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Abstract: Self-optimizing control is a promising method for finding appropriate
controlled variables. Recently, locally optimal methods were introduced for finding
controlled variables by minimizing the worst-case loss. In this paper, we extend
these local methods for average-case loss minimization. Furthermore, we present a
method for finding optimal combinations of measurements for local self-optimizing
control, for both of worst- and average-case loss minimization. The proposed results
find the optimal solution efficiently, as compared to the available techniques like
non-linear optimization or null space method. The usefulness of the results is
demonstrated using an evaporator case study. Copyright c©2007 IFAC
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1. INTRODUCTION

A key step in the design of control systems for
physical processes is to find the appropriate set of
controlled variables (CVs). A number of methods
dealing with the selection of CVs have appeared
in process control literature over the past few
decades; see e.g. Van de Wal and de Jager (2001).
Recently, Skogestad (2000) introduced the con-
cept of self-optimizing control, which is useful for
selecting CVs. This method involves minimiza-
tion of the economic loss incurred in indirectly
optimizing the operation by holding the selected
controlled variables constant, as compared to fre-
quent online optimization.

The choice of CVs based on the general non-linear
formulation of self-optimizing control can be time-
consuming. To quickly pre-screen the alternatives,
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Halvorsen et al. (2003) presented an exact local
method for worst-case loss minimization. This
method is useful for finding the locally optimal
subset or linear combinations of measurements as
CVs. Halvorsen et al. (2003) suggested the use
of non-linear optimization for finding the optimal
linear combinations. Similar to any non-convex
optimization problem, the non-linear optimization
method can be time-consuming, and more impor-
tantly can converge to local optima. Later, Alstad
and Skogestad (2007) proposed the use of the
null space method, which is computationally more
efficient, but suffers from the following drawbacks:

• It ignores the implementation error and thus
can only provide a sub-optimal solution; see
Section 2 for details.

• It holds only when the number of measure-
ments exceeds the sum of the number of
manipulated variables and disturbances.
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Recognizing that the minimization of worst-case
loss can be conservative, we extend the ideas of
Halvorsen et al. (2003) to average-case loss mini-
mization. We present an exact and computation-
ally efficient solution to the problem of finding the
optimal linear combinations of measurements for
locally optimal self-optimizing control, both for
worst- and average-case loss minimization. The
results presented in this paper overcome the lim-
itation of the null space method regarding the
number of available measurements. Whenever the
number of measurements is greater than the num-
ber of manipulated variables, the optimal combi-
nation matrix can be found using the proposed
results. When this condition is not satisfied, the
proposed results still hold, but the solution is
trivial and the combination matrix can be selected
to be any non-singular matrix. We demonstrate
the usefulness of the results using the realistic case
study of an evaporator. Due to space limitations,
the proofs of the different results are omitted.

2. LOCAL SELF-OPTIMIZING CONTROL

In this section, we briefly introduce the exact lo-
cal method for self-optimizing control. We denote
the inputs or manipulated variables and distur-
bances by u and d, respectively. Let us assume
that the economics of the plant are characterized
by the scalar objective functional J . When the
disturbances change from their nominal value, the
optimal operation policy is to update uopt(d) ac-
cording to d using an online optimizer.

A simpler strategy results when u can be indi-
rectly adjusted using a feedback controller. In
this case, the feedback controller manipulates u
to hold the CVs c, close to their specified set-
points. Here, in addition to u and d, J is also
affected by the error n in implementing constant
setpoint policy, which results due to uncertainty
and measurement noise. Thus, J = J(u, d, n).
The simpler strategy results in a loss and self-
optimizing control is said to occur, when the loss
is acceptable (Skogestad, 2000). Based on this
concept, the CVs can be selected by comparing
the losses for different alternatives.

Finding the best CVs based on the general nonlin-
ear formulation of self-optimizing control can be
very time-consuming. To quickly pre-screen the
alternatives, Halvorsen et al. (2003) presented a
local method. This method assumes that the set of
active constraints for the nonlinear optimization
problem does not change with d. The case when
the set of active constraints change with distur-
bances is considered in (Cao, 2004; Cao, 2005).

To present the local method, let the linearized
model of the process, obtained around the nomi-
nally optimal operating point, be given as

y = Gy u + Gy
d Wd d + Wn n (1)

where y denotes the process measurements and
the diagonal matrices Wd and Wn contain the
magnitudes of expected disturbances and imple-
mentation errors associated with the individual
measurements, respectively. We have y, n ∈ Rny ,
u ∈ Rnu and d ∈ Rnd . The CVs c are given as

c = H y = H Gy︸ ︷︷ ︸
G

u + H Gy
d︸ ︷︷ ︸

Gd

Wd d + H Wn n (2)

It is assumed that the dimension of c is same
as u and G = H Gy is invertible. The second
assumption is necessary for integral control.

Worst-case loss. Halvorsen et al. (2003) have
shown that the worst-case loss is given as

Lworst =
1
2
σ̄2

([
Md Mn

])
(3)

where σ̄(·) is the maximum singular value and

Md = J1/2
uu

(
J−1

uu Jud −G−1Gd

)
Wd (4)

Mn = J1/2
uu G−1HWn (5)

Here, Juu = ∂2J
∂u2 and Jud = ∂2J

∂u ∂d , evaluated at the
nominally optimal operating point, respectively.

Average-case loss. The minimization of worst-
case loss can be conservative, as it does not occur
frequently in practice. It is more appropriate to
minimize the average-case loss. Using the same
steps used for finding the expression for the worst-
case loss, it can be shown that the average-case
loss is given as

Laverage =
1

6 nu
‖

[
Md Mn

]
‖2F (6)

where ‖·‖F denotes the Frobenius norm. Note that
the worst-case loss in (3) is based on the maximum
singular value of [Md Mn]. In comparison, the
average-case loss in (6) is based on the average
of the squared singular values of [Md Mn], as
‖[Md Mn]‖2F =

∑nu

i=1 σ2
i ([Md Mn]). Here, σi(·)

denotes the ith singular value of the matrix.

2.1 Selection of controlled variables

Note that the losses in (3) and (6) depend on
H and the CVs are selected by minimizing the
losses with respect to H. Next, we briefly discuss
different approaches for selecting H.
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Individual measurements. When individual
measurements are selected as CVs, the optimiza-
tion problem involves finding the best nu measure-
ments such that the loss in (3) or (6) is minimized.
In this case, the elements of H are restricted to
be 0 or 1 and

HHT = I, where H ∈ Rnu×ny . (7)

Under minor assumptions, the exact local method
minimizing the worst-case loss in (3) can be sim-
plified to provide the minimum singular value
(MSV) rule (Halvorsen et al., 2003). To select
the optimal subset of measurements based on the
MSV rule, branch and bound based search meth-
ods have been proposed in (Cao et al., 1998; Kari-
wala and Skogestad, 2006), which avoid enumer-
ation of all possible alternatives. Finding efficient
search methods for selection of CVs based on (3)
and (6) is currently under research.

Measurement combinations. Instead of us-
ing individual measurements, it is possible to use
combinations of measurements as CVs. In this
case, the integer restriction of H is relaxed but
the condition rank(H) = nu is still imposed.
Halvorsen et al. (2003) used non-linear optimiza-
tion for finding H, which can be very time con-
suming, and more importantly can converge to
local optima. As an alternative, Alstad and Sko-
gestad (2007) proposed the use of the null space
method. In this method, the implementation error
is ignored and H is selected such that

H
(
Gy J−1

uu Jud −Gy
d

)
= 0 (8)

or H is in the null space of Gy J−1
uu Jud − Gd. It

can be verified that when (8) holds, σ̄(Md) = 0.
Clearly, the assumption of ignoring the implemen-
tation error is limiting and can only provide a
sub-optimal solution. More importantly, for (8) to
hold, it is necessary that ny ≥ nu +nd. When this
condition is not satisfied, the null space method
cannot be applied, which limits its application.

3. WORST-CASE LOSS MINIMIZATION

In this section, we present an exact and computa-
tionally efficient method for finding optimal linear
combinations of measurements by minimizing the
worst-case loss. In the following discussion, as a
shorthand notation, we denote

Y =
[
(Gy J−1

uu Jud −Gy
d)Wd Wn

]
(9)

The following lemma expresses the loss in (3)
in terms of matrix inequalities and establishes
the basis for finding the optimal combinations of
measurements.

Lemma 1. The matrix H minimizing the loss in
(3) can be found by solving

min
H

0.5 γ2

s.t. H Mγ HT � 0 (10)

rank(H) = nu (11)

where Mγ = γ2GyJ−1
uu (Gy)T − Y Y T

The optimization problem posed in Lemma 1
is bilinear in H and thus is difficult to solve.
The rank constraint on H further complicates
solving the optimization problem. In the following
proposition, using eigenvalue decomposition, we
establish necessary and sufficient conditions for
existence of γ and H such that (10) and (11) hold.

Proposition 2. Let λ1, λ2, · · · , λny
be the eigen-

values of Mγ arranged in descending order. Then,
there exists a non-singular matrix H such that
(10) holds, if and only if (iff) γ is selected such
that

λnu
(Mγ) ≥ 0. (12)

Intuitively, if H is a square matrix, (10) holds iff
Mγ � 0 or all the eigenvalues of Mγ are non-
negative. Then, for H ∈ Rnu×ny , Proposition 2
requires that only the largest nu eigenvalues of Mγ

be non-negative. Furthermore, based on Proposi-
tion 2, it can be readily inferred that the γ which
provides minimal worst-case loss satisfies

λnu
(Mγ) = 0. (13)

This happens as γ satisfying (13) represents the
minimal value of γ such that (12) holds. The
matrix H can be selected as

H =
[
ν1 ν2 · · · νnu

]T (14)

when (13) holds. Here, ν1, ν2, · · · , νnu
denote the

nu mutually orthogonal eigenvectors correspond-
ing to the largest nu eigenvalues of Mγ .

The question remains: how to find γ? The solu-
tion to this problem is proposed next, where the
optimal value of γ is expressed directly in terms
of Gy, Juu and Y .

Proposition 3. The γ that solves (13) is given as

γ = λ−1/2
(
J−0.5

uu (Gy)T (Y Y T )−1 Gy J−0.5
uu

)
(15)

where λ(·) denotes the smallest eigenvalue.

The expression in (15) is derived using Cholesky
factorization. The findings of this section are
summarized in the following algorithm.
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Algorithm 1. The optimal combinations of mea-
surements which minimize worst-case loss can be
found by using the following steps:

(1) Find γ ≥ 0 using Proposition 3, such that
(13) holds.

(2) Perform an eigenvalue decomposition of(
γ2 Gy J−1

uu (Gy)T − Y Y T
)

and find the eigen-
vectors corresponding to the largest nu eigen-
values.

(3) Choose H as given in (14).

When the implementation error is ignored, Al-
gorithm 1 gives same results as the null space
method (Alstad and Skogestad, 2007). Note that
the optimal combination matrix found using Al-
gorithm 1 is non-unique and pre-multiplying H
by a non-singular matrix also provides an optimal
solution. The non-singular matrix can be selected,
for example, to make HGy diagonal.

4. AVERAGE-CASE LOSS MINIMIZATION

In this section, we derive results for finding the op-
timal combinations of measurements for average-
case loss minimization.

Lemma 4. The matrix H minimizing the loss in
(6) can be found by solving

min
H

1
6 nu

trace(X)

s.t. X � 0

rank(H) = nu (16)

H
(
GyJ−0.5

uu XJ−0.5
uu (Gy)T − Y Y T

)
HT � 0 (17)

The optimization problem in Lemma 4 is a re-
statement of (6) in terms of matrix inequali-
ties. Here, the similarity between the optimization
problems posed in Lemmas 1 and 4 is noteworthy.
When X = γ · I, the two optimization problems
are equivalent. Similar to worst-case loss mini-
mization, the optimization problem for average-
case loss minimization is also bilinear in H and
the solution is difficult. The following proposition
provides the optimal value of X, which is subse-
quently used to find the combination matrix that
minimizes average-case loss.

Proposition 5. For the optimization problem posed
in Lemma 4, it is optimal to select X as

X =
(
J−0.5

uu (Gy)T (Y Y T )−1 Gy J−0.5
uu

)−1
(18)

Similar to (15), (18) is derived using Cholesky
factorization. Let ν̃1, ν̃2 · · · ν̃nu be the mutually or-
thogonal eigenvectors corresponding to the largest

nu eigenvalues of
(
Gy J−0.5

uu X J−0.5
uu (Gy)T − Y Y T

)
,

where X is given by (18). Then the optimal com-
bination matrix can be selected as

H =
[
ν̃1 ν̃2 · · · ν̃nu

]T
. (19)

Similar to worst-case loss minimization, the choice
of H in (19) is not unique and pre-multiplication
by a non-singular matrix also provides a valid
solution. The procedure outlined in Algorithm 1
can also be used for finding optimal measurement
combinations of measurements with minor modi-
fications. We next present an attractive property
of minimizing average-case loss.

Corollary 6. The matrix H in (19) also minimizes
the worst-case loss.

Based on Corollary 6, the matrix H in (19)
is super-optimal. Note that the converse is not
true, i.e. the matrix H minimizing the worst-case
loss does not necessarily minimizes the average-
case loss. In this sense, selection of matrix H by
minimizing average-case loss is advantageous.

5. EVAPORATOR CASE STUDY

The optimal measurement combination design
approach is applied to the evaporation process
of Newell and Lee (1989). This is a “forced-
circulation” evaporator, where the concentration
of dilute liquor is increased by evaporating solvent
from the feed stream through a vertical heat ex-
changer with circulated liquor. The process vari-
ables are listed in Table 1 and model equations
are given in (Cao, 2005).

steam
F100

P100
T100

separator
P2, L2

product
F2, X2, T2

feed
F1, X1, T1

condensate
F5

cooling
water

F200, T200

evaporator

condensate

T201

condenser
F4, T3

F3

Fig. 1. Evaporator System

The economic objective is to maximize the oper-
ational profit [$/h], formulated as a minimization
problem of the negative profit (20). The first three
terms of (20) are operational costs relating to
steam, water and pumping; see e.g. (Heath et
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al., 2000; Wang and Cameron, 1994). The fourth
term is the raw material cost whilst the last term
is the product value, both of which provide an
extra degree of freedom for self-optimizing study.

J = 600F100 + 0.6F200 + 1.009(F2 + F3) + 0.2F1

−4800F2 (20)

The process has the following constraints related
to product specification, safety and design limits:

X2 ≥ 35 + 0.5% (21)

40 kPa ≤ P2 ≤ 80 kPa (22)

P100 ≤ 400 kPa (23)

0 kg/min ≤ F200 ≤ 400 kg/min (24)

0 kg/min ≤ F1 ≤ 20 kg/min (25)

0 kg/min ≤ F3 ≤ 100 kg/min (26)

Note that a 0.5% back-off has been enforced on
X2 to ensure that the variable remains feasible
for all possible disturbances. The process model
has three state variables, L2, X2 and P2 with
eight degrees of freedom. Three of them are distur-
bances, X1, T1 and T200. The rest five degrees of
freedom are manipulable variables, F1, F2, P100,
F3 and F200. The optimization problem in (20)
with process constraints (21)-(26) is solved for the
following nominal disturbances:

d =
[
X1 T1 T200

]T =
[
5 40 25

]T
. (27)

The minimum negative profit obtained is −582.23
[$/h] and corresponding values of process vari-
ables are shown in Table 1. At the optimal point,
there are two active constraints, X2 = 35.50% and
P100 = 400 [kPa]. These two constraints remain
active within the whole disturbance region, which
is defined as ±20% of the nominal disturbances.
The reader is referred to (Cao, 2005) for physical
explanation of these two active constraints.

These two active constraints plus the separator
level, which has no steady-state effect on the plant
operation, but must be stabilized at its nomi-
nal setpoint, consume three degrees of freedom.
Therefore, there are two degrees of freedom left for
self-optimizing control. We select u = [F200, F1]T

and y = [P2, T2, T3, F2, F100, T201, F3, F200, F1]T .
Due to the high cost involved in the measurement
of vapor flowrate, F4 is not considered for mea-
surement here. Using MATLABr 2006a symbolic
toolbox, the following Hessian and gain matrices
are obtained at the nominally optimal operating
point:

Juu =
[

0.006 −0.133
−0.133 16.737

]
, Jud =

[
0.023 0 −0.001

−158.373 −1.161 1.484

]
Gy =


−0.093 11.678
−0.052 6.559
−0.047 5.921

0 0.141
−0.001 1.115
−0.094 2.170
−0.032 6.594

1 0
0 1

 , Gy
d =


−3.626 0 1.972
−2.036 0 1.108
−1.838 0 1
0.267 0 0
−0.317 −0.018 0.020
−0.674 0 1
−2.253 −0.066 0.673

0 0 0
0 0 0



Table 1. Variables and Optimal Values

Var. Description Value Units

F1 Feed flowrate 9.47 kg/min
F2 Product flowrate 1.33 kg/min

F3 Circulating flowrate 24.72 kg/min
F4 Vapor flowrate 8.14 kg/min

F5 Condensate flowrate 8.14 kg/min

X1 Feed composition 5 %
X2 Product composition 35.50 %

T1 Feed temperature 40 ◦C
T2 Product temperature 88.40 ◦C
T3 Vapor temperature 81.07 ◦C
L2 Separator level 1 meter

P2 Operating pressure 51.41 kPa
F100 Steam flowrate 9.43 kg/min

T100 Steam temperature 151.52 ◦C
P100 Steam pressure 400 kPa
Q100 Heat duty 345.29 kW

F200 Cooling water flowrate 217.73 kg/min

T200 Inlet C.W. temperature 25 ◦C
T201 Outlet C.W. temperature 45.55 ◦C
Q200 Condenser duty 313.21 kW

The disturbance weighting matrix is based on
±20% of nominal disturbance, i.e. Wd = diag(1, 8, 5).
The implementation error in measurement leads
to Wn = diag(0.1, 0.1, 0.1, 0.1, 0.01, 0.1, 0.01,
0.01, 0.01).

For this model, the best individual measurements
were found to be P2 and F3, for which the local
loss is 863.05 [$/h]. In comparison, when the opti-
mal combinations of all the measurements is used,
the local worst-case loss decreases to 5.673 [$/h].
In practice, use of combinations of all available
measurements is often not necessary. We use a
branch and bound method to find the best n out of
9 measurements, n < 9, whose combinations can
be used as CV. The lowest worst-case losses for the
best combinations of 2 to 8 measurements were
found to be 863.05, 80.38, 12.26, 6.73, 6.14, 5.76
and 5.71 [$/h] respectively. It is clear that having
combinations of 4 measurements gives the best
trade off between complexity and incurred worst
case loss. The optimal 4-measurement set consists
of P2, T201, F200 and F1 . The optimal worst-case
(Hw) and average-case (Ha) combination matrices
are

Hw =
[

113.599 −225.518 −9.71 −837.243
4.991 −9.73 −0.454 −36.169

]
Ha =

[
117.954 −230.113 −9.739 −878.13
4.991 −9.73 −0.454 −36.172

]
which are scaled versions of combination matrices
obtained using (14) and (19) such that HGy

is diagonal. Though these combination matrices
seem promising based on local analysis, the non-
linear simulation shows that the use of measure-
ment combinations is only marginally advanta-
geous than controlling the individual measure-
ments; see Table 2 for details.

The difference between the local analysis and non-
linear simulation arises as for ±20% disturbance
variations, the linearized model incurs significant
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model errors. The model errors are estimated
through Monte Carlo simulation with feasible dis-
turbance scenarios and assigned to the measure-
ment error matrix, where Wn1 = diag(57.5393,
32.3579, 29.2217, 0.2052, 0.5771, 59.5280, 17.1361,
0.1, 0.1).

For the revised model, the best individual mea-
surements are found to be F200 and F100 with
the worst-case local loss being 880.85 [$/h]. The
branch and bound method shows that the local
worst-case loss for the best four measurement set
consisting of F4, F2, F200 and F1 is 305.89 [$/h],
which is close to the loss incurred using combina-
tions of all the measurements, 304.68 [$/h]. Using
these measurements, the following combination
matrices for minimizing the worst-case (Hw1) and
average-case (Ha1) losses are calculated:

Hw1 =
[−37.861 5.859 −0.182 1.0
−24.348 3.791 0.031 0.005

]
Ha1 =

[−598.381 71.926 0.618 1.088
−24.43 3.8 0.031 0.005

]
Using Hw1, the worst-case and average losses are
305.897 and 71.65 [$/h], whilst applying Ha1, the
worst-case and average losses are 305.897 and
51.05 [$/h], respectively. Therefore, the local anal-
ysis shows that using Ha1 is slightly better than
using Hw1 in the sense of average loss minimiza-
tion. Also note that the use of Ha1 minimizes
worst-case loss as well.

To verify above results, the six designs are tested
through nonlinear dynamic simulation. The aver-
age hourly loss values based on 50 hours simulated
operation are calculated in Table 2. The results
clearly show that model errors caused by lineariza-
tion have a significant effect on self-optimizing
control design. By including model errors in the
error weighting matrix, the linear combination
matrices effectively reduce the control loss.

Table 2. Average loss [$/h] based on 50-
hour simulated operation

Error individual combination
Model measurements average worst-case

Wn 279.6 266.381 273.361
Wn1 267.485 156.188 167.305

6. CONCLUSIONS

In addition to the worst-case loss minimization,
controlled variables can also be selected for self-
optimizing control through average-case loss min-
imization. Efficient algorithms are developed for
both minimization problems to design the op-
timal measurement combinations. The combina-
tions obtained through average loss minimization
also minimize the worst-case loss, hence are super-
optimal. These design approaches are demon-
strated via the evaporation case study. The case

study shows that both designs are able to achieve
self-optimizing control. The results also reveal
that modelling error has a significant effect on self-
optimizing control performance.
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