, this idea has
been extended to control of linear constrained sys-

tems (Pistikopouloset al., 2002). The authors show
that the control law is a continuous piece-wise affine
function of the states for the finite horizon problem
(model predictive control) and the infinite time hori-
zon problem (constrained linear quadratic regulation).
The optimal solution is explicitly calculated off-line.
The critical regions corresponding to each individual
control law are polyhedral in shape. During imple-
mentation, given a measurement or estimate of the
current states, the region of the partition to which
the current state belongs is determined and the cor-
responding optimal controller is implemented.

Example 4. Elevator dispatch: A different example is
that of elevator dispatch during uppeak traffic (Pepyne
and Cassandras, 1997), where the authors show that
the structure of the optimal dispatching policy that
minimizes the average or discounted waiting time is
a threshold based policy.

The determination of the constant gainK (in the opti-
mal control problem) or the thresholds (in the elevator
despatch problem described above) or the piece-wise
controller (in explicit MPC) is non-trivial. However,
these essentially involve off-line calculations and are
examples of Result R3 mentioned in the introduction.

4. STRUCTURE OF THE OPTIMAL SOLUTION:
ACTIVE CONSTRAINTS

In this section, we discuss several examples where the
optimal solution can be characterized by a set of active
constraints.

Example 5. Sprinter. Consider the “optimal opera-
tion” of a 100 m runner. It is clear that the optimal
solution (and implementation) corresponds to running
as fast as possible, i.e., the maximum power constraint
is active.

Example 6. Linear Program. Consider a steady-state
optimization problem. The simplest case is when the
model equations, constraints and objective are linear
(Linear Program). It is well known that the optimal
solution (if it exists) is at a vertex of the simplex and
therefore the optimal policy is to use all the inputs to
satisfy the active constraints,

In the above examples, the optimal solution is such
that all the degrees of freedom (inputs)u are used to
satisfy active constraints.

Example 7. Network throughput maximization. An-
other example of control with constraints is the prob-
lem of maximizing throughput in a network. Under
certain conditions, optimal operation of the plant is
equivalent to maximizing throughput. The solution
to the problem of determining maximum flow in a
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flow network has the property that maximal amount
of a flow is equal to the capacity of a minimal
cut (Nemhauser and Wolsey, 1999). Hence, the maxi-
mum flow is limited by a bottleneck and optimal oper-
ation can be achieved by focussing on the bottleneck.
This results in the following implementation policy:
identify the bottleneck and maintain maximum flow at
the bottleneck (Askeet al., 2006). The authors have
described how this can be achieved by a control hier-
archy using a coordinator MPC at the top and several
local MPCs at the lower levels.

Example 8. Minimum time driving. Consider driving
from the origin (at rest) to final destination (with final
speed 0) in minimum amount of time while respecting
the maximum speed limit. This is a dynamic optimiza-
tion problem and the optimal speed profile would be
as shown in Figure 2. The available manipulations are
typically the acceleration, braking and timest1 andt2.
As in the static optimization problem, it is possible to
determine regions corresponding to active constraints:
Regions A, B and C correspond to maximum accel-
eration, maximum speed and maximum deceleration
(braking) respectively. The timest1 andt2 will be used
to switch between regions.

It is possible that the set of active constraints and
the corresponding optimal policy changes with dis-
turbances or with time (as in Example 8). In fact,
it may not even be feasible to continue to operate
with the current strategy. The regions where a cer-
tain set of constraints remain active at optimality are
called critical regions. For certain classes of optimiza-
tion problems, these regions are polyhedral in shape
and can be determined by treating the disturbances
as parameters and employing parametric program-
ming (Gal, 1979; Pistikopouloset al., 2002). In more
general dynamic optimization problems, a solution
model can be obtained by numerical optimization of
a nominal model (Welzet al., 2006) and the structure
detected using an automated method (Schlegel and
Marquardt, 2006).

In summary, it is common that most of the degrees
of freedom are associated with satisfying active con-

straints. In more general problems, the optimum can
be unconstrained. Further unconstrained degrees of
freedom can be used to control the self-optimizing
variables as discussed previously or to switch between
regions which will be discussed subsequently.

5. SWITCHING POLICY BETWEEN DIFFERENT
REGIONS

To avoid on-line optimization, one may use off-line
calculations to 1) determine the set of regions with
different active constraints and 2) device rules for
identifying when to switch between regions. The first
issue of determining the set of different regions was
discussed previously. The second issue is the switch-
ing policy which is discussed in this section. One sys-
tematic approach for detecting events and switching
is automata theory which has been used for mod-
elling, control and diagnosis of discrete event sys-
tems (Phillips, 2001). However, this may be compli-
cated and so simpler schemes may be preferred. In
most problems, switching may usually be effected by
either:
(Case A) observing when a new constraint is reached,
(Case B) observing when the self-optimizing uncon-
strained variable reaches its setpoint.
(Case C) In the dynamic case, we also have switching
caused by future constraints.

5.1 Static optimization

For a linear program only case A can occur, whereas
case B can occur for a quadratic program. This does
not necessarily mean that it is easy to determine when
to switch because the regions can be very complex.
In the following example (Ex. 9), we consider a class
of problems where 2 manipulations, called primary
and secondary are combined together. These pairings
are chosen so that when the primary manipulation
saturates, the secondary manipulation is used. More
detailed information on implementing this switch-
ing policy using split range control can be found in
(Lersbamrungsuket al., 2006; Glemmestad, 1997).

Example 9. Optimal operation of heat exchanger net-
works. The general mathematical model of a Heat
Exchanger Network (HEN) is non-linear and hence,
optimization of the same would involve solving a NLP.
However, under certain conditions, the problem of op-
timal operation of a HEN can be reformulated as a
Linear Program (Aguilera and Marchetti, 1998; Lers-
bamrungsuket al., 2006) with obvious advantages.
The following HEN (Fig. 3) is a modified example
from Aguilera and Marchetti (1998).

The network consists of 3 process-process exchangers,
3 utilities and 4 streams. The outlet temperatures of all
streams are to be controlled and maintained at target
values. Inlet temperatures of all streams are assumed
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Fig. 3. Control structure for optimal operation of HEN(Lersbamrungsuket al., 2007)

to be unmeasured disturbances. Nominal inlet and out-
let temperatures (targets) and other relevant data are
indicated in the figure. The utility costs are 0.05/kWh
for Qh, 0.02 $/kWh for Qc1 and 0.01 $/kWh for Qc2

respectively. The objective function to be minimized
is the overall utility consumption. Following is a table
listing which manipulations are saturated in different
regions of the disturbance space, where A and I de-
notes that the corresponding manipulation has satu-
rated and not saturated respectively (Lersbamrungsuk
et al., 2007). This can be determined by numerical
optimization for different values of the disturbance or
parametric programming.

Table 1. List of saturated manipulations

Set of active Qc1 Qc2 Qh ub1 ub2 ub3

constraints
1 A I A I I I
2 A A I I I I
3 I A I A I I
4 I I A A I I
5 I I A I I A

Since the optimal operation problem is a LP, the op-
timal solution is at a vertex and available degrees of
freedom are used to control active constraints.ub2

does not saturate and so does not appear in a split
range and is used to controlTc2out . Qc2 and Qh are
combined in a split range pair to controlTh2out , ub3

is used to controlTc1out , ub1 is used to controlTh1out

and Qc1 is used when eitherub1 or ub3 are satu-
rated. This results in the control structure as shown
in Fig. 3 (Lersbamrungsuket al., 2007). In a general
problem, the manipulations that need to be combined
in a split range structure can be determined by solving
an ILP (Lersbamrungsuket al., 2007). It must be noted
that it may not be possible to implement this switching
strategy for all classes of linear programs. Dynamic

control performance would be important if there were
hard constraints on the outputs. In this example, this
would imply hard constraints on the target tempera-
tures. Usually, these are not hard constraints and one is
only interested in ensuring that the target temperatures
are attained in the “average” which is possible using
integral action in the controllers.

5.2 Dynamic optimization

Unlike in static optimization problems, switching be-
tween regions can occur based on a future constraint
(Case C mentioned in the introduction to Section 5).
This has to be predicted based on an estimate of the
current state and the disturbances and prediction of
disturbances. However, it may be possible to use feed-
back solutions, for example based on self-optimizing
control. We explore this further by reverting to some
of the examples discussed previously.

Example 3, Explicit MPC, contd. In explicit MPC, the
problem of switching is addressed by using the esti-
mated or measured value of the current state (Pistikopoulos
et al., 2002). Each region of the state space partition
corresponds to a set of constraints that are active.
However, some of these could be future constraints
and so, there is no direct feedback connected from the
actual constraint, but only from the measurement (or
estimate) of the current state and the local feedback
controller.

Example 8, Minimum time driving, contd. It is clear
that the switch from regime A (acceleration) to regime
B (maximum speed) occurs when the maximum speed
is reached (case A). However, moving from regime
B to regime C (deceleration) is not trivial because it
is associated with a future constraint (case C). One
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solution is to use an off-line policy, i.e., start decel-
erating at timet2, which is however not robust and
may also result in infeasibility. Another solution is to
use feedback, based on the measurement of distance to
the finish. More generally, the idea of self-optimizing
control can be used to determine the most suitable
measurement or measurement combinationc, so that
the switching occurs whenc reaches a given value.

6. DISCUSSION

The approach of implementing optimal operation by
tracking the necessary conditions of optimality (NCO)
given by the Pontryagin Minimum Principle proposed
by Srinivasan and Bonvin (2007) is similar in spirit
to Paradigm 2. They refer to their scheme and the
conventional method of on-line optimizing control
(Paradigm 1) as implicit and explicit methods respec-
tively. However, this nomenclature can be misleading
as the pre-computed explicit solution to MPC is re-
ferred to as explicit MPC in literature and naturally
would be classified as an example of Paradigm 2.

7. CONCLUSIONS

We discussed with examples an alternate to the con-
ventional paradigm of on-line optimizing control, viz.,
using off-line computations and feedback solutions for
efficient on-line implementation. It may not be known
a priori if an alternate implementation of the optimal
solution following Paradigm 2 is possible for the given
problem and hence it is natural to analyze classes of
systems. The alternate paradigm was motivated with
several examples and demonstrated using a particular
case of linear programs. Current and future research
is focussed on wider classes of systems, including but
not limited to quadratic and general convex programs
and batch processes such as distillation. These ideas
can be extended to more general problems using local
linear, quadratic or convex approximations of the cost
function.
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