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Abstract: Mathematical models often depend on unknown parameters that must
be identified. Un-identifiable models have parameters that cannot be identified
from input-output data. In this work, it is shown that un-identifiability can affect
the closed-loop performance of systems. This conclusion holds even for minimal
systems. It is shown that a change of coordinates can be used to transform
any linear, time-invariant un-identifiable system into one that is identifiable up
to a change in initial conditions. For such systems, it is possible to construct
controller/observer pairs that do not depend on any un-identifiable parameters.
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1. INTRODUCTION

Model-based control is very popular as both a
research subject and in application (Nijmeijer and
van der Schaft, 1990). Almost all mathematical
models of physical systems rely on parameters
which may be unknown, to generate an input-
output behaviour (Walter and Pronzato, 1995).
Some models contain more parameters than can
be estimated from the input-output behaviour of
the system. Un-identifiable systems (Bellman and
Astrom, 1970; Ljung and Glad, 1994) are mod-
els where some parameters cannot be estimated
because of a defect in the model structure. That
is, the parameter estimation problem is not well
posed regardless of the type and quantity of input-
output data collected. This is in contrast with un-
estimable systems (Jaquez and Grief, 1985), where
each parameter is identifiable, but the estimation
problem is not well posed due to noise or lack of
measured data.

1 The author’s work is partially supported by Canada’s
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In this work the identifiability of a model (or lack
thereof) is shown to be an is an important consid-
eration for control system design. Specifically, lack
of identifiability may cause classical control tech-
niques to produce poor closed-loop behavior. This
is true even for systems that are both controllable
and observable.

2. PROBLEM DEFINITION

In this work the structure of a mathematical
models will be treated as mappings M : p 7→
M(p) mapping from a parameter space P to
the set of observed input-output mappings. The
parameter space P is open and dense in some
subset of Rs. Roughly speaking a model M takes
parameter values p, r ∈ P and produces observed
input output behaviours M(r) and M(p). Input-
output behaviors will be treated as mappings as
mappings, M(·) : U → Y , from an input space U
containing (sufficiently) differentiable functions
u : U → R on a closed interval T = [0, tf ] ∈ R
to an output space Y containing (sufficiently)
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differentiable functions y : Y → R on T . The
results of our work can easily be extended to
multi-input multi-output systems. For our work,
the property of differentiability implies that the
restriction of T to any open subset To ⊂ T will
be differentiable.

A model structure M is identifiable if and only if
for any two candidate parameter values r and p
the following holds.

M(p) = M(r) ⇔ p = r (1)

Condition 1 implies that M is a bijection and each
observed input-output behaviour corresponds to
a single set of parameter values. Note that M(p)
itself does not have to be a bijection.

The goal of our work is to show that lack of
identifiability (i.e., un-identifiability) is relevant to
control design. That is, although a parameter or
combination of parameters can have no effect on
input-output behaviour, they can have an effect
on the closed loop performance of a system. This
somewhat counter-intuitive result can be illus-
trated using linear time invariant (LTI) dynamical
systems of the following form.

ẋ(t) = A(p)x(t) + B(p)u(t) (S)
y(t) = C(p)x(t)

where u ∈ U , y ∈ Y , x : T → Rn is sufficiently
differentiable, p ∈ P and A(p), B(p), C(p) are
real-valued matrices of appropriate dimensions.
Also, A(p) will be assumed invertible on a dense
subset of P.

3. A MOTIVATING EXAMPLE

The focus of this work is the effects of identifia-
bility on control. As a result, it is advantageous
to pick a system with a simple structure whose
properties can be easily verified. Consider the
following LTI system.

ẋ(t) =
[

1 p1

p2 2

]
x(t) +

[
0
1

]
u(t) (X )

y(t) = [p2, 0]x(t)

whose transfer function is

G(s, p) =
p1p2

s2 − 3s + (2− p1p2)
(2)

System X is not identifiable because the input-
output behavior of the system (as described by
G(s)) depends only on the product p1p2 which is
assumed to be non-zero. This assumption is equiv-
alent to assuming that the input-output behavior
of the system is not identically zero as a function
of u. Furthermore, as a result of this assumption
P ⊂ R2 is given by

P = R2 \ {(a, b) ∈ R2 | a 6= 0, b 6= 0}

which is open and dense as required.

System X is observable because it has an observ-
ability Grammian given by[

C(p)
C(p)A(p)

]
=

[
p2 0
p2 p1p2

]
whose determinant is p2

2p1 6= 0.

System X is also controllable because it has a
controllability Grammian given by

[B(p), A(p)B(p)] =
[

0 p1

1 2

]
whose determinant is −p1 6= 0.

System X can be feed-back stabilized. Indeed,
one may design an observer/controller pair with
arbitrarily fast convergence. Specifically, for any
two eigenvalue pairs {τ1, τ2} and {λ1, λ2}, the
feedback law

u(t) = −B(p)K(p)x̂(t)

with

K(p) =
[

1
p1

(1− τ2 − τ1 + p1p2 + τ2τ1) , 3− τ2 − τ1

]
and the observer gain

L(p) =


−1
p2

(λ1 + λ2 − 3)

4− 2λ1 − 2λ2 + p1p2 + λ1λ2

p1p2


with x̂(t) the estimated state whose dynamics
correspond to the observer law
˙̂x = A(p)x̂(t) + B(p)u(t) + L(p)(y(t)− C(p)x̂(t)

will produce an observer error eo(t) = x(t)− x̂(t)
whose dynamics are given by

ėo(t) =
[

λ1 0
0 λ2

]
and whose control dynamics are described by the
equation

A(p)−B(p)K(p) =
[

τ1 0
0 τ2

]
Note however, that the feedback matrix K(p) is a
function of the parameter p1 which must be known
independently of p2, and that the observer gain
matrix L(p) is a function of p2 which must be
known independently of p1.

The full dynamics of System X are given by the
following system.[

ẋ(t)
˙̂x(t)

]
= A

[
x(t)
x̂(t)

]
y(t) = C[x(t), x̂(t)]T

with

A(p) =
[

A(p)−B(p)K(p) 0
A(p)−B(p)K(p)− L(p)C(p) L(p)C(p)

]
and

C(p) = [1, 0, 0, 0]
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Consider the following two parameter values for
System X .

p = [10, 2] (3)

r = [−20,−1] (4)

Note that p1p2 = r1r2 and so

G(s, p) = G(s, r) (5)

and the two parameter values induce an identical
input-output behaviour. The key observation in
this work is that Condition 5 does not imply that

A(p) = A(r)

and more importantly, does not guarantee that
the closed-loop output matches. That is, generally,
if yr(t) is the closed loop trajectory for an initial
condition x0 and parameter value r ∈ P and yp(t)
is the closed loop trajectory for (the same) initial
condition x0 and parameter value p ∈ P, p 6= r,
then yr(t) 6= yp(t) because

C(p) (Is +A(p))−1 6= C(r) (Is +A(r))−1

where I is the identity matrix of the same dimen-
sion as A.

This issue will now be illustrated using System
X with parameter values p, r ∈ P given in
Equations 3 and 4. Let us specify

τ1 = −5 τ2 = −7 λ1 = −3 λ2 = −2 (6)

then

A(p) =


1 10 0 0

−24
5
−13 0 0

8 0 −7 10

4 0 −44
5
−13



and

A(r) =


1 20 0 0

−12
5
−13 0 0

8 0 −7 20

2 0 −22
5
−13



As a result,

C(p) (Is +A(p))−1

=
[

2(13 + s)
s2 + 12s + 35

,
20

s2 + 12s + 35
, 0, 0

]
and

C(r) (Is +A(r))−1

=
[

13 + s

s2 + 12s + 35
,

20
s2 + 12s + 35

, 0, 0
]

which implies that yr(t) 6= yp(t) for any initial
condition

x(0) = [a, b] ∈ R2
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Fig. 1. Output time-traces for System X for con-
troller/observer pairs constructed using two
different parameter values.

where a 6= 0. Figure 1 shows the output of System
X as a function of time with the initial condition
x(0) = [−1, 1] and x̂(0) = [0, 0] for the two
different parameter estimates. Note how for the
apparent quality of the controller is completely
different for the two parameter values. As a prac-
tical matter, the control law used in this exam-
ple is not useful because it may produce a poor
closed loop response. This is true regardless of the
number and type of experiments used to identify
the system parameters because p1 and p2 are
not, by themselves, identifiable. Un-identifiability
can also cause the dynamics of the states and
their estimates to be dependent on the particu-
lar parameter estimate used. Figure 2 shows the
time-trajectory of the states x(t) from the initial
condition x(0) = [−1, 1] and x̂(0) = [0, 0] for the
two different parameter values. Note how the state
trajectories for one set of parameter estimates is
completely different than the other.

In this section it is shown that, even for a sys-
tem that are minimal, closed-loop behaviour may
depend on parameters that cannot be identified
from input-output behaviour. As will be shown,
this unexpected result is caused by the fact that
the output depends not only on the input, but
also on initial conditions. It is worth noting that
for System X the initial conditions would not
generally be known because x2 is not observed
and x1, is observed as the product p2x1(t) which
involves the un-identifiable parameter p2.

4. CONTROL USING A CANONICAL
REPRESENTATION

In this section an approach is developed for de-
signing observer/controller pairs for System X
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Fig. 2. Output time-traces for System X for con-
troller/observer pairs constructed using two
different parameter values: p = [10, 2] (solid)
and p = [−20,−1] (dashed).

so that the closed loop response of the system
(including control and observer dynamics) is in-
dependent of un-identifiable parameters. The pro-
posed approach does not rely on a specific formu-
lation for controller/observer design. Rather, it is
shown that System X can always be transformed
into one for which the classical control design tech-
niques apply. The approach, therefore, depends
on expressing System X using appropriate coor-
dinates.

Using the input-output transfer function in Equa-
tion 2 one can construct a minimal realization
(based on the standard observable realization)
given by

ż(t) =
[

0 1
(p1p2 − 2) 3

]
z(t) +

[
0
1

]
u(t) (Z)

y(t) = [p1p2, 0]z(t)

System Z is un-identifiable in the sense that p1

and p2 cannot be known independently. However,
p1 and p2 always appear as the product p1p2 and,
as a result, any control or observer gain matrices
designed for this system require only knowledge of
the product p1p2 which can be determined from
input-output behaviour. For example, by applying
the same controller/obsever scheme to System Z
as was used for System X the following controller
and observer gain matrices (respectively) are ob-
tained.

K(p) =
[
−2 + p1p2 + τ1τ2

p1p2
,
3− τ1 − τ2

p1p2

]
L(p) =

[
3− λ1 − λ2

7− 3λ1 + p1p2 − 3λ2 + λ1λ2

]
Note that K(p) and L(p) are both functions only
of the product p1p2 regardless of the value of p1,
p2, τ1, τ2, λ1 or λ2. As a result K(p) and L(p) are

invariant under all parameter pairs (p1, p2) that
produce the observed product p1p2.

5. ANALYSIS OF UN-IDENTIFIABILITY

The transformation x 7→ z is linear and has a
matrix representation

T (p) =
[

p2 0
p2 p1p2

]
so that at any time t ∈ T , z(t) = T (p)x(t).
Note that T is a function only of p1 which cannot
be determined from input-output behaviour. This
issue is not critical for controller design because
T (p) is not used explicitly in the formulation of
either the controller or the observer. However, the
coordinate change defined by T (p) changes the
nature of the un-identifiability in the system. In
particular, at t = 0 the following condition holds.

z0 = T (p)x0 =
[

p2x1(0)
p2x1(0) + p1p2x2(0)

]
The change of coordinates given by T (p) had the
effect of transforming our original initial state
x0 to z0. In the z coordinates, the dynamics of
the system depend only on the input-output be-
haviour G(p, s) and so z0 can be calculated. In-
deed, System Z is constructed using the standard
observable realization so that y(t) = z1(t) and
y′(t) = z2(t). The initial states x0 = T−1(p)z0,
however, cannot be re-constructed because p1

is unknown. Thus the coordinate transformation
had the effect of constructing a system whose
dynamics can be used to generate a consistent
control strategy. However, this comes at the cost
of having an initial state, z0, that cannot be used
to reconstruct x0, thereby losing all knowledge of
the initial states. The un-identifiability of the sys-
tem, in other words, has been transferred entirely
to the initial states of the system.

This approach of “expressing” the un-identifiable
part of a system as part of the initial conditions
can be applied to any LTI state-space system.
This idea is formulated in the following propo-
sition.

Proposition 1. Consider System S and let

G(s, p) = C(p)(Is−A(p))−1B(p)

be a strictly rational function of s. There exists a
second system given by

ż(t) = Ã(p)z(t) + B̃(p)u(t) (S̃)

y(t) = C̃(p)z(t)

that is equivalent to System S in the sense that
there exists a full rank transformation T (p) on a
dense subset of P so that
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z(t) = T (p)x(t)

Ã(p) = T (p)A(p)T−1(p)

B̃(p) = T (p)B(p)

C̃(p) = C(p)T−1(p)

and Systems S and S̃ have identical input-output
behaviour described by

G(p, s) = C(p)(Is−A(p))−1B(p)

= C̃(p)(Is− Ã(p))−1B̃(p)

such that Ã, B̃, and C̃ are functions only of
identifiable parameter combinations.

proof It has been shown by (Bellman and As-
trom, 1970) that the combinations of system pa-
rameters that can be identified from input output
behaviour are the independent coefficients in the
transfer function G(p, s). Furthermore, there ex-
ists a (standard) observable realization for G(p, s)
given by the triplet

(
Ã(p), B̃(p), C̃(p)

)
whose en-

tries depend only on the independent coefficients
of G(p, s). Letting System S̃ be the standard ob-
servable realization of G(p, s) completes the proof.
The restriction of the proof to a dense subset of
P is due to the fact that A(p) is not invertible for
all parameter values. 2

Note that our approach amounts to scaling the
states by a matrix T (p) of possibly unknown
quantities. For System X , T (p) is a function
of p2 and p1p2. This implies that the original
System X is not observable in any practical sense.
(Ben-Zvi et al., 2004) has previously observed
that un-identifiability implies that the states of
a system can be arbitrarily scaled. This notion
of un-identifability as lack of observability due to
parameter uncertainty can be used to pose the
un-identifiability problem as a sensor placement
problem. For example, if the second state x2 of
System X was observed directly then given two
parameter estimates p, r ∈ P, p 6= r the following
conditions holds.

y′(0) = z2(0) = p2xp,1(0) + p1p2x2(0) (7)

y′(0) = z2(0) = r2xr,1(0) + r1r2x2(0) (8)

where xp,1(0) and xr,1(0) are the unknown initial
conditions of x1. Using Equations 7 and 8 and
consequently

xp,1(0) =
r2

p2
xr,1(0)

and one cannot determine the value of p2 which
can be used to scale the state x1. Alternatively,
by observing x1 directly, one obtains the relation

y(0) = p2x1(0) = r2x1(0)

and p2 can be calculated for x1(0) 6= 0. This con-
clusion can be verified by noting that observing x1

directly amounts to setting p2 = 1 in System X .
It is important to note that System X was chosen
for its simplicity, and in the general nonlinear case
it may be very difficult to determine which state
should be directly observed (Ben-Zvi et al., 2004).

6. CONCLUSION

Mathematical models used for control are often
dependent on unknown parameters. A model is
identifiable if and only if every parameter can
be uniquely estimated from some set of input-
output data. In this work it is shown that lack of
identifiability affects the closed loop performance
of dynamical systems. That is, two parameter
estimates that yield identical input-output be-
havior may yield a controller/observer pair with
completely different closed-loop input output be-
haviour even for identical initial conditions. This
conclusion holds even for systems that are both
observable and identifiable.

A coordinate representation was constructed for
an LTI system so that lack of identifiability did
not affect controller/observer design. This was
done at the cost of making the initial conditions
of the original system unrecoverable in the gen-
eral case. This is because the coordinate transfor-
mation matrix T (p) was generally a function of
unknown parameters.

Using a coordinate transformation, the problem of
un-identifiability was recast as a sensor placement
problem. This problem could be solved in order to
determine what state information is necessary to
identify all system parameters.
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