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Abstract: As reported in the literature, Wiener models have emerge as an appealing
proposal for nonlinear processes representation due to their simplicity and the
property of being valid over a larger operating region than a LTI model.
In this article, we propose a methodology to analyzed the robustness of a typical
control scheme. To perform this analysis, we use a parametric description for
the Wiener system. This model allows to describe the uncertainty as a set
of parameters for the linear and the nonlinear blocks. Then, the linear block
uncertainty is considered as a parameter-affine-dependent model and the nonlinear
block uncertainty is studied as a conic-sector. The robustness analysis is then
performed using µ-theory. Copyright2007 IFAC.
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1. INTRODUCTION

Model-based control of block oriented process
has been widely diffused among the chemical
engineering community (Pottmann and Pearson,
1998). Wiener systems are included in this king
of models Pearson and Pottmann (2000). These
models consist in a dynamic linear time invariant
(LTI) submodel H(z) in cascade with a static (i.e.
memoryless) nonlinear block N(.).

The use of these models has been treated in
literature in various contexts such as chemical
and biological processes (Kalafatis et al., 1995;
Pajunen, 1999; Zhu, 1999; Tian and Fujii, 2005;
Norquay et al., 1998; Gerkšič et al., 2000; Lussón
et al., 2003; Biagiola et al., 2004). The advantage
of using Wiener models are twofold: the low com-
putational effort associated to identification and
the suitability for control design.

1 Corresponding author. Email: figueroa@uns.edu.ar. This
work was financially supported by the CONICET and CIC.

In general, the linear dynamics and the static
nonlinearity cannot be identified in an indepen-
dent way due to the cascade structure of the
Wiener model. In this sense, several identifica-
tion algorithms had been presented (Greblicki,
1994; Narendra and Gallman, 1966) in the lit-
erature. In particular, an approach that allows
the simultaneous identification of the linear and
nonlinear block, was introduced by Kalafakis et al
(1995,1997) and extended to more general block-
oriented models by Bai (1998) and Gómez and
Baeyens (2004).

In most of the control applications of Wiener
Models, the underlying strategy involves the in-
verse of the nonlinearity. However, to the best of
the authors knowledge, a systematic robustness
analysis for this scheme under uncertainty has not
been developed in the literature.

In this paper, we present a novel characterization
approach as well as an identification algorithm
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for uncertain Wiener Models and its application
to the robustness analysis of the system. The
goal is to obtain a nominal model of the process
plus a parametric description of the uncertainty,
and to use this model to analyze the closed-loop
robustness of the system. These are the main
contributions of this work.

For this purpose, Laguerre polynomials are used
to model the linear dynamic block, and a piece-
wise linear (PWL) representation of the nonlinear
static block is provided. This modeling approach
shows to be advantageous due to its simplicity,
easy implementation and good application results.
Moreover, it happens to be a convenient formu-
lation in order to model the uncertainty which,
in this way, can be easily mapped on the model
parameters.

Then, an analysis of the robustness of closed
loop Wiener process can be performed. The un-
certainty in the Wiener model is treated as a
partitioned problem. The uncertainty in the lin-
ear block is considered as a parameter-affine-
dependent model and the uncertainty in the non-
linear block is treated as a conic-sector. The ro-
bustness analysis is performed using µ-theory. Al-
though the study will be developed in the con-
text of a pH neutralization reactor control, the
conclusions can be directly extended to any other
application.

The paper is organized as follows. In Section 2,
the description and identification technique of
Wiener process is reviewed, and the proposed
uncertainty model is presented. In Section 3 the
basis for robustness analysis are presented. In
Section 4, the results are evaluated on the basis of
a simulation of a pH neutralization process. Final
remarks are addressed in Section 5.

2. WIENER MODEL IDENTIFICATION

2.1 Model Description

The Wiener model is shown in Figure 1. It consists
of a LTI system H(z) followed by a static nonlin-
earity N(.). That is, the linear model H(z) maps
the input sequence {u(k)} into the intermediate
sequence {v(k)}, and the overall model output is
y(k) = N(v(k)).

In this paper, the linear block of order Nl is
described as (Wahlberg, 1991).

H(z) =
Nl∑
i=0

hiLi(z, a) (1)

Li(z, a) =
√

1 − a2

z − a

(
1 − az

z − a

)i−1

(2)

where the parameters of the model are the coeffi-
cients hi, the functions Li(z, a) are the Laguerre

H z( ) N (.)
u k( ) v k( ) y k( )

Fig. 1. The Wiener model structure.

basis for LTI models and a ∈ � is a filter co-
efficient chosen a priori. The advantage of the
use of Laguerre basis in comparison with other
representations is that they need a lower number
of parameters to describe a system with a slow
impulse response or a damped system. Moreover,
they allow the use of prior knowledge about the
dominant pole (a). The nonlinear block N(.) is, in
general, a real-value function of one variable, i.e.
y = N(v). We describe the nonlinear function as

y =
Nn∑
i=0

f̃iΛ̃ (v, βi) (3)

where the basis functions Λ̃ (v, βi) are predeter-
mined PWL functions (Julián et al., 1999), the
values f̃i are the parameters that should be com-
puted and Nn will be referred to as “order” of
the nonlinearity. The use of fixed basis functions
Λ̃ (v, βi) makes the output to be a linear function
of the parameters. This allows us to use a linear
regression to estimate the parameters. The two
basic advantages of this approach are the low
complexity and the uniqueness of the solution.
In this description, βi are given parameters that
define the partition of the domain of v, and Λ̃
are functions that involve nested absolute values
(Julián et al., 1999).

Since a scale factor can be arbitrarily distributed
between the linear block and the memoryless one
without affecting the input-output characteristics
of the model, the gain can be fixed in one of them.
Therefore, in the following we assume h0 = 1
(Pearson and Pottmann, 2000).

2.2 Nominal Model Identification

Let us assume that an input-output data set is
available, noted as uk and yk, respectively 2 . From
Figure 1, the signal vk can be written as the out-
put of the linear block (vk = H(z)•uk) and it can
also be obtained from the output yk and the in-
verse N−1(.) as vk = N−1(yk) =

∑Nn

i=0 fiΛ (yk, βi)
(Kalafakis et al., 1997). Equating both sides of
these equations (with the inclusion of an error
function ε(k) to allow for modeling error) the
following linear regression is obtained

ε(k) = θT φ − l0(uk) (4)

2 To obtain these data sets, several aspects should be
taken into account. For example, the process should be
persistently excited in the whole domain of the nonlinear
block, such that all the relevant dynamics is captured.
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Fig. 2. Uncertainties in Wiener Model

where

θ = [f0, f1, · · · , fNn , h1, h2, · · · , hNl
]T (5)

and

φ = [Λ (yk, β0) , Λ (yk, β1) , · · · , Λ (yk, βNn) ,

−l1(uk),−l2(uk), · · · ,−lNl
(uk)]T . (6)

Now, an least squares estimate θ̂ of θ can be
computed by minimizing a quadratic criterion on
the prediction errors ε(k):

θ̂ =
(
ΦNΦT

N

)−1
ΦNΓ (7)

where Γ = [−l0(u1), · · · ,−l0(uN)]T and ΦN =
[φ(1), · · · , φ(N)] are formed using the set of the
N data available from the process.

Now, estimates of the parameters f̂ and ĥ can be
computed by partitioning the estimate θ̂, accord-
ing to the definition of θ in (5). It is important to
remark that we are identifying the inverse of the
nonlinearity, which is frequently required in many
control applications.

2.3 Uncertainty Characterization

In this section we describe an algorithm to char-
acterize the uncertainties of the model obtained
above (Figueroa et al., 2006). We introduce a set
of parameters H for the linear dynamic block and
a set F for the parameters of the inverse of the
nonlinear block (see Fig. 2):

H =
{

h : h = ĥ + δh, hl
i ≤ δh

i ≤ hu
i 1 ≤ i ≤ Nl

}
(8)

F =
{

f : f = f̂ + δf , f l
i ≤ δf

i ≤ fu
i 1 ≤ i ≤ Nn

}
(9)

To determine these parameter sets, let us define
the sets Vu and Vy. Given the input data uk, the
linear uncertain system defined by H, maps the
input at some specific time k over the set Vu (see
Fig. 3). Then:

Vu =

{
v : v =

Nl∑
i=0

hili(uk), h ∈ H
}

(10)

Therefore, the Laguerre term of order i, i.e. li(uk),
is a real number and the set Vu takes the form of
Vu = {v : vl ≤ v ≤ vu}.
On the other hand, if we consider the uncertain
description of the parameters in F , a given output
yk is mapped at some specific time k over a set

Vy =

{
v : v =

Nn∑
i=0

fiΛ(yk, βi), f ∈ F
}

(11)

This situation is showed in Fig. 3. From this
picture it is clear that the parameters set will
match the uncertainties description if Vy∩Vu �= ∅.
In this way, the point uk is mapped onto Vu

through H. Then, since Vy∩Vu �= ∅, this point will
be mapped in yk through the inverse of F . Then,
it is only necessary to compute the parameters
bounds to satisfy this condition. The nominal
linear model parameters ĥi can be written as a
vector, by considering that the Laguerre basis
li(uk) are a set of real numbers for each input
uk. Let l(uk) be the vector whose ith entry is the
Laguerre basis li(uk). Then, the expression of the
linear model is

v̂u(k) = ĥT l(uk). (12)

Note that since the entries of l(uk) could be
positive or negative, it is possible to split the
vector l(uk) by defining l+(uk) = max(l(uk), 0)
and l−(uk) = min(l(uk), 0) and to form the vector
γ =

[−(l−(uk))T , (l+(uk))T
]T .

In a similar way, the PWL basis Λ (yk, βi) are a set
of positive real numbers for each output yk. Λ (yk)
is the vector whose ith entry is the PWL basis
Λ (yk, βi). Then, the nonlinear model expression
is:

ṽy(k) = f̂T Λ(yk). (13)

Let us consider how to compute the bounds on
the parameters.

Now, in order to described the uncertainty, the
intersection of the uncertainties associated to the
linear and nonlinear models should be non empty.
This can be solved as:

min
hl,hu,f l,fu

(
α

Nl∑
i=0

(hl
i + hu

i )+

(1 − α)
Nn∑
i=0

(f l
i + fu

i )

)

s.t.[
(hl)T , (hu)T , (fu)T

] [ γ
Λ(yk)

]
≥ e(k),

if e(k) ≥ 0; k = 1, · · · , N[−(hl)T ,−(hu)T ,−(f l)T
] [ γ

Λ(yk)

]
≤ e(k),

if e(k) < 0; k = 1, · · · , N

(14)

where the parameter α ∈ (0, 1) is a selected factor
which allows to weight the uncertainty on the
linear or nonlinear block and where

e(k) = f̂T Λ(yk) − ĥT l(uk). (15)
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Fig. 5. The closed loop scheme for robustness
analysis.

3. ROBUSTNESS ANALYSIS FOR A WIENER
PROCESS

Wigren (1990) presents a structure for the control
of Wiener process. In this scheme (see Fig. 4)
two static nonlinearities are included in the loop.
Under the hypothesis that N(.) is invertible, the
natural selection for the controller nonlinear func-
tions is f(.) ≡ N−1(.), as was identified in the
previous section. Then, the controller design in-
volves two steps: a) the use of the inverse of the
nonlinear gain and, b) compute a LTI controller
that compensate the linear block model of the pro-
cess. In Figueroa et al. (2007) a linear controller
K for this structure is designed by using the H∞
methodology (Gabinet et al.,1995).

To analyze the robustness of this controller it is
necessary to consider all the uncertainty sources:
the linear model parameters variation, the uncer-
tainty on the nonlinear block and the variation in
the feedback gain due to the nonlinear block in the
feedback loop. This is illustrated in Fig. 5, which
shows the loop used for robustness analysis.

This analysis is performed using µ-tools (Gabi-
net et al., 1995). Then, it is necessary to treat
each uncertainty block in the appropriate form. In
particular, the block ∆C represents a parametric
uncertainty directly associate with the parameter
bounds hu and hl. The block ∆f is modeled as
a conic sector that covers the nominal nonlinear
gain associated with f̂ and the block ∆N is mod-
eled as a conic sector that covers the inverse of
the set of Eq. 9 (see example in next section).

Table 1. Neutralization Parameters.

parameter value

x1i 0.0012 mol HCL/l
x2i 0.0020 mol NaOH/l

x3i 0.0025 mol NaHCO3/l
Kx 10−7 mol/l
Kw 10−14 mol2/l2

qA 1 l/m
V 2.5 l

Then, to a perform the analysis for robust sta-
bility, the complete uncertainty description 3 is
∆ = diag {∆C , ∆N , ∆f}.
In next section, the characterization of uncertain-
ties and the robustness analysis will be exempli-
fied in the context of a simulation of a neutraliza-
tion reactor.

In next section, the characterization of uncertain-
ties and the robustness analysis will be exempli-
fied in the context of a simulation of a neutraliza-
tion reactor.

4. NEUTRALIZATION REACTOR

To illustrate both the robustness analysis proce-
dure, simulation results were obtained. The exam-
ple consists of the neutralization reaction between
a strong acid (HA) and a strong base (BOH) in
the presence of a buffer agent (BX) (Galán, 2000).
The neutralization takes place in a CSTR with
a constant volume V . An acidic solution with a
time-varying flow qA(t) of composition x1i(t) is
neutralized using an alkaline solution with flow
qB(t) of known composition made up of base x2i

and buffer agent x3i. For this specific case, under
some assumptions (Galán, 2000), the dynamic be-
havior of the process can be described considering
the state variables: x1 = [A−], x2 = [B+] and
x3 = [X−]. Then, the mathematical model of the
process is:

ẋ1 = qA/V x1i − (qA + qB)/V x1 (16)

ẋ2 = qB/V x2i − (qA + qB)/V x2 (17)

ẋ3 = qB/V x3i − (qA + qB)/V x3 (18)

F (x, ξ)≡ ξ + x2 + x3 − x1 − Kw/ξ

−x3/[1 + (Kx ξ/Kw)] = 0 (19)

where ξ = 10−pH . The parameters of the system
are addressed in Table 1.

Using this model a set of data is generated by sim-
ulating 2000 samples with a sample time Ts = 0.5.
A random signal uniformly distributed in [0, 1]
is applied to the manipulated variable qB, this
input changes every five samples. In a first step,
compute a nominal Wiener Model is computed.

3 The uncertainty ∆f in the forward line does not affect
the stability
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In this model three Laguerre polynomials (i.e.
Nl = 3) with a = 0.7 to represent the linear model
and a PWL with 8 sections partition to describe
the nonlinear static gain are considered.

For the characterization of the uncertainty the
Problem 14 is solved for several values of α.
Figure 6 shows the functions errorh =

∑Nl

i=0(h
l
i +

hu
i ) and errorf =

∑Nn

i=0(f
l
i + fu

i ) as function of
α. The curves are the signal v(k) as the output of
the linear block and as the output of the inverse
of the nonlinear block N−1(y(k)) and the bounds
computed using the parametric uncertainties.

As mentioned above, the controller is designed
using the H∞ methodology. Figure 7 shows the
simulation results for set point changes when the
controller is applied to the nonlinear process. Note
that the system follows the set point even when a
wide excursion of the reference signal is proposed.

For the robustness analysis, we use the uncer-
tainty characterized previously for the nonlinear
block which is modeled as a conic sector. This is
showed in Figures 8 and 9 for ∆f .

nominal f

Fig. 8. Conic sector for nominal f̂

nominal
bounds

Fig. 9. Conic sector for uncertain f̂

Stability

Performancex

1
/�




Fig. 10. µ−1 as function of α

Figure 10 shows the plot of µ−1 as measures of sta-
bility and performance margins (as function of α).
From this plots it is clear that the conservatism is
lower when the uncertainties are concentrated on
the linear block. The analysis of performance is
done by including additional blocks to add some
measures of the gain from inputs to outputs.
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5. CONCLUSIONS

This work dealt with robustness analysis of
Wiener process. The robustness analysis was ac-
complished in the context of the more realistic
situation in which different sources of uncertainty
are present. In order to describe the model un-
certainty a convenient parametric approach was
followed. This strategy allows to pose the uncer-
tainty identification problem as a standard op-
timization formulation. Stability aspects of the
closed loop system under uncertainty were also
dealt with using µ-theory. The different developed
topics were tackled altogether in a neutralization
reactor, an application example of significant com-
plexity.
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