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Abstract: This paper deals with the use of a model-centric approach towards the definition 
of optimal electrodeposition schemes in the fabrication of nanometric multilayers 
materials with tailored properties. A model for such complex systems is used and 
validated against experimental data. These mathematical deposition models range from 
single depositions to alloys, and have the characteristic of having large number of 
parameters not available from literature or experiments. In this work the capabilities of 
modern modelling, simulation and optimization environments is exploited both for model 
development and parameter estimation and will be used in further optimization studies for 
fabrication improvement and control. Copyright © 2007 IFAC 
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1. INTRODUCTION 

The electrodeposition of iron-group alloys has been 
widely studied due to their interest as materials used 
in computer magnetic data storage and sensing 
(Osaka, 1997; Osaka, et al., 1998; Cooper et al., 
2005). Recently these materials have also received 
attention when they are layered with copper at the 
nanoscale. (Ross, 1994; Sun et al., 2005) Nanometric 
multilayers exhibit giant magnetoresistance (GMR), 
a change in the materials resistance with an applied 
magnetic field. In order to improve the GMR 
property, it is imperative to tailor and control the 
composition and the compositional gradient within 
each layer to improve plating schemes for the 
multilayer deposits.  

High-level equation-oriented declarative modelling 
languages have gained increased acceptance as the 
most appropriate tools to tackle the modelling 
process when full control over the scope and detail of 
the model is required (Foss et al., 1998). Most 
contemporary modelling languages have evolved 
into multi-purpose process-engineering software 

tools (modelling, simulation and optimization 
environments (MSOEs)). State-of-the-art MSOEs 
provide the modeller with a series of sophisticated 
tools and mechanisms that contribute enormously to 
an increase in the efficiency of the modelling 
process. 
 
Thus, we have recently proposed a novel model-
centric framework for integrated simulation, 
estimation/reconciliation and optimization of systems 
based on mechanistic process models (Rolandi and 
Romagnoli, 2005, 2006a, 2006b). By encapsulating 
the complex interactions at the interface level within 
a mechanistic model, describing the compositional 
gradients of each magnetic layer, the formulation of a 
model-centric strategy to support the experimental 
investigations will be considered in our approach. 
This unique integration establishes the foundation of 
the proposed strategy and will allow the tailoring and 
control of the composition within each layer. 

In this paper, a mathematical model, following 
Zhuang and Podlaha (2003), is used to describe the 
composition within the magnetic alloy layer. In iron-
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group alloy multilayers such as FeCoNi alloys 
separated by Cu layers, the anomalous kinetic 
deposition behaviour of the FeCoNi coupled 
mechanism and mass transport needs to be accounted 
for in order to simulate the deposit composition.  

Anomalous codeposition refers to the unexpected 
preferential deposition of the less noble metal (i.e. 
Fe). (Brenner, 1963) The coupled reaction kinetics 
have been described by an adsorption approach. 
(Matlosz, 1993). The less noble metal preferentially 
adsorbs onto the electrode surface and blocks the 
codeposition of the other iron-group elements, Co 
and Ni. In certain cases the less noble metal can also 
be accelerated and has been modelled by treating the 
more noble species as a catalyst (Zech, et al., 1998). 
Both features have been combined by Zhuang and 
Podlaha (2003) to predict a combined apparent 
inhibition and acceleration effect of the codeposition 
system. Since the reaction kinetics are dependent 
upon concentration, mass transport also plays a role 
when the driving force (i.e. applied potential or 
applied current) is large.  

Process models are subject to parametric uncertainty 
and experimental data is corrupted by random errors,  
hindering the accuracy and usefulness of model-
centric strategy. Consequently, in our approach, a 
validation step is undertaken in conjunction with the 
execution of parameter estimation studies. They rely 
on the maximum likelihood theory and require 
specifically generated set of experimental data. 
Laboratory data is analyzed to extract the coupled 
kinetic/diffusion information. 

2. MATHEMATICAL MODEL AND 
IMPLEMENTATION 

The reaction equations that occur for the NiCoFe 
ternary alloy are as follows 

                          Ni(II) + e  Ni(I)ad                      (1)        

                         Ni(I)ad + e  Ni ad                       (2)                                 

                   Co(II) + e  Co(I)ad ad                      (3)        

                         Co(I)ad + e  Co ad                      (4)        

                     Fe(II) + e  Fe(I)ad ad                      (5)        

                           Fe(I)ad + e  Fe ad                     (6)        

In addition to the above reactions, mixed metal 
intermediates are formed. 

             Co(II) + Ni(II) + e  CoNi(III)ad             (7) 

               CoNi(III)ad + e  Co + Ni(II)                (8)  

              Fe(II) + Ni(II) + e  FeNi(III)ad             (9) 

                  FeNi(III)ad + e  Fe + Ni(II)             (10) 

             Fe(II) + Co(II) + e  FeCo(III)ad           (11) 

                  FeCo(III)ad + e  Fe + Co(II)           (12) 

When the reactions are controlled by kinetics the 
rate, described in electrochemistry as the partial 
current densities, i, is dependent upon potential, E, 
rate constants, k, species concentrations in the 
electrolyte at the electrode surface C and adsorbed 
species .   Table 1 show the partial current density 
kinetic rate expressions used for NiCoFe ternary 
alloy deposition, assuming a Tafel rate law. 

Table 1 Partial current density kinetic rate 
expressions 

 

iNi,1 = - F kNi,1 e CNi(II) exp(-bNi,1E) 
iNi,2 = - F kNi,2 Ni(I)ad exp(-bNi,2E) 
iCo,1 = - F kCo,1 e CCo(II) exp(-bCo,1E) 
iCo,2 = - F kCo,2 Co(I)ad exp(-bCo,2E) 
iFe,1 = - F kFe,1 e CFe(II) exp(-bFe,1E) 
iFe,2 = - F kFe,2 Fe(I)ad exp(-bFe,2E) 
iCoNi,1 = - F kCoNi,1 e

2 CCo(II) CNi(II) exp(-bCoNi,1E) 
iCoNi,2 = - F kCoNi,2 CoNi(III)ad exp(-bCoNi,2E) 
iFeNi,1 = - F kFeNi,1 e

2 CFe(II) CNi(II) exp(-bFeNi,1E) 

iFeNi,2 = - F kFeNi,2 FeNi(III)ad exp(-bFeNi,2E) 
iFeCo,1 =-F kFeCo,1 e

2 CFe(II) CCo(II) exp(-bFeCo,1E) 
iFeCo,2 = - F kFeCo,2 FeCo(III)ad exp(-bFeCo,2E) 
 

The fraction of available surface sites ( e) is 
determined by taking into account the occupied 
surface coverage of metal ions.  

e = 1   Ni(I)ad   Co(I)ad   Fe(I)ad   CoNi(III)ad  
                 FeNi(III)ad   FeCo(III)ad                        (13) 

A one dimensional model describes the change of the 
species concentration in the electrolyte and predicts 
their surface concentration. The surface 
concentration in turn dictates the rate of reaction and 
thus the deposit composition. The domain of the 
model is from the surface of the electrode to the edge 
of the mass transport boundary layer, . 

The boundary layer is determined from the empirical 
Eisenberg eqn. (1954) for rotating cylinder electrodes 

               - 0.4 0.344 D 0.356 S - 0.7                (14) 

Where, D is the diffusion coefficient,  the kinematic 
viscosity and S the rotation rate. The diffusion flux of 
each species at the cathode surface is related to the 
electrochemical reaction. 
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The material balance of each species in the 
electrolyte is assumed to be at steady state and is 
governed by the change of the diffusional flux. A 
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Nernst boundary layer approach is taken assuming 
that there is no convection or migration within the 
boundary layer. 
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At the end of the diffusion layer the concentration of 
metal ions equals its bulk concentration 

                           CM(II) = Cb
M(II)                                           (19) 

The partial current densities are summed as follows: 

                             iNi = iNi,1 + iNi,2                                        (20) 
 

              iCo = iCo,1 + iCo,2 + iCoNi,1 + iCoNi,2              (21) 
 

iFe = iFe,1 + iFe,2 + iFeNi,1 + iFeNi,2 + iFeCo,1 + iFeCo,2      (22) 

and the weight percent  composition of the alloy is 
determined from the partial current densities and 
their molecular weight Mi . 

         
100  Ni%

FeFeCoCoNiNi

NiNi

iMiMiM
iM

          (23) 

 

         
100  Co%

FeFeCoCoNiNi

CoCo

iMiMiM
iM

         (24)
 

         
100  Fe%

FeFeCoCoNiNi

FeFe

iMiMiM
iM

          (25)
 

In our parameter estimation studies, the side reaction 
was not modelled, since the surface coverage of 
hydrogen is expected to be negligible and did not 
affect the final composition of the deposit, thus did 
not affect parameter estimation problem.  

The modelling work was carried out using gPROMS 
modelling language and embedded into our model-
centric framework for integrated simulation, 
estimation/reconciliation and optimization of systems 
which provides a complete environment for 
modelling/analysis of complex systems.  

The diffusion flux partial differential equations are 
solved using IPDAEs which is defined within 
gPROMS environment. A second order backward 
finite difference method is used as the numerical 
method for the distributed system with a number of 
finite elements of at least three hundred. Boundary 
layer thickness is used for the axial domain. The 
DASOLV used as a solver for the solution of mixed 
sets of differential equations in gPROMS is based on 
variable time step/variable order Backward 
Differentiation Formulae (BDF). 

Mathematical simulations to describe NiCoFe 
ternary deposition can be executed using different 
concentrations of the metals. An example of the 
capabilities of the model is shown in Figure 1, using 
an alloy electrolyte concentration of 0.025 M Co(II), 
0.2 M Ni(II) and 0.025 M Fe(II), and showing the 

metal weight percent compositions that are simulated 
vs. potentials. Results for the surface coverage of 
metals and current densities can also be obtained.  
 

 
Fig. 1. Simulation of Fe, Co and Ni metal weight 

percent composition in the alloy deposited at 
constant potential. 

The simulations using gPROMS of NiCoFe ternary 
alloy deposition and single metal depositions were 
performed successfully. Validation of the model is 
further achieved taking advantage of parameter 
estimation entity, within gPROMS, using 
experimental data. 

3. PARAMETER ESTIMATION 

3.1- Problem Definition 

In terms of our specific application, a considerable 
number of parameters, such as diffusion coefficients 
and kinetic parameters are involved in the model of 
this complex system under study. Consequently, in 
our approach, a validation step will be undertaken in 
conjunction with the execution of parameter 
estimation studies. We will rely on the maximum 
likelihood theory and will require a specifically 
generated set of experimental data.  In our 
formulation we propose the following general 
mathematical definition for the estimation problem: 

                    ttztz ,,~min
,,,

                 (26) 

           
],0[  ,0,,,,,, fttptutytxtxF   (27) 

              0,,,0,0,0,0 puyxxI           (28) 

              ],0[  ,,,,~
ftttztzt          (29) 

With 
                           maxmin                        (30) 

                          maxmin                        (31) 
          
                          maxmin                        (32) 

 
                             maxmin                        (33) 
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where t),  is a generic objective function. The 
symbol Z designates our experimental observations 
and will be considered explicitly in the objective 
function. The decision variables of the estimation 
problem are the vectors ,  and ; note that these 
parametric variables correspond to different features 
of the overall mathematical model, for example , 
are our kinetic and diffusion parameters which need 
to be estimated using the experimental data,  and  
are associated with the statistical information about 
the experimental observations (see below). and 
I denote, in general, the set of partial differential 
algebraic equations  encompassing the fundamental 
process model and the set of initial conditions 
respectively. In these equations x and y denote the 
differential and algebraic variables respectively, in 
addition u(t) are the set of input variables. 
Additionally, the variable t), which is intrinsic to 
the objective function, will be an explicit function of 
the model predictions z(t), the experimental 
observations tz~ , and the parametric variables and 
. Depending on the nature of t),  can either be 

the variance of the measurement errors or, simply, 
the weight of individual variables within this 
multivariable objective function. 
 
The form of the objective function is determined by a 
series of implicit and explicit assumptions made 
while defining a given parameter estimation 
problem. For instance, maximum likelihood (ML) 
estimation makes use of the information on the 
statistical distribution of the observations to derive 
an expression of the objective function. Assuming, 
that the random measurement errors are additive, 
independent and normally distributed, with zero 
mean and constant standard deviation, and the 
independent variables and unknown parameters are 
non-random, then the following objective function 
gives a maximum likelihood estimator: 

z~ , , =  
1

2
 

2 + .
2 +

z~
j .k

+ .

,

2

 (34) 

Not only this Equation capture the idea of 
maximising the likelihood of predicting the 
experimental set of measurements with great 
flexibility (or minimising the error between the 
experimental measurements and predicted values 
instead), but it also accommodates rigorously for 
situations where the common assumption of constant 
standard deviation (homoscedasticity) is violated 
(this occurs when the observed error variance 
increases proportionally, for example with the 
amplitude of the signal from the measuring device). 
Consider the following variance model  

                     
y222 ~z                           (35)   

  
The convenience of this equation is given by the fact 
that most conventional statistical variance models 
can be derived from it: homoscedastic (constant) 

constant relative 
heteroscedastic variance 0 <  < 1. It is important, at 
this point, to mention that the estimators and 
statistical variance models presented above are 
currently supported by the model-centric framework 
for integrated simulation, estimation/reconciliation 
and optimization of systems (described before) and 
will be used extensively in our approach. 

For this study a constant variance is used for 
experimental data measurements wh 2 = 2. 
Experimental measurement variances are found for 
current densities. Potential is used as adjusted control 
variable which in this case is time invariant since we 
consider steady state conditions.  

3.2- Parameter Estimation Study for Single Metal 
and Alloy Deposition 

Sensitivity analysis is performed prior to the 
parameter estimation in order to determine which 
parameters have greatest effect on the model 
predictions. Insensitive parameters can be 
disregarded from the parameter estimation problem, 
since a wide range of values can be used in their 
place. For the case of NiCoFe simulation, a 
parameter can be varied maintaining the rest 
constant, and monitoring the change of the weight 
percent composition of the metals and total current. 
The rate constants of nickel, cobalt and iron that 
participate in the single, elemental two-step 
mechanism (Mi(II) + e  Mads,i(I); Mads,i(I) + e  
M(s))  are the most sensitive parameters. The 
parameters of the mixed metal intermediate 
equations, (Mi(II) + Mj(II)  e  Mads,i,j(III); 
Mads,i,j(III) + e  Mi(s) + Mj(II))   are the least 
sensitive. 

Parameter estimations are performed using single 
metal deposition and alloy depositions. For single 
metal deposition estimations, two simulations are 
performed for concentration of cobalt of 0.025 M and 
0.1 M and another two simulations for concentrations 
of iron of 0.025 M and 0.1 M. To achieve 100% 
weight composition of cobalt or iron, the other metal 
concentrations are set to zero. For the alloy an 
electrolyte concentration consisting of 0.025 M 
cobalt, 0.2 M nickel and 0.025 M iron is used. 
Experimental data consisting of current densities are 
used to fit the parameters. The parameters which are 
estimated for the single metal deposition are rate 
constant kCo,1, kCo,2, kFe1, kFe2 and Tafel slopes bCo1, 
bCo2, bFe1, bFe2 . For the NiCoFe alloy the parameters 
estimated are the rate constants kNi,1 ,kNi,2, kCoNi,1, 
kCoNi,2 and the Tafel slopes bNi,1, bNi,2, bCoNi,1, bCoNi,2. 
The same procedure is performed for single metal 
and alloy parameter estimations. Table 2 shows the 
final optimum estimates obtained for the four single 
metal depositions. 
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Table 2 NLP optimization optimal results for single 
metal deposition 

Rate constants Inverse Tafel Slopes  
0.025M 

kCo1 9.61E-10 cm s -1 bCo1 13.58 V-1 
kCo2 6.76E-09 mol cm-2 s-1 bCo2 13.58 V-1 
kFe1 1.18E-25 cm s -1 bFe1 45.28 V-1 
kFe2 1.00E-25 mol cm-2 s-1 bFe2 45.28 V-1 

0.01 M 
kCo1 1.23E-12 cm s -1 bCo1 20.32 V-1 

kCo2 3.98E-09 mol cm-2 s-1 bCo2 20.32 V-1 
kFe1 2.64E-28 cm s -1 bFe1 57.48 V-1 
kFe2 1.28E-16 mol cm-2 s-1 bFe2 57.48 V-1 

Using these optimum parameters, simulations were 
performed, and compared to experimental data. 
Figure 2 shows the partial current density of Co at 
two different electrolyte concentration data. Figure 3 
reports the partial current density of Fe at two 
different electrolyte concentration data. 

 
Fig. 2. Partial Co current density simulation and 

experimental results comparison; bulk Co(II) 
concentration is 0.025M and 0.1M 

 

Fig. 3. Partial Fe current density simulation and 
experimental results comparison; bulk Fe(II) 
concentration is 0.025M and 0.1M 

Table 3, shows the final optimum estimates obtained 
for the alloy. 

Table 3 NLP optimization optimal results for alloy 
Ni(0.2M)Co(0.025M)Fe(0.025M). 

 
Rate constants       Inverse Tafel Slopes  

kNi1 2.07E-11 cm s-1 bNi1 18.2 V-1 

kNi2 5.03E-12 mol cm-2 s-1 bNi2 8.8   V-1 

kCoNi,1 6.17E-13 cm4 mol-1 s-1 bCoNi,1 18.7 V-1 

kCoNi,2 8.85E-13 mol cm-2 s-1 bCoNi,2 18.7 V-1 

Figure 4 shows the simulation results of estimated 
parameters for nickel current density of the Alloy 
electrolyte containing 0.025 M Co(II), 0.2 M Ni(II) 
and 0.025 M Fe(II).  

The graphical representations indicate an excellent 
prediction of the model, when compared to 
experimental data, for both single cobalt and iron 
deposition and nickel deposition during NiCoFe alloy 
fabrication.  

 
Fig. 4. Partial Ni current density simulation and 

experimental results comparison of the alloy. 

Further statistical analysis performed during the 
parameter estimation studies shows that the residuals 
are within the statistical limits (Chi-squared values) 
proving the goodness of the fit.  

3.3. Confidence Intervals and Regions  

Confidence intervals provide an indication of how far 
the estimate is expected from its true value (Beck and 
Arnold, 1977). Additionally, when two or more 
parameters are estimated in conjunction, confidence 
regions can be used to evaluate the correlation 
between parameters and their variation. This analysis 
and characterization steps are essential, especially 
when parameter uncertainty does exist and for model 
validation.  

While confidence intervals are specified for 
individual parameters as an upper and lower limit, 
confidence regions are given as hyper-ellipsoids 
when errors are assumed additive, zero mean and, 
normal. In addition, the covariance matrix should be 
known.  

                          
21 )()( rT bPb                    (36) 
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Where 1)1(2 XVXP T  and r2 gives an idea of the 
confidence on the intervals. The hyper-ellipsoid 
defined as before is centred on the estimated values 
of the parameters. 

Figures 5 and 6 shows the resulting 95% confidence 
ellipsoids and confidence intervals given by 
gPROMS for rate constants and inverse Tafel slopes. 
Figure 5 results are from the estimated parameters 
for single metal deposition of Co(0.1 M) where the 
high inclination of the ellipsoid indicates that, in fact, 
there is a strong correlation between the rate 
constants and the inverse Tafel slope. Figure 6 shows 
the confidence ellipsoid for the alloy results, where 
as expected there is less correlation and small 
uncertainty between the two inverse Tafel slopes.  

 

Fig. 5. Confidence intervals and ellipsoid for rate 
constant kCo1 and Tafel slope bCo1  

 
Fig. 6. Confidence intervals and ellipsoid for Tafel 
slopes bNi2 and bNi1. 

4. CONCLUSION 

Taking advantage of the functionalities of the 
capabilities of modern modelling, simulation and 
optimization environments, this paper describes the 
initial steps towards the development of a model 
based framework for ternary alloy deposition 
processes.  

Since the model includes a considerable number of 
unknown parameters, such as rate constants, Tafel 
slopes and diffusion coefficients, parameter 

estimation techniques using the maximum likelihood 
theory were tested and found to be successful for our 
studies. Statistical analysis techniques are also found 
useful for error analysis and uncertainty 
characterization.  

Once final validated models are obtained they can be 
used for further manufacturing of interesting 
deposition schemes. Not only is this procedure 

it can be used for other electrodeposition systems.  

Although, the results presented here are for steady-
state conditions, they pave the way for further 
expansions of the model to include non-steady state 
behaviour. The model then could be used to predict 
concentration gradients, particularly important for the 
nanometric size multilayers. The use of experimental 
design techniques to further reduce the confidence 
regions are also planned and current work is 
underway in this direction. 
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