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Abstract: This work is aimed at studying the complex relationships between vital decisions 
in manufacturing environments facing uncertainty. Maintenance, testing and job 
scheduling decisions are inter-related and their relative costs govern the decision making. 
Presented here is a formal mathematical representation of the integrated decision making 
problem and a discussion on the computational complexity. Furthermore, a systematic 
decomposition/simplification of the problem is proposed, whenever applicable. An 
exemplary system of re-entrant flow station is chosen for illustrations. Rigorous 
probability theories, Approximate Dynamic Programming and Heuristic rules are 
combined, to come up with good decision making. Cpyright © 2007 IFAC  
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1. INTRODUCTION  
 
Most manufacturing environments are faced with 
decision making under uncertainty. Moreover, most 
of the crucial decisions like machine maintenance 
scheduling, job scheduling, testing, etc. are 
interdependent. In complex manufacturing 
environments like semiconductor wafer fabs, delays 
due to testing and shutdowns translate directly into 
huge loss in revenue. Despite the obvious inter-
dependence, these decisions are mostly treated 
independent of one another, in the existing literature. 
 
General machine maintenance problems have been 
formulated and solved as Markov Decision Processes 
(MDP). In case of preventive maintenance, the states 
are not fully observable. This problem is discussed in 
(Smallwood and Sondik, 1973). Past researches in 
wafer-fabrication scheduling are mostly aimed at 
global job-shop scheduling. Gupta and Shivakumar  
(2006) provide a comprehensive overview of 
scheduling techniques in a semiconductor 
manufacturing process. Attempts have also been 
made in the past to capture, specifically, the re-
entrant flow structure of the problem. Choi and 
Reveliotis (2003) provide an analytical formulation 
for the scheduling problem in re-entrant lines, using 
a generalized stochastic Petri Net model. Shen and 

Leachman (2003) have proposed a stochastic 
dynamic programming model for scheduling new 
releases. They have captured the re-entrant flow 
structure characteristic of wafer manufacturing by a 
stochastic linear quadratic (SLQ) model. To address 
the fact that, not every intermediate can be tested 
during manufacturing, many statistical control 
studies have been conducted for optimal sampling 
policies. One such work is by Nurani et al. (1994). 
They have suggested ways to develop an optimal 
sampling strategy for defect inspection in semi-
conductor wafers using real life data from different 
fabs. Their work gives useful insights into modeling 
of process drifts and defect-yield relationship. With 
the rich literature available on independent studies of 
these decisions, we adopt the objective of studying 
how these decisions affect one another. By means of 
a hypothetical one machine problem with re-entrant 
flow, we analyze how combining the decisions would 
result in better overall performance. We also propose 
a new adaptive grid based method for solving 
Partially Observable Markov decision processes 
(POMDPs) in order to improve upon the 
performance of existing heuristic based methods.  
 
The rest of the paper is organized as follows. Section 
2 contains a detailed description of the system. 
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Section 3 presents the mathematical formulation and 
the computational complexity of the resulting 
problem. In section 4 we talk about the proposed 
solution methods and present the conclusions in 
section 5. 
  
 

2. PROBLEM DESCRIPTION 
 
 
2.1 System details 
 
 
A re-entrant flow shop is characterized by a job 
going through the same operation more than once. 
Thus, jobs at various stages of operation compete for 
the same resources. For the present work (please see 
Fig. 1), a machine is selected that is capable of 
depositing identical layers, one layer at a time.  It 
operates on a single wafer at a time. The product of 
interest is a wafer with 3 identical layers deposited. 
So the wafers are fed one at a time. While one wafer 
is being operated on, the others are waiting at the 
entry point called ‘queue’. The queue at any time can 
contain 3 types of intermediate/unprocessed jobs  
a0 = bare wafer or unprocessed job 
a1 = wafer with 1 layer  
a2 = wafer with 2 layers 
 

a1, a2
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scrap
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machine
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a3

test

scrap  
Fig. 1. Schematic representation of a single work-

station facilitating re-entrant flow 
 
The cost of machine operation is substantial and 
hence, a2 is a more expensive intermediate than a1, 
which is more expensive than a0. We assume that 
there exists unlimited raw material supply, all final 
products are tested, and negligible time is spent on 
test and maintenance, for which some costs are 
incurred. 
 

 
2.2 Process drift 
 
 
The machine is prone to degradation with time and 
hence produces bad layers once in a while. The 
defect generation is random and machine in good 
working condition may also produce defects but with 
much lower frequency as compared to when it is 
mal-functioning. In essence, the good condition 
differs from bad on the basis of rate of defect 
generation.  
 
In their statistical studies, Nurani et al. (1994)    
show that the number of defects per unit time 
fluctuates about a constant mean at the beginning and 

then keeps increasing with time. The different states 
of the machine health are not directly observable and 
the only information that rests with the operator is 
whether a defect has occurred or not. To model the 
time dependency of the defect rate, the machine 
performance is approximated with a Markov 
switching model containing 3 regimes as in Figure 2. 
The transition probabilities of the Markov Chain are 
as shown in Figure 3. The 3 regimes differ in terms 
of their defect rate. Regime 1 is the best possible 
machine state with lowest defect rate, while regime 3 
is the absorbing state, i.e., the system remains at 
regime 3 until a maintenance job is performed to 
bring it back to the best state.  
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Fig. 2.  3-regime machine model with Markov 

switching 
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Fig. 3. Underlying Markov Chain at the work-station 
 
In terms of 3 layer product of our interest, we assume 
that a defect in any layer renders the entire product 
defective. No distinction is made between a defect in  
the 1st layer and a defect in the 3rd layer in this study. 
Since   the cost of maintenance is high, defect 
generation is inevitable. Intuitively, it should be best 
to run expensive job (a2) when the machine is close 
to regime 1 (with a lower chance of making a defect). 
Cheaper intermediates (a0 and a1) should be 
processed when the defect rate is high. To keep 
defects from propagating, these cheaper 
intermediates must be tested and reworked/scrapped 
when found defective. Keeping this intuition in mind, 
we present the mathematical formulation of the 
problem in the following section. 
 
 

3. PROBLEM FORMULATION 
 
 
3.1 Mathematical representation 
 
 
System State  
The system at any time is fully characterized by the 
following  
x = [n1 n2 d1 d2 regime] 
 
n1 - number of a1 in the queue  
n2 - number of a2 in the queue  
d1 - number of defective a1’s in the queue 
d2 - number of defective a2’s in the queue   
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regime - regime of machine operation 
  

The state space would consist of all possible 
combinations of the above parameters. For instance, 
if the queue length is limited to 5 for n1 and 5 for n2, 
then n1 can have 6 possible values (0, 1, 2..,5). 
Similarly, n2 can have 6 possible values. For a 
particular value of n1 say 3, d1 can hold 4 possible 
values from 0,1,2,3. For the given queue lengths 
then, the number of possible combinations for [n1 n2 
d1 d2] is 441. With 3 regimes for machines, the size 
of state space is 1323 (441 x 3). If there is a common 
queue with length 10, the size of the state space 
becomes 3003 states (1001 x 3). 
 
Action/ decisions   
u = [schedule  test  maintain] 
schedule - job scheduling decision, whether to admit 
a0 ,a1 or a2 
test – binary, test (1) or not (0)  
maintain – binary, maintain the machine(1) or not (0)  
Size of action space = 3 x 2 x 2 = 12   
 
Uncertainty 
a). Machine regime switching - As shown in Figure 
3, the machine can switch between regimes with 
certain probabilities in a non-deterministic manner. 
 

b). Defect generation - Defect generation is 
probabilistic and the defect probability is set by the 
regime in which the machine is operating.  
 

c). Error propagation- Since all the intermediates are 
not tested, the queue might contain defective 
intermediates, designated as d1 and d2 in the state 
description. Probability that a defective intermediate 
is picked and operated upon is given by q: 

1

1

n
d

q =                        For a1 being operated 

2

2

n
dq =                 For a2 being operated 

     
Objective 
A profit measure is maximized. In this study we look 
to maximize infinite horizon discounted profit/ 
reward: 
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where, 
γ = discounting factor         (0.99)  
Cp = product price               (1000)  
Cm = cost of maintenance    (20*Cp ) 
CT = cost of test                   (0.05*Cp) 
Ca0 = cost of raw material    (0.01*Cp) 
CR = cost of a run all            (0.1*Cp) 
 
The values indicated in the parenthesis are parameter 
values for all simulation purposes throughout this 
work. These values are reasonably chosen to 
represent the trade-offs between different cost heads 
in a typical manufacturing environment. 
All I’s (Ipt, Imt, ITt, Ia0t) are binary and are equal to 1 
when a non-defective product is produced, when a 
maintenance job is run, when a job is tested and 
when a0 is run at time t, respectively. Since 

scheduling, testing, and maintenance are part of  the 
overall decision making, they should be chosen so 
that the overall profit is maximized.  
 
The above mentioned problem falls under the vast 
domain of Markov Decision Processes and can be 
solved as a discounted infinite horizon problem using 
value iteration proposed by Bellman (Bertsekas, 
1995), for reasonable size problems. Problem size is 
governed by queue length. The Bellman equation is 
as shown below,  
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                                                                               (2)                               
 

For finite queue sizes, the analysis would give an 
optimal stationary policy for each state. The biggest 
challenge arises from the fact that a part of the state 
is not exactly known to the decision-maker. This is 
discussed in the following section. 
 
 
3.2 Partial Observability 

 
 
As mentioned earlier the decision-maker does not see 
the regime that the machine is in, at any time other 
than when the machine is just serviced. Also, a part 
of the state is not known to the decision-maker since 
d1 and d2 are the undetected defects accumulated in 
the system. To sum up, the elements that are the part 
of observation are n1, n2 and defect status of each 
tested product (1 if a defect occurred, 0 otherwise). 
This partial observability led us to look into the 
literature for Partially Observable Markov Decision 
Processes, which are briefly described here.  
 
POMDP description 
A partially observable Markov decision process 
(POMDP) describes a stochastic control process with 
partially observable (hidden) states. Formally, it 
corresponds to a tuple (S, A, Θ, T, O, R, Π): 
 
• S – set of Markov states / state space 
• A – set of actions / action space 
• Θ – set of observations / observation space 
• T – p(s’|s,a)  transition probability  
        Probability of being in s’ at t+1, when action a 

is taken from state s at time t 
• O-  p(o|s’,a) observation probability 
      Probability of getting observation o at time t+1, 

when action a is taken at time t and state s’ is 
reached at time t+1 

• R – r(s,a,s’)  
    Reward when action a is taken in state s at time t 

to reach state s’ at time t+1 
•   Π – p(s) Initial probability distribution at t=0  

 
 
Concept of Information state MDP 
 

 The POMDP problem shown above can be 
represented as an equivalent information state MDP 
where the information state contains   
• a prior belief b0 on states S at time 0 
• a complete history of actions and observations 

starting from time 0 
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Using Baye’s rule, it turns out that a belief state b(s), 
i.e., the conditional probability of being in state s at 
time t, is a sufficient information state for our 
problem. The conditions for a sufficient 
informationstate can be found in (Hauskrecht, 2000). 
Therefore, the Bellman equation (2) of section 3.1 
becomes  
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                                                                                 (3) 
Belief-states can be updated via the following 
recursive Bayesian approach:  
 

),|(

)(),|'(),'|(
)'('

abop

sbasspasop
sb Ss

∑
∈=                          (4) 

 
The partial observability, thus converts the original 
problem into a continuous state Fully Observable 
MDP (FOMDP), where the state dimension is one 
less than the size of the state space. The belief-states 
are continuous since they contain the probability 
values, which are continuous numbers between 0 and 
1. This characteristic of the problem poses 
computational challenge as discussed further. 
 

Computational complexity 
• For the problem described in section 3.1, the 

continuous state MDP formed would have a state 
dimension of 1322 with 12 actions. A problem of 
this magnitude is intractable, even with 
approximate solution methods for POMDPs. 
Furthermore, it would increase exponentially with 
increase in queue length and so will the 
complexity. 

 

• To work around the partial observability, state 
estimation methods are in place. But in this case, 
state estimation techniques are equally unwieldy, 
since the number of hidden states corresponding to 
a unique observation state is large. Simulation 
based crude estimates perform hardly better than 
the periodic decisions based on experience.  

 
 

4. DECOMPOSING THE PROBLEM 
 
 

Given the large computational complexity, we 
propose to decompose the problem by exploiting the 
basic problem structure. The machine maintenance 
decision is affected by testing, since the results of 
testing give information about machine regime, 
which is not directly observable. Also, testing and 
maintenance decisions directly affect job scheduling, 
while the reverse is not true. Job scheduling does not 
have a direct impact on machine maintenance in this 
particular setup. But test decisions are weakly 
dependent on the job being processed, owing to the 
need for picking out defective intermediates.  
Therefore, we aim at optimizing the maintenance and 
test decisions independent of job scheduling 
decision. The optimal policy thus obtained may then 
be used for good job release schedules. Therefore, 
we discuss the basic machine maintenance problem 
without considering the test decision, as a start. 
 

4.1 Machine maintenance  
 
As described in section 2.2, the proposed workstation 
can operate in any of the 3 regimes, transitions 
among which are governed by the underlying 
Markov Chain. First, let us assume that we test the 
product every time. Then this ‘sub-system’ is also a 
POMDP with the following parameters: 
 

State s – machine state                                S= {1,2,3}                             
Action a – binary; maintain (1), do not maintain (0)                 
A= {0, 1} 
Observation – binary; defect (1) , no defect (0)                      
Θ ={0,1} 
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Exact solution methods for this 2-dimensional 
continuous state MDP can be found in existing 
literature (Sondik, 1978). However, the exact 
methods soon become computationally challenging 
with increase in the problem size. Since we wanted to 
extend the analysis to bigger problems, in this work, 
we focus our attention on approximate methods for 
solution of the POMDPs.  
 
Approximate methods  
There is a slew of value function approximation 
methods reported in the POMDP literature. One of 
the latest reviews in this area is by Hauskrecht, 
(2000). We chose to use two of the available 
approximate methods and propose a refinement of 
these heuristic methods for machine maintenance 
problems as a special case of POMDPs, called 
adaptive grid method. The approximate methods 
employed in this study are as follows:  

• Fully observable MDP (FO-MDP) value function 
approximation 

• Grid based approximation with K-nearest 
neighbors interpolation 

• Adaptive grid method – an approximate dynamic 
programming approach 

 
FO-MDP value function approximation 
This method is based on approximating the belief 
state value function using the FOMD’s optimal value 
function.  
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where )(
^

bV is the value function approximation for 

the POMDP and )(* sVMDP  is the optimal value 
function for the 3 state FOMDP, obtained using 
value iteration (equation (2)). The decision policy 
can be extracted in real time by the following 
equation 
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where b’ is the future belief state based on present 
belief state bt and all possible observations.  
 
Grid-based approximation with K-nearest neighbors 
interpolation 
In this method, the entire state space is divided into 
equidistant grid points in order to discretize it. These 
grid points form the state space of the MDP problem, 
which can be solved as an FOMDP using standard 
methods. When states that do not belong to the 
discrete state space are visited during the Bellman 
iteration, the value function is approximated using K-
nearest neighbors interpolation scheme (Hauskrecht, 
2000), based on the Euclidean distance norm. For 
this problem, 4 nearest neighbors were used for 
interpolation.  
 
Adaptive grid based approximation  
The value function for POMDPs is proven to be 
piecewise linear and convex, (Sondik, 1978). The 
new adaptive grid method proposed here makes use 
of this property coupled with the problem structure 
that one state is better than the other.  
 
In the continuous state domain, the point where the 
decision making changes is crucial and several 
mathematical programming approaches have been 
used to locate the break point for optimal solution 
(Smallwood and Sondik, 1973). The adaptive grid 
method is aimed at improving an approximate 
solution by selectively meshing the ‘sensitive region’ 
around the break point. Fig. 4 shows a 2 states (1,2), 
2 actions (α1, α2)  problem with 1 dimensional 
continuous state. The optimal value function (max 
over α1 and α2) is plotted against the belief state.  
 
Let us say that the optimal break point lies at a belief 
state value of Bo as shown. For states between p1 and 
Bo, optimal action is α1, while α2 is optimal for the 
rest of the state space. Also, state 1 is the desirable 
state and state 2 is the absorbing state with high 
defect rate. After action α2, the system returns to 
state 1. Since an approximate method/heuristic 
would produce a sub-optimal policy, let us say that 
the sub-optimal solution gives a break point at Bso. 
Depending upon the method used, we can generate a 
precision band as shown by the shaded region. This 
region must include the optimal break point Bo (yet 
unknown). This shaded region, marked by l1 and l2 
now forms our new state space. Since the system 
returns to the state 1 upon action α2, p1 is a part of 
the state space. For all the rest of the points, actions 
are fixed. For states lying between p1 and l1, action α1 
is the optimal decision. For states between l2 and p2 , 
action α2 is the optimal decision.  Now, this reduced 
state space can be discretized to run the value 
iteration. During the value iteration, certain actions 
can take us to states that lie outside the reduced state 
space. Due to the problem structure, these states 
would lie in the vicinity of the reduced state space, 
called ‘neighborhood’ (depicted in the fig. 4 by 
dashed lines). This is when the piecewise linear 
structure of the value function proves helpful. The 
value function corresponding to states in this 

neighbourhood can be linearly interpolated between 
2 extreme points 
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Fig. 4.Adaptive grid illustration for 2 states-2 actions  
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Fig. 5. Value function representation for 3-state 

problem 
 
Figure 5 shows the 3-state case, described earlier in 
this section. The probability of being in state 1 and 2 
is plotted on x and y axes respectively. Value 
function is on z-axis. The value function is a 
combination of 3 planes (1,2,3 in figure 5), and the 
break lines signify the change in the decision. For 
this 3 state problem, the FOMDP optimal solution 
sets an upper bound on the performance. The 
decision rule in FOMDP recommends running a 
maintenance job every time we are in regime 2 or 3 
with the optimal value function of  
 

]576305763073606[* =MDPV  
 
We establish the precision band for adaptive grid 
method based on FOMDP value function 
approximation, since it requires the least 
computational effort. The plot in Fig. 6 sums up the 
performance of the approximate methods. The 
Adaptive Grid method performs best while the 
number of states is very small. This suggests better 
performance with significantly less computational 
effort. This analysis is easily extendable to more 
machine regimes and more actions.  The profit 
values, in Fig. 6 are shown for an average over 100 
experiments for each sub-optimal policy pertaining to 
a particular method.  Values in parenthesis show the 
size of state space which is a measure of the 
calculations were carried out in MATLAB 7.0.4 
environment on a Pentium(R) 3.00 GHZ machine.  
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Fig. 6.  Results obtained by using the POMDP 

solution methods for machine maintenance.  
 
 
4.2 Incorporating the test decision  
 
 
The test decision can be incorporated in the 
maintenance problem of the previous section, in a 
straightforward manner. The belief state update rule 
and the action space changes as shown below 
 
Belief state update  
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Action space = {(0,0), (0,1), (1,0), (1,1)} 
where {0,0} mean no test , no maintenance  
          {1,1} mean test and maintain and so on  
 
Figure 7 shows the difference in performance, when 
we decide to test all the time, and when we make 
testing a decision. It is seen that testing all the time is 
not the best policy.  
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Fig. 7.  Comparison of objective values obtained 

before and after incorporating the test decision.   
 
 
4.3 Job Scheduling  
 
 
After obtaining a sub-optimal maintenance and test 
schedule independent of job scheduling, a heuristic 
rule can be employed for the job scheduling. As 
mentioned earlier in section 1.1, the expensive 
intermediates must be processed, when the machine 
is close to a good regime  

 

5. CONCLUSIONS 
 
 
A complex decision making problem in an uncertain 
manufacturing environment has been addressed by 
formalizing it as a POMDP. A systematic 
decomposition scheme is proposed by taking 
advantage of the one way interaction among the 
decisions. Approximate solution methods exploiting 
the inherent problem structure are employed to 
generate sub-optimal policies to work around the 
computational complexity. However, most 
manufacturing facilities have multiple machines 
operating in series or parallel. It is highly unlikely 
then, that the maintenance and job scheduling 
decisions would be made on the basis of one work-
station. Therefore, extending this analysis to multiple 
machines is an obvious candidate for future work in 
this area. Furthermore, we have ignored the time of 
operation considerations in this study, which is where 
scheduling, testing and maintenance decisions 
directly affect one another.  An iterative scheme that 
successively improves the decision making appears 
to be one feasible direction toward solution.  
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