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Abstract: This work focuses on identification of the parameters of the nonlinear stochastic

Kuramoto-Sivashinsky equation (KSE), a fourth order nonlinear stochastic partial differential

equation (PDE), that describes the fluctuation of surface height of a sputtering process includ-

ing two surface micro-processes, diffusion and erosion. To perform the system identification,

we initially formulate the nonlinear stochastic KSE into a system of infinite nonlinear stochas-

tic ordinary differential equations (ODEs) by using Galerkin’s method. A finite-dimensional

approximation of the stochastic KSE is then constructed that captures the dominant mode

contribution to the state and the evolution of the state covariance of the stochastic ODE

system is derived. Then, a kinetic Monte-Carlo (kMC) simulator is used to generate surface

snapshots during process evolution to obtain values of the state vector of the stochastic ODE

system. Subsequently, the state covariance of the stochastic ODE system that corresponds to

the sputtering process is computed based on the kMC simulation results. Finally, the model

parameters of the nonlinear stochastic KSE are obtained by using least-squares fitting so that

the state covariance computed from the stochastic KSE process model matches that computed

from kMC simulations. Simulations are performed to demonstrate the effectiveness of the

proposed parameter identification approach. Copyright c©2007 IFAC

Keywords: system identification, nonlinear stochastic PDEs, sputtering processes, kinetic

Monte-Carlo simulations

1. INTRODUCTION

Modeling and control of thin film micro-structure in

deposition and sputtering processes has attracted sig-

nificant research efforts to improve the quality of thin

films of advanced materials used in a wide range

of applications, e.g., microelectronic devices, op-

tics, micro-electro-mechanical systems (MEMS) and

biomedical products. Sputtering processes are widely

used in the thin film and semiconductor fabrication to

remove material from the surface of solids through the

impact of energetic particles. In a sputtering process,

the surface is directly shaped by the microscopic sur-

face processes (e.g., erosion, diffusion and surface re-

action), which are stochastic processes. Therefore, the

stochastic nature of sputtering processes must be fully

considered in the modeling and control of such pro-

1 Corresponding author (email: pdc@seas.ucla.edu).

cesses. The desire to understand and control the thin

film micro-structure has motivated extensive research

on fundamental mathematical models describing the

microscopic features of surfaces formed by surface

micro-processes, which include 1) dynamical Monte-

Carlo methods, and 2) stochastic partial differential

equations (PDEs).

Using fundamental process models, systematic meth-

ods for real-time control and optimization of thin

film growth processes to achieve desired material

micro-structure have been developed. Specifically, a

methodology for feedback control of thin film surface

roughness using kinetic Monte-Carlo (kMC) models

was developed in (Lou and Christofides, 2003). How-

ever, the need to perform system-level analysis and

the design and implementation of model-based feed-

back control systems calls for closed-form stochas-

tic process models. This has motivated recent re-
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search on the development of methods for feedback

control of surface roughness based on linear (Lou

and Christofides, 2005; Ni and Christofides, 2005)

and nonlinear (Lou and Christofides, 2006) stochastic

PDE process models. Also, methods for multiscale

optimization to achieve both macroscopic and micro-

scopic objectives have been developed (Varshney and

Armaou, 2005).

Although stochastic PDE models are suitable for

model-based controller design, the construction of

stochastic PDE models for thin film growth processes

directly based on microscopic process rules is, in

general, a very difficult task. Motivated by this, a

systematic identification approach was developed for

linear stochastic PDEs (Lou and Christofides, 2005).

Furthermore, a method for construction of linear

stochastic PDE models for thin film growth using first

principles-based microscopic simulations was devel-

oped and applied to construct stochastic PDE models

for thin film deposition processes in 2-dimensional

lattices (Ni and Christofides, 2005). However, nonlin-

earities exist in many material preparation processes in

which surface evolution can be modeled by stochastic

PDEs. A typical example of such processes is the sput-

tering process whose surface evolution is described by

the nonlinear stochastic Kuramoto-Sivashinsky equa-

tion (KSE). In a simplified setting, the sputtering pro-

cess includes two types of surface micro-processes,

erosion and diffusion. The nonlinearity of the sput-

tering process originates from the dependence of the

rate of erosion on a nonlinear sputtering yield func-

tion (Cuerno et al., 1995). A method for nonlin-

ear control of stochastic PDEs was recently devel-

oped (Lou and Christofides, 2006). However, Avail-

able methods for identification and construction of lin-

ear stochastic PDEs require the analytical solutions of

state covariances (Lou and Christofides, 2005; Ni and

Christofides, 2005), which prevent their direct appli-

cations to nonlinear stochastic PDEs. This motivates

the research on development of methods for identifi-

cation of nonlinear stochastic PDE process models.

This work focuses on identification of the parameters

of the nonlinear stochastic KSE process model that de-

scribes the fluctuation of surface height of a sputtering

process including two surface micro-processes, diffu-

sion and erosion. To perform the system identification,

we initially formulate the nonlinear stochastic KSE

into a system of infinite nonlinear stochastic ODEs

by using Galerkin’s method. A finite-dimensional ap-

proximation of the stochastic KSE is then derived that

captures the dominant mode contribution to the state.

The evolution of the state covariance of the stochastic

ODE system is subsequently derived. Then, we use a

kMC simulator to generate surface snapshots for dif-

ferent instants during process evolution to obtain val-

ues of the state vector of the stochastic ODE system.

Subsequently, the state covariance of the stochastic

ODE system that corresponds to the sputtering process

is computed based on the kMC simulation results. Fi-

nally, the model parameters of the nonlinear stochastic

KSE are obtained by using least-squares fitting so

that the state covariance computed from the stochastic

KSE process model matches that computed from kMC

simulations. Computer simulations are performed to

demonstrate the effectiveness of the proposed param-

eter identification approach.

2. PROCESS DESCRIPTION

We consider a 1-D-lattice representation of a crys-

talline surface in a sputtering process, which includes

two surface micro-processes, erosion and diffusion.

The solid-on-solid assumption is made which means

that no defects or overhangs are allowed in the pro-

cess. The microscopic rules are as follows: a site, i, is

first randomly picked among the sites of the whole lat-

tice and the particle at the top of this site is subject to:

a) erosion with probability 0 < f < 1, or b) diffusion

with probability 1− f .

If the particle at the top of site i is subject to erosion,

the particle is removed from the site i with probability

Pe ·Y (φi). Pe is determined as
1

7
times the number of

occupied sites in a box of size 3× 3 centered at the

site i, which is shown in Fig. 1. There is a total of 9

sites in the box. The central one is the particle to be

considered for erosion (the one marked by •). Among

the remaining 8 sites, the site above the central site

of interest must be vacant since the central site is a

surface site. Therefore, only 7 of the 8 sites can be

occupied and the maximum value of Pe is 1. Y (φi) is

the sputtering yield function defined as follows:

Y (φi) = y0 + y1φ 2
i + y2φ 4

i (1)

where y0, y1 and y2 are process dependent constants

and φi is the local slope defined as follows:

φi = tan−1

(
hi+1 −hi−1

2a

)
(2)

where a is the lattice parameter and hi+1 and hi−1 are

the values of surface height at sites i + 1 and i − 1,

respectively.

Fig. 1. Schematic of the rule to determine Pe. Pe is

defined as
1

7
times the number of occupied sites

in a box of size 3 × 3 centered at the particle

on the top of site i; Pe = 1 in the left figure

and Pe =
4

7
in the right figure, where the particle

marked by • is on the top of site i.

If the particle at the top of site i is subject to diffusion,

one of its two nearest neighbors, j ( j = i + 1 or i−
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1) is randomly chosen and the particle is moved to

the nearest neighbor column with probability wi→ j as

follows:

wi→ j =
1

1+ exp(βΔHi→ j)
(3)

where ΔHi→ j is the energy difference between the

final and initial states of the move, β =
1

kBT
and H

is defined through the Hamiltonian of an unrestricted

solid-on-solid model as follows:

H =
(

J
a2

) L

∑
k=1

(hk −hk+1)n (4)

where J is the bond energy, L is the total number of

sites in the lattice and n is a positive number. In the

simulations presented in this paper, we use n = 2 and

βJ = 2.0.

3. STOCHASTIC PDE MODEL OF THE

SPUTTERING PROCESS

The sputtering process is a stochastic process. The

equation for the height fluctuations of the surface in

this sputtering process was derived in (Lauritsen et
al., 1996) and is a stochastic Kuramoto-Sivashinsky

equation of the following form:

∂h
∂ t

= −ν
∂ 2h
∂x2

−κ
∂ 4h
∂x4

+
λ
2

(
∂h
∂x

)2

+ξ (x, t) (5)

subject to periodic boundary conditions:

∂ jh
∂x j (−π, t) =

∂ jh
∂x j (π, t), j = 0, · · · ,3 (6)

and the initial condition:

h(x,0) = h0(x) (7)

where ν , κ , and λ are parameters related to surface

mechanisms (Lauritsen et al., 1996), x ∈ [−π,π] is the

spatial coordinate, t is the time, h(x, t) is the height

of the surface at position x and time t. ξ (x, t) is a

Gaussian noise with the following expressions for its

mean and covariance:

〈ξ (x, t)〉 = 0

〈ξ (x, t)ξ (x′, t ′)〉 = σ2δ (x− x′)δ (t − t ′)
(8)

where σ is a constant, δ (·) is the dirac function, and

〈·〉 denotes the expected value. Note that the noise

covariance depends on both space x and time t.

To study the dynamics of Eq.5, we initially consider

the eigenvalue problem of the linear operator of Eq.5,

which takes the form:

Aφ̄n(x) = −ν
d2φ̄n(x)

dx2
−κ

d4φ̄n(x)
dx4

= λnφ̄n(x)

n = 1, · · · ,∞
d jφ̄n

dx j (−π) =
d jφ̄n

dx j (+π); j = 0, · · · ,3;

(9)

where λn denotes an eigenvalue and φ̄n denotes an

eigenfunction. A direct computation of the solution

of the above eigenvalue problem yields λ0 = 0 with

ψ0 = 1/
√

2π , and λn = νn2 − κn4 (λn is an eigen-

value of multiplicity two) with eigenfunctions φn =
(1/

√
π)sin(nx) and ψn = (1/

√
π)cos(nx) for n =

1, · · · ,∞. Note that the φ̄n in Eq.9 denotes either φn or

ψn. From the expression of the eigenvalues, it follows

that for fixed values of ν > 0 and κ > 0, the number of

unstable eigenvalues of the operator A in Eq.9 is finite

and the distance between two consecutive eigenvalues

(i.e. λn and λn+1) increases as n increases.

In the stochastic KSE model of Eq.5, there are four

model parameters, ν , κ , λ , and σ2 to be determined.

To present the method that we use to identify the pa-

rameters of Eq.5, we first derive a nonlinear stochastic

ODE approximation of Eq.5 using Galerkin’s method.

To this end, we first expand the solution of Eq.5 in

an infinite series in terms of the eigenfunctions of the

operator of Eq.9 as follows:

h(x, t) =
∞

∑
n=1

αn(t)φn(x)+
∞

∑
n=0

βn(t)ψn(x) (10)

where αn(t), βn(t) are time-varying coefficients. Sub-

stituting the above expansion for the solution, h(x, t),
into Eq.5 and taking the inner product with the adjoint

eigenfunctions, φ ∗
n (z) = (1/

√
π)sin(nz) and ψ∗

n (z) =
(1/

√
π)cos(nz), the following system of infinite non-

linear stochastic ODEs is obtained:

dαn

dt
= (νn2 −κn4)αn +λ · fnα +ξ n

α(t)

n = 1, . . . ,∞
dβn

dt
= (νn2 −κn4)βn +λ · fnβ +ξ n

β (t)

(11)

where the expressions for fnα and fnβ can be found in

(Lou and Christofides, 2006) and are omitted here for

brevity.

ξ n
α(t) =

π∫
−π

ξ (x, t)φn(x)dx ; ξ n
β (t) =

π∫
−π

ξ (x, t)ψn(x)dx (12)

The covariances of ξ n
α(t) and ξ n

β (t) can be computed

by using the following result:

Result 1: If (1) f (x) is a deterministic function, (2)

η(x) is a random variable with 〈η(x)〉 = 0 and co-

variance 〈η(x)η(x′)〉 = σ2δ (x − x′), and (3) ε =∫ b
a f (x)η(x)dx, then ε is a random number with

〈ε〉= 0 and covariance 〈ε2〉= σ2
∫ b

a f 2(x)dx (Åström,

1970).

Using Result 1, we obtain 〈ξ n
α(t)ξ n

α(t ′)〉= σ2δ (t − t ′)
and 〈ξ n

β (t)ξ n
β (t ′)〉 = σ2δ (t − t ′).
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4. PARAMETER IDENTIFICATION OF THE

NONLINEAR STOCHASTIC PDE MODEL

While the parameters of stochastic PDE models for

many deposition processes and sputtering processes

can be derived based on the corresponding master

equations, which describe the evolution of the prob-

ability that the surface is at a certain configuration;

for all practical purposes, the stochastic PDE model

parameters should be identified by matching the pre-

diction of the stochastic PDE model to that of kinetic

Monte-Carlo simulations due to the approximations

made in the derivation of the stochastic PDE model

from the master equation (Haselwandter and Vveden-

sky, 2002; Lou and Christofides, 2005).

In this section, we present a method to identify the

parameters of the nonlinear stochastic PDE model

of the sputtering process by using the data from the

kinetic Monte-Carlo simulations of the same process.

4.1 Model reduction

Owing to its infinite-dimensional nature, the system

of Eq.11 cannot be directly used as a basis to design a

parameter identification algorithm that can be imple-

mented in practice (i.e., the practical implementation

of such algorithms designed on the basis of this system

will require the computation of infinite sums which

cannot be done by a computer). Instead, we will iden-

tify model parameters using a finite-dimensional ap-

proximation of this system. Subsequently, we rewrite

the system of Eq.11 as follows:

dxs

dt
= Λsxs + fs(xs,x f )+ξs

dx f

dt
= Λ f x f + f f (xs,x f )+ξ f

(13)

where xs = [α1 · · · αm β1 · · · βm]T , x f =[αm+1 βm+1

· · · ]T , Λs=diag[λ1 · · · λm λ1 · · · λm], Λ f = diag[λm+1

λm+1 λm+2 λm+2 · · ·], fs(xs,x f ) = [ f1α(xs,x f ) · · ·
fmα(xs,x f ) f1β (xs,x f ) · · · fmβ (xs,x f )]T , f f (xs,x f ) =

[ fm+1α(xs,x f ) fm+1β (xs,x f ) · · · ]T , ξs = [ξ 1
α · · · ξ m

α ξ 1
β

· · · ξ m
β ], ξ f = [ξ m+1

α , and ξ m+1
β · · ·]. The dimension

of the xs subsystem is 2m and the x f subsystem is

infinite-dimensional.

We note that the subsystem x f in Eq.13 is infinite-

dimensional. Neglecting the x f subsystem, the follow-

ing 2m-dimensional system is obtained:

dx̃s

dt
= Λsx̃s + fs(x̃s,0)+ξs (14)

where the tilde symbol in x̃s denotes that this state

variable is associated with a finite-dimensional sys-

tem.

4.2 System of deterministic ODEs for state covariance

The system of Eq.14 is a finite-dimensional nonlinear

stochastic ODE system including all four parameters,

ν , κ , λ , and σ2 of the of stochastic PDE model of

Eq.5. We derive the system of deterministic ODEs that

describes the dynamics of the covariance matrix of xs,

which is defined as Ps = 〈xsxT
s 〉.

Consider the evolution of the state of Eq.14 in a small

time interval, [t, t +Δt] as follows (Chua et al., 2005):

xs(t +Δt) = (Is +Δt ·Λs)xs(t)+
Δt ·λ fs(xs,0)+Δt ·ξs(t)

(15)

where Is is a 2m× 2m identity matrix. To study the

dynamics of Ps, we approximate the dirac function,

δ (·) involved in the covariances of ξs by
1

Δt
, assume

that ξs(t) is independent of xs(t), and neglect the

terms with Δt2. The following equation for Ps can be

obtained:

Ps(t +Δt) = Ps(t)+Δt · {ΛsPs(t)+Ps(t)ΛT
s +

λ
〈
xs(t) fs(xs,0)T + fs(xs,0)xs(t)T 〉

+Rs}
(16)

where Rs is the intensity of ξs and Rsδ (t − t ′) =
〈ξs(t)ξ T

s (t)〉. In this work, Rs = σ2I2m×2m.

By setting Δt → 0, we have the following system of

deterministic ODEs for the state covariance of the

system of Eq.14:

dPs(t)
dt

= ΛsPs(t)+Ps(t)ΛT
s +Rs+

λ
〈
xs(t) fs(xs,0)T + fs(xs,0)xs(t)T 〉 (17)

Eq.17 is a finite-dimensional nonlinear deterministic

ODE system. Note that the linear part of this equation

is the Lyapunov equation used in covariance controller

design for linear systems (Hotz and Skelton, 1987).

4.3 Parameter identification

The four parameters of the stochastic PDE process

model of Eq.5 can be identified from Eq.17. Specif-

ically, the parameters ν and κ are included in the

matrix Λs of Eq.17 and the parameter λ is associated

to the nonlinear term of Eq.17. To this end, we need

to obtain Ps and
〈
xs(t) fs(t)T + fs(t)xs(t)T

〉
, which are

both functions of xs, to perform the parameter iden-

tification. The data of xs = [α1(t) · · · αm(t) β1(t) · · ·
βm(t)]T can be obtained from kinetic Monte-Carlo

simulation of the same sputtering process. The kinetic

Monte-Carlo simulation algorithm and the method to

compute αn(t) and βn(t) (for n = 1,2, · · · ,m) from sur-

face snapshots for the sputtering process can be found

in (Lou and Christofides, 2005; Lou and Christofides,

2006) and are omitted here for brevity.

Once xs is obtained from the kinetic Monte-Carlo sim-

ulation, fs(xs,0) = [ f1α(xs,0) · · · fmα(xs,0) f1β (xs,0)
· · · fmβ (xs,0)]T can be computed as follows:

fnα(xs,0) =
1

2

π∫
−π

φn(x)·
(

m

∑
j=1

α j(t)
dφ j

dx
(x)+

m

∑
j=0

β j(t)
dψ j

dx
(x)

)2

dx

(18)
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fnβ (xs,0) =
1

2

π∫
−π

ψn(x)·
(

m

∑
j=1

α j(t)
dφ j

dx
(x)+

m

∑
j=0

β j(t)
dψ j

dx
(x)

)2

dx

;n = 1,2, · · · ,m.

To compute the expected values for xs(t) · xs(t)T

and xs(t) fs(xs,0)T + fs(xs,0)xs(t), multiple kinetic

Monte-Carlo simulation runs for the same sputtering

process should be performed and the profiles of xs(t) ·
xs(t)T and xs(t) fs(xs,0)T + fs(xs,0)xs(t) should be av-

eraged to obtain the expected values. The expected

value of xs(t) · xs(t)T is Ps(t). The time derivative of

Ps(t) can be computed by using values of Ps at t and

t +Δt as follows:

dPs(t)
dt

=
Ps(t +Δt)−Ps(t)

Δt
(19)

where Δt is a small time interval.

Using the values of dPs(t)/dt, Ps(t) and 〈xs(t) fs(xs,0)T

+ fs(xs,0)xs(t)T 〉 in Eq.17 obtained through kMC sim-

ulation runs at a set of discrete time instants (t =
t1, t2, · · · , tk), Eq.17 becomes a system of linear alge-

braic equations for the four model parameters. When

the number of equations is larger than the number of

parameters to be identified, the least-squares method

can be used to determine the model parameters.

To simplify the development, we propose to formu-

late the system of algebraic equation for least-squares

fitting of the model parameters by using only the diag-

onal elements of the system of Eq.17. The system of

ODEs that corresponding to the diagonal elements of

Eq.17 is as follows:

d〈α2
n (t)〉
dt

= 2(νn2 −κn4)·
〈α2

n (t)〉+2λ · 〈αn(t) · fnα(t)〉+σ2

d〈β 2
n (t)〉
dt

= 2(νn2 −κn4)·
〈β 2

n (t)〉+2λ · 〈βn(t) · fnβ (t)〉+σ2

n = 1, . . . ,m

(20)

where fnα and fnβ are defined in Eq.18 for n =
1,2, · · · ,m. Note thta values of the 〈α2

n (t)〉, 〈α2
n (t)〉,

αn(t) · fnα(t), and βn(t) · fnβ (t) at t = t1, t2, · · ·, tk are

obtained through kMC simulations of the sputtering

process. The system of Eq.20 is, therefore, a linear

system with respect to ν , κ , λ and σ2. It is straightfor-

ward to reformulate Eq.20 in the form of the following

linear system to identify ν , κ , λ and σ2 using least-

squares method:

b = Aθ (21)

where θ = [ν κ λ σ2]T and the expressions for matrix

A and b are omitted for brevity. The least-squares

fitting of the model parameters can be obtained as

follows:

θ̂ = (AT A)−1AT ·b (22)

5. SIMULATION RESULTS

In this section, we present an application of the

method of system identification to the nonlinear

stochastic KSE model of a sputtering process. We

consider the sputtering process that occurs on a lat-

tice containing 200 sites. Therefore, a = 0.0314. The

sputtering yield function, Y (φi) is a nonlinear function

of φi, which takes the form of Eq.1. y0, y1 and y2 are

chosen such that Y (0) = 0.5, Y (π/2) = 0 and Y (1) = 1

(Cuerno et al., 1995).

We first compute the profiles of the state covariance

and the expected values for αn · fnα and βn · fnβ from

kMC simulations of the sputtering processes. αn · fnα
and βn · fnβ are computed by using Eq.18 with m = 10

for n = 1, 2, · · ·, 10. The expected profiles are the

averages of profiles obtained from 10000 independent

kMC simulation runs. The covariance profiles of α1,

α3, α5, α7, and α9 are shown in Fig.2 (top) and

the profiles for the expected values of α1 f1α , α3 f3α ,

α5 f5α ,α7 f7α , and α9 f9α are shown in Fig.2 (bottom).

Similar profiles are observed for the covariance of βn
and βn fnβ , and are omitted here for brevity.
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Fig. 2. Profiles of the state covariance 〈α2
n (t)〉 (top)

and the expected value for αn · fnα(t) (bottom)

for n=1, 3, 5, 7, and 9.

Since we use m = 10, the first 2m = 20 modes

are used for the system identification. Specifically,

d〈α2
n (t)〉/dt, d〈β 2

n (t)〉/dt, 〈α2
n (t)〉, 〈β 2

n (t)〉, 〈αn(t) ·
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fnα(t)〉, and 〈βn(t) · fnβ (t)〉 are evaluated at the first

150 discrete time instants available in the data ob-

tained from kMC simulations. Therefore, in the least-

squares fitting formulations of Eqs.21 and 22, A is a

3000×4 matrix, b is a 3000×1 vector and θ = [ν κ λ
σ2]T . The values of the four parameters obtained from

least-squares fitting are ν = 2.76× 10−5, κ = 1.54×
10−7, λ = 3.06×10−3, and σ2 = 1.78×10−5.

To validate the model identification method, we com-

pute the expected surface roughness from the stochas-

tic KSE model of Eq.5 using the identified pa-

rameters and compare it to that from the kMC

simulations. The surface roughness, r, is computed

as r(t) =
√

1
2π

∫ π
−π [h(x, t)− h̄(t)]2dx, where h̄(t) =

1
2π

∫ π
−π h(x, t)dx is the average surface height. The ex-

pected surface roughness, 〈r〉= 1
n ∑n

i=1 ri , is computed

from the stochastic KSE and the kMC simulation by

averaging surface roughness profiles obtained from

100 and 10000 independent runs, respectively. The

simulation result is shown in Fig.3 (top). It is clear that

the identified model parameters result in consistent

expected surface roughness profile from the stochastic

KSE model of Eq.5 and that from the kMC simula-

tor for the sputtering process. However, there is still

observable difference between the two profiles. This

might be caused by the error introduced into the iden-

tification process by the noise contained in the data

generated by the kMC simulator. Filtering techniques

may be useful to reduce noise from kMC simulators

(Lou and Christofides, 2003) and improve the fidelity

of the identified parameters, which is an interesting

topic for future research. In this work, we decide to

compensate this error by increasing the value of σ2

by 40%, from 1.78× 10−5 to 2.49× 10−5. The com-

parison of the two profiles after this compensation is

shown in Fig.3 (bottom). It is clear that the two profiles

are close, which demonstrates the effectiveness of the

proposed system identification method.
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