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Abstract: The present paper analyzes the energy dynamics of process networks and/or
staged processes whereby the material recycle streams interconnecting the units/stages
take on the additional role of energy carriers. In the presence of large energy input and
output flows, the networks considered are shown to exhibit a dynamic behavior with
multiple time scales, with the variables in the energy balance evolving over a short time
horizon, and the variables in the material balance exhibiting both fast and slow transients.
A singular perturbation analysis is employed for the derivation of reduced order models
for the fast and slow dynamics. Finally, an illustrative example and numerical simulation
results are presented. Copyright 2007 IFAC
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1. INTRODUCTION

Process integration (through material and energy recy-
cle) is the rule rather than the exception in the process
industries, leading to increased efficiency and lower
capital costs. Improved economics come, however, at
the cost of dynamic complexity: the presence of recy-
cle streams introduces feedback interactions between
the individual units, and gives rise to intricate, overall
network dynamics (Hangos et al., 1999; Pushpavanam
and Kienle, 2001; Kiss et al., 2002).

In our previous work (Kumar and Daoutidis, 2002;
Baldea et al., 2006), we have analyzed the material
balance dynamics of several classes of networks with
large material recycle streams. Using singular pertur-
bation arguments, we demonstrated that their dynamic
behavior exhibits several time scales. Also, we pro-
posed a method for the derivation of reduced order
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models describing the dynamics in the fast and slow
time scale, and a hierarchical controller design frame-
work which accounts for this time scale separation.

In the present paper, we focus on the energy dynamics
of tightly integrated networks in which large energy
flows are present and material recycle streams take on
the additional role of energy carriers. Representative
examples of such high energy throughput systems in-
clude high purity distillation columns, multiple effect
evaporators (Seider et al., 1999) and reactor-heat ex-
changer networks (Baldea and Daoutidis, 2006). We
present a modeling framework that allows document-
ing rigorously that such networks exhibit a time scale
separation both in the material and the energy dy-
namics. We describe a model reduction strategy based
on a singular perturbation analysis, and highlight the
control implications of this two time scale behavior.
Finally, we illustrate the theoretical concepts with an
example and numerical simulation results. Through-
out our derivations, we use the standard order of mag-
nitude notation O(.).
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2. MODELING OF NETWORKS WITH HIGH
ENERGY THROUGHPUT
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Fig. 1. A network with high energy throughput

We consider the network in Figure 1, consisting of
N units/stages and a single material recycle stream.
Let Fo denote the feed flowrate, Fi, i = 1, . . . , N
the outlet flowrate from the ith unit, R the recycle
flowrate (with the associated specific energies Hi,
i = 1, . . . , N, R) and let Qin and Qout be two en-
ergy flows (e.g., convective flow, heat generation by
reaction or radiant heating) in and out of the network.
Assuming that individual units are modeled as lumped
parameter systems and that kinetic and potential en-
ergy contributions are negligible, the mathematical
model that describes the energy balance of the net-
work can be written in the form:

θ̇1 = FoHo + RHr − F1H1 + Qin

...
θ̇i = Fi−1Hi−1 − FiHi

...
θ̇N = FN−1HN−1 − RHr − FNHN − Qout

(1)

with θi being the enthalpies of units i = 1, . . . , N .

Equation 1 can be written in vector form as:

θ̇ =
∑

i=0,N

γiFiHi +
N−1∑
i=1

γiFiHi + γrRHr+

γin
q Qin + γout

q Qout

(2)

with θ = [θ1 . . . θi . . . θN ]T and γi, γ
j
q being appropri-

ately defined vectors.

Let us now denote by ui = Fi/Fi,s and ur = R/Rs

the dimensionless (possibly manipulated) inputs cor-
responding to the material flowrates, and define the
ratios ki = Fi,s/Rs = O(1), i = 1 . . . N − 1. We
also consider that the recycle flowrate R is much larger
than the network throughput, i.e., Fos/Rs = ε1 � 1,
where the subscript s denotes steady-state values. This
feature is introduced for the sake of completeness
(with respect to our previous work), although the main
result of this work does not depend on it.

With the above notation, Equation 2 can be written as:

θ̇ =
∑

i=0,N

γiFi,suiHi +
1
ε1

Fos

N−1∑
i=1

γikiuiHi

+
1
ε1

FosγrurHr + γin
q Qin + γout

q Qout

(3)

Using our previous results (Kumar and Daoutidis,
2002; Baldea et al., 2006) to explicitly capture the

stiffness due to the large recycle in the material bal-
ances, the overall model of the network becomes:

ẋ = f(x, θ) +
∑

i=0,N

gi(x, θ)ui+

1
ε1

N−1∑
i=1

kigi(x, θ)ui +
1
ε1

gr(x, θ)ur

θ̇ =
∑

i=0,N

γiFi,suiHi +
1
ε1

Fos

N−1∑
i=1

γikiuiHi+

1
ε1

FosγrurHr + γin
q Qin + γout

q Qout

(4)

with x being the material balance variables.

Let us now concentrate on the energy dynamics of the
system (4) and observe that the specific energies of the
external and internal material flows, Hi, i = 1, . . . , N
and Hr can be expressed as a sum of two terms, an
enthalpy term ei(x, θ) associated with the heat capac-
ity of the stream, and an entropy-like term si(x, θ)
that captures (e.g., through the use of latent heats)
any potential phase changes with respect to the phase
of the feed stream Fo (typical are evaporation and
condensation) occurring in the network. Specifically,
we can write

Hi = ei(x, θ) + si(x, θ)

Note that since the terms si denote a phase change
with respect to the phase of the feed, we have so =
0. Furthermore, note that, in general, latent heats of
vaporization are very high, and as such, the entropy-
like terms will dominate the above sum, namely, we
can write that (the dependence of ei and si on x
and θ will be henceforth implied rather than explicitly
denoted, for the sake of simplifying the notation):

ei

si
=

1
νi

ε � 1

with νi = O(1), i = 1, . . . , N .

Based on the above, and by denoting ε2 = ε · ε1, the
generic model (4) becomes:

ẋ = f(x, θ) +
∑

i=0,N

gi(x, θ)ui

+
1
ε1

N−1∑
i=1

kigi(x, θ)ui +
1
ε1

gr(x, θ)ur

θ̇ = γo(x, θ)Fosuoeo + γNFNsuNeN (1 +
1
ε
νN )

+
1
ε1

Foski

[
N−1∑
i=1

γiuiei + γrurer

]

+
1
ε2

Foski

[
N−1∑
i=1

γiuieiνi + γrurerνr

]

+γin
q Qin + γout

q Qout

(5)

We now make the following assumptions regarding
the operation of the network:

(1) The network material input and output streams
are of the same phase. Equivalently, sN = 0.
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(2) In order to supply the necessary heat for a phase
change, the energy flows in and out of the net-
work and the latent heat of the phase change of
the internal streams are of comparable magni-
tude, i.e.,

Qin =
1
ε2

ωin and Qout =
1
ε2

ωout

with ωin = O(1) and ωout = O(1).
(3) If no phase change occurs, the magnitude of the

energy flows in and out of the network is similar
to the energy flow corresponding to the internal
material streams, i.e.,

Qin =
1
ε1

ωin and Qout =
1
ε1

ωout

Based on the above assumptions, an overall steady-
state energy balance for the network indicates that
the absolute values of the energy flows in and out
of the network must be of comparable magnitude,
i.e., |Qout,s|/|Qin,s| = k∗

q = O(1). Also, according
to the last two assumptions the network (4) has a
high energy throughput, since in either of the assumed
cases, the energy flow through the network due to the
energy flows in and out of the network will be much
larger than the energy flow associated with the small
material input/output streams.

Under the above assumptions, the model of (4) be-
comes:

ẋ = f(x, θ) +
∑

i=0,N

gi(x, θ)ui

+
1
ε1

N−1∑
i=1

kigi(x, θ)ui +
1
ε1

gr(x, θ)ur

θ̇ = γo(x, θ)Fosuoeo + γNFNsuNeN

+
1
ε1

Foski

[
N−1∑
i=1

γiuiei + γrurer

]

+
1
ε2

Foski

[
N−1∑
i=1

γiuieiνi + γrurerνr

]

+
1
ε2

[
γin

q ωin + γout
q ωout

]

(6)

Thus, in what follows, we focus on systems with high
energy throughput of the form of 6, or more generally,
systems of the form :

ẋ = f(x, θ) + Gs(x, θ)us+
1
ε1

Gl(x, θ)ul

θ̇ = φ(x, θ) + Γs(x, θ)us+
1
ε1

Γl(x, θ)ul

+
1
ε2

Γ̂l(x, θ)ul +
1
ε2

Γ(x, θ)ω

(7)

with x ∈ IRn denoting the vector of the state variables
in the material balances and θ ∈ IRN the vector of
enthalpies. us ∈ IRms

is a vector of scaled input vari-
ables that correspond to the small material flowrates,

ul ∈ IRml

is a vector of scaled inputs corresponding
to the large material flowrates, ω corresponds to the
energy flows, f and φ are vector functions and Gs,

Gl, Γs, Γl, Γ̂l and Γ are matrices of appropriate di-
mensions.

The model in Equation 7 includes two small singular
perturbation parameters, ε1 and ε2, which indicates a
potential three time scale behavior for the dynamics
of such networks. The rational approach for address-
ing the control of stiff, multiple time scale systems
such as the one in Equation 7 involves the properly
coordinated synthesis of separate fast and slow com-
ponents of the control system, so that stability, output
tracking and disturbance rejection can be obtained for
the overall system. The design of such controllers and
the closed-loop analysis should be performed on the
basis of separate reduced-order models, that describe
the dynamics in the fast and slow time scales. This is
addressed in the section that follows.

3. NONLINEAR MODEL REDUCTION AND
CONTROL

Note that ε2 = ε · ε1 and hence ε2 � ε1. Thus, let us
define the fast time scale τ2 = t/ε2, and rewrite the
model (7) in this fast time scale. Let us also consider
the limit ε2 → 0, or, equivalently, the case of an
infinitely high energy throughput. In this limit, we
obtain:

dx
dτ2

= 0

dθ

dτ2
= Γ̂l(x, θ)ul + Γ(x, θ)ω

(8)

which represents a description of the fast dynamics of
the network, involving only the variables θ that pertain
to the energy balance.

While the large internal material flowrates do not
affect the total material holdup of the network or the
holdup of any of the C components, the total enthalpy
of the network will be affected by the large flows ω,
and, therefore, it can be verified that the steady-state
conditions that correspond to Equation 8 are linearly
independent. Also, it is evident that the fast energy
dynamics described by Equation 8 are only influenced
by the large energy flows ω and by the flowrates of the
large internal material streams, ul. The observations
above indicate that upon setting ω (and possibly a
subset ul \ ûl of the large flow rates, with ûl denoting
the flow rates that are not set by feedback control 3 ),
by appropriate control laws, the Jacobian matrix

∂

∂θ
[Γ̂l(x, θ)ul + Γ(x, θ)ω]

is nonsingular, and the equations 0 = Γ̂l(x, θ)ul +
Γ(x, θ)ω can be solved for the quasi-steady-state val-
ues θ� = k(x, ûl) of the enthalpies (or temperatures)

3 Note in the sequel that the flow rates of the large material streams,
ul are the only manipulated inputs available to control the fast
component of the material balance dynamics, and hence only a
subset of these inputs can and should be used to address control
objectives related to the energy balance.
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of each unit. Substituting the solution θ� in the model
(also accounting for the fact that only ûl flowrates
remain available after imposing the aforementioned
control laws), we obtain a description of the dynamics
of the network after the fast temperature “boundary
layer”

ẋ = f(x,k(x, ûl)) + Gs(x,k(x, ûl))us (9)

+
1
ε1

Gl(x,k(x, ûl))ûl

θ̇ = 0

or, after rearranging the model in order to group the
available large and small flowrates,

ẋ = f̃(x) + G̃s(x)us +
1
ε1

G̃l(x)ûl (10)

θ̇ = 0

The model in Equation 10 is still stiff owing to the
presence of flowrates of different magnitudes. Follow-
ing a similar model reduction method it can be verified
that the intermediate dynamics of the network, that
evolve in the time scale τ1 = t/ε1 will be of the form

dx
dτ1

= G̃l(x)ûl (11)

and that the reduced-order model of the slow dynam-
ics is described by a DAE system of the form:

ẋ = f̃(x) + G̃s(x)us + B(x)z (12)

0 = Ḡl(x)ûl

Owing to the potential presence of three distinct scales
in their dynamic behavior, the control of such net-
works should be addressed in a hierarchical manner.
Energy-related control objectives are to be addressed
in the fast time scale τ2, where ω and a subset of
ul are available as manipulated inputs (Equation 8).
Note that from an application point of view, the set
of manipulated inputs in the fast time scale comprises
oftentimes of only the large energy flows Qi. Simple,
distributed controllers for the stabilization (and fast
disturbance rejection) of unit temperatures are a typ-
ical choice at this level. The control objectives in the
intermediate time scale τ1 (Equation 11) must be ad-
dressed using the large inputs ûl , as the inputs us have
no effect on the fast dynamics. These objectives in-
clude, e.g., the stabilization of material holdups in the
individual units, and can be addressed in a distributed
fashion, typically using simple linear controllers. On
the other hand, the slow dynamics that characterize
the overall network behavior (e.g., the evolution of
product purity) are typically only driven by the small
flowrates us. Consequently, the objectives pertaining
to the operation of the entire network are to be ad-
dressed in the slow time scale.

4. DYNAMICS OF HIGH PURITY
DISTILLATION COLUMNS

High purity distillation columns are multi-staged sep-
aration systems that rely on a high internal recycle for

increasing the purity of the distillate/bottoms streams.
The material balance dynamics was shown to ex-
hibit a two-time scale behavior in (Kumar and Daou-
tidis, 2003). The present example aims to analyze the
energy dynamics of such columns.

Consider a distillation column with N trays (numbered
from top to bottom), to which a saturated liquid con-
taining a mixture of two components (1 and 2) with
mole fractions x1f , x2f , respectively, is fed at (mo-
lar) flowrate F0 and temperature To on tray Nf . The
heavy component 2 is removed at the bottom from
the reboiler at a flowrate B, while the light compo-
nent 1 is removed at the top from the condenser at a
flowrate D. In this column, a large (compared to the
feed, distillate and bottom product flowrates) vapor
boilup V and liquid recycle R are used to attain a high
purity of the products. We model the heat transfer in
the reboiler and condenser by using heat duties and
denote by Qr and QC the heat duties in the reboiler
and the condenser, respectively. We assume that the
relative volatilities of the components are constant,
and hence, that the phase equilibrium on tray i is given
by : y1,i = α1x1,i

1+(α1−1)x1,i
We consider that the heat

capacities Cp,l and Cp,v of the liquid and vapor phases
are constant. Under the above assumptions, a standard
dynamic model of the column is obtained:

ṀC = V − R − D

ẋ1,D =
V

MC
(y1,1 − x1,D)

˙TC =
1

MCCp,l
[V (CpV T1+

2∑
j=1

yj,1λj − Cp,lTC) − QC ]

...

ẋ1,i =
1

Mi
[V (y1,i+1 − y1,i) + R(x1,i−1 − x1,i)]

Ṫi =
1

MiCp,l
[V (Cp,vTi+1 +

2∑
j=1

yj,i+1λj) − V (Cp,vTi

+

2∑
j=1

yj,iλj) + RCp,l(Ti−1 − Ti)]

...

(13)

ẋ1,Nf
=

1

MNf

[V (y1,Nf +1 − y1,Nf
) + R(x1,Nf−1 − x1,Nf

)

+F (x1,Nf−1 − x1,Nf
)]

ṪNf
=

1

MNf
Cp,l

[V (Cp,vTNf +1 +

2∑
j=1

yj,Nf +1λj)

−V (Cp,vTNf
+

2∑
j=1

yj,Nf
λj)

+RCp,l(TNf−1 − TNf
) + FCp,l(To − TNf

)]

...
ṀB = R − V + F − B

ẋ1,B =
1

MB
[R(x1,N − x1,B) − V (y1,B − x1,B)

+F (x1,N − x1,B)]

˙TB =
1

MBCp,l
[RCp,l(TN − TB) + FCp,l(TN − TB)

+V Cp,lTB − V (Cp,vTB +

2∑
j=1

yj,Bλj) + QB ]
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where MC , x1,D, y1,D, and TC are the molar liquid
holdup, liquid mole fraction, vapor mole fraction of
component 1 and the temperature in the condenser,
Mi, x1,i, y1,i and Ti are the molar liquid holdup, liq-
uid mole fractions, vapor mole fractions of component
1 and temperature on tray i and MB , x1,B , y1,B , and
TB are the corresponding holdup, liquid mole frac-
tions, vapor mole fractions and temperature in the
reboiler and λj is the latent heat of vaporization of
component j, j = 1, 2.

The presence of a large molar liquid recycle R implies
an equally large molar vapor boilup V at the nominal
steady state. On the other hand, the feed flow rate
F , the distillate flow rate D and the bottom product
flow rate B are of the same order of magnitude.
Therefore, we can define ε1 = (Fs/Rs) � 1 and
κ = Vs/Rs = O(1), where the subscript s refers to
the nominal steady state. Let us also define the scaled
internal flowrates V̄ = V/Vs and R̄ = R/Rs.

The latent heat of the vapor phase is typically very
large, and the entropy-like term Cp,v +

∑2
j=1 yj

λj

T
(with λ being the latent heat of vaporization) is much
larger than the heat capacity of the liquid phase. Thus,
e.g., for tray 1, we can write:

Cp,l(
Cp,v +

∑2
j=1 yj,1

λj

T1

)
s

= ε � 1

the index s again denoting steady-state values. By the
same argument, a similar relation holds true for the
other trays. In order to supply sufficient energy for the
liquid phase to be vaporized, the energy input of the
reboiler, QB , must be of the same order of magnitude
as the energy flow associated with the vapor phase
leaving the reboiler, that is

QB,s(
1
ε1

Fsκ(Cp,v +
∑2

j=1 yj,B
λj

TB
)
)

s

= ωB = O(1)

Likewise, in order to condense the vapor phase in the
condenser, its entire latent heat must be removed, and
the condenser heat duty and the energy flow associated
with the vapor phase leaving the first tray must be of
similar magnitude:

QC,s(
1
ε1

Fsκ(Cp,v +
∑2

j=1 yj,1
λj

T1
)
)

s

= ωC = O(1)

The evident implication of the above observations is
that the amount of energy carried by the vapor stream
from the bottoms of the column to the top is much
larger than the amount of energy carried by the liquid
reflux and, implicitly, than that carried by the streams
F , D and B, and thus the column has a high energy
throughput from the reboiler to the condenser. Let us
now denote Q̄C = QC/QC,s and Q̄B = QB/QB,s.
With the above notation, the model of the distillation
column can be put in the form of Equation 7. Details

of the modeling and model reduction procedure will
be omitted for brevity.

For a simulation study we considered a distillation
column for the separation of a mixture containing
80% (molar) normal-pentane (NP) and 20% 2-methyl
butane (2MB), fed at a flowrate of 360 kmol/hr. It is
desired that both distillation products be obtained at
high purity (99.9% 2MB in the distillate and 99.9%
NP in the bottoms). The column has 39 trays (the
feed entering above tray 13) and is operated at atmo-
spheric pressure. Trays are spaced at 0.7 m, the col-
umn is 1.5m in diameter and the weir height is 0.05m.
The nominal distillate flowrate is 69.79 kmol/hr. The
column was modeled with AspenPlus, using the rig-
orous radfrac column model, in conjunction with
the Redlich-Kwong Soave equation of state for prop-
erty estimation. Steady-state calculations indicated a
reflux ratio of 87.67 (or, equivalently, a reflux rate
6119 kmol/hr). This is a consequence of the difficult
separation problem posed by the two close-boiling
components. Subsequently, we used Aspen Dynamics
for time domain simulations. A basic control system
was implemented with the sole purpose of stabilizing
the (open-loop unstable) column dynamics. Specifi-
cally, the liquid levels in the reboiler and condenser
are controlled using, respectively, the bottoms prod-
uct flowrate and the distillate flowrate and two pro-
portional controllers, while the total pressure in the
column is controlled with the condenser heat duty and
a PI controller. A controller for product purity was not
implemented.

Dynamic simulations were aimed at capturing the
multiple time scale behavior documented in the theo-
retical analysis presented above. Figures 2–4 show the
evolution of the mole fraction of 2MB and of the tem-
perature in the column reboiler and on selected col-
umn trays for a step rise in the heating agent flowrate
in the reboiler. Notice that this change is equivalent
to modifying the reboiler heat duty and, according to
our analysis, acts upon the energy dynamics in the
fast time scale. Indeed, as expected, the temperatures
exhibit a fast transient in their behavior (with a sub-
sequent slow approach to a new steady-state value),
while the mole fractions (slow variables) only display
a slow evolution towards the new steady state. Figure
6 shows the evolution of the temperature in the column
reboiler and on the column trays for a step rise in
the feed flowrate. According to our theory, this distur-
bance influences the slow material balance dynamics
and has very little impact on the fast energy dynamics
of the column. Indeed, the process parameters vary
over a long time horizon. Moreover, the changes in
the tray temperatures are small (Figure 6), as expected,
confirming the analysis results.
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Fig. 2. Temperature and 2MB mole fraction in the
reboiler for a rise of the heating agent flowrate
from 549630.0 kg/h to 600000 kg/h

Fig. 3. 2MB mole fraction on the column trays for a
rise of the heating agent flowrate from 549630.0
kg/h to 600000 kg/h

Fig. 4. Temperature on the column trays for a rise of
the heating agent flowrate from 549630.0 kg/h to
600000 kg/h
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