
8th   International   IFAC   Symposium   on
Dynamics and Control of Process Systems

 

A GREY-BOX MODELING APPROACH FOR
THE REDUCTION OF NONLINEAR SYSTEMS 1

Reinout Romijn ∗ Leyla Özkan ∗∗ Siep Weiland ∗∗∗
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Abstract: A novel model reduction methodology is proposed to approximate large-scale
nonlinear dynamical systems. The methodology amounts to finding computationally efficient
substitute models for an uncertain nonlinear system. Model uncertainty is incorporated by
viewing the system as a grey-box or hybrid model with a mechanistic (first-principle) component
and an empirical (black-box) component. The mechanistic part is approximated using proper
orthogonal decomposition. Subsequently, the empirical part is identified by parameter estimation
using the reduced order mechanistic part. As a consequence, the parameter estimation is
computationally more efficient. An example with a distributed parameter system is provided.
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1. INTRODUCTION

Advances in computation and modeling tools
have enabled the development of detailed com-
plex mathematical models that yield reasonable
and accurate predictions of the behavior of any
type of (process) system. The intrinsic complexity
of processes yields models that require a consid-
erable computational effort to obtain solutions.
As a consequence, the use of such models for
on-line or real-time applications, such as model-
based control, dynamic optimization or param-
eter estimation is computationally costly. Sig-
nificant research efforts have been dedicated to
the development and implementation of model
reduction techniques, for an overview refer to
(Marquardt, 2002; Antoulas and Sorensen, 2001),

1 This work has been supported by the European Union
within the Marie-Curie Training Network PROMATCH
under the grant number MRTN-CT-2004-512441.

for reduction of distributed parameter systems
refer to (Gay and Ray, 1995; Shvartsman and
Kevrekidis, 1998; Mahadevan and Hoo, 2000; Hoo
and Zheng, 2001). The method of Proper Or-
thogonal Decompositions (POD) is particularly
popular in the fluid dynamics community and of
considerable interest for the reduction and simpli-
fication of this type of systems.

There are a number of key disadvantages to most
model reduction techniques, including the method
of POD. Firstly, state reductions do not nec-
essarily lead to computationally more efficient
models (Schlegel et al., 2002; Rathinam and Pet-
zold, 2003; Astrid, 2004; van den Berg, 2005).
Secondly, few techniques are able to cope with
nonlinear uncertainty in the model. Thirdly, most
reduction techniques do not allow to extract rele-
vant features for the specific purpose for which the
model is meant. This paper is motivated by the
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question to perform model approximation with
the explicit aim to improve computational effi-
ciency while keeping desirable model properties
intact. We introduce a new methodology that
utilizes a grey-box modeling approach to obtain
a reduced model that is computationally more
efficient. For arbitrary nonlinear systems a grey-
box model defines an interconnection where the
mechanistic part represents the known and the
empirical part captures the unknown or uncertain
parts of the system. At least three distinctive
issues motivate combining grey-box model struc-
tures with model reduction:

(1) Model uncertainties and un-modeled dynamics
can be represented as interconnections of a known
system component with a (partly) unknown com-
ponent. By tearing the uncertain part out of the
model, the remaining part can be subject to model
reduction without damaging the properties of the
uncertain model part or the interconnection struc-
ture.

(2) Finite element discretization of the spatial
geometry of nonlinear distributed parameter sys-
tems typically leads to performing nonlinear func-
tion evaluations in each of the mesh elements. As a
consequence, the computational load per nonlin-
ear function evaluation is critical. By separating
computationally intensive functions in a model
before any kind of model reduction is performed,
a structure is created in which computationally
intensive functions can be substituted by simpler
ones which leads to more efficient approximate
models.

(3) Reduction methods generally do not preserve
model sparsity. It will be shown that by employing
a grey-box model structure sparsity can be re-
introduced in a projected low order model. Fur-
thermore, a low order sparse nonlinear model part
can be maintained when a full order model is
reconstructed from an identified low order model.

The paper presents some preliminaries on grey-
box modeling and POD reduction in section 2.
Section 3 describes the methodology of approxi-
mate modeling which is subsequently applied to a
distributed dynamical system in sections 4. Con-
clusions are deferred to section 5.

2. PRELIMINARIES

2.1 Grey-box modeling

A grey-box model, also referred to in literature
as a hybrid model, consists of a combination of
a mechanistic (first principle) and an empirical
(black-box ) model. Several grey-box model struc-
tures have been proposed. Psichogios and Un-
gar (1992) proposed a serial structure, Thompson

and Kramer (1994) described a parallel structure.
A more general structure has been formulated
(Marquardt, 2002; Abonyi et al., 2002) in a form
based on the ordinary differential equation

ẋ = fFP (x, u, fEM (x, u)) (1)

which contains first principle equations fFP which
describe the interaction of the model states x,
inputs u and the outputs of an empirical model
fEM. Such grey-box models have been applied for
modeling a variety of process systems (Marquardt,
2002). They are usually derived from conservation
laws and balance equations but are, without ex-
ception, reduced to lumped models of low order. A
distributed grey-box model that is governed by a
partial differential equation (PDE) including an
empirical term without lumping the states has
not been investigated before to the knowledge
of the authors. In this work the general partial
differential equation

∂T

∂t
= A(T ) + B(u) + F(T, u) (2)

is considered. Here T (x, t) denotes the state vari-
able at position x in some spatial geometry Ω
and at time t, u(x, t) denotes the input. A is
a linear operator, B denotes the input operator
and F represents nonlinear terms and model mis-
match. A separation of linear and nonlinear terms
for a different class of systems as a basis for
model reduction has been proposed in (Yousefi et
al., 2004), where the nonlinearities are not reduced
however. In our work, the system (2) is separated
into two parts

∂T

∂t
= A(T ) + B(u) + q (3a)

q = F(T, u) (3b)

to facilitate the interpretation of the nonlinear
function F(T, u) as the (known or unknown)
empirical part of the model. A parametrization
E(T, u, θ) of the empirical part is proposed to
replace F in (3b) by E(·, ·, θ) for a suitable pa-
rameter θ ∈ Θ. In this way, a hybrid structure is
defined in which the estimation of θ ∈ Θ will be
combined with the reduction of the mechanistic
part (3a).

2.2 Proper Orthogonal Decompositions

One of the most promising and significant tech-
niques for an efficient reduction of large-scale non-
linear systems in fluid dynamics is the method
of Proper Orthogonal Decompositions (POD)
also known as the Karhunen-Loève method. The
method is based on the observation that flow
characteristics reveal coherent structures or pat-
terns in many processes in fluid dynamics. This
has led to the idea that the solutions of model
equations may be approximated by considering
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a small number of dominant coherent structures
(called modes) that are inferred in an empirical
manner from measurements or simulated data.

Given an ensemble of K measurements Tk(·),
k = 1, . . . , K with each measurement defined on
some spatial domain Ω, the POD method amounts
to assuming that each observation Tk belongs to
a Hilbert space H of functions defined on Ω. With
the inner product defined on H, it then makes
sense to call a collection {ϕj}∞j=1 an orthonormal
basis of H if any element, say T ∈ H, admits a
representation

T(x) =
∞∑

j=1

ajϕj(x), x ∈ Ω. (4)

Here, the aj ’s are referred to as the coefficients
and the ϕj ’s are the modes of the expansion. The
truncated expansion

Tn(x) =
n∑

j=1

ajϕj(x), x ∈ Ω (5)

causes an approximation error ‖T − Tn‖ in the
norm of the Hilbert space. We will call {ϕj}∞j=1

a POD basis of H whenever it is an orthonormal
basis of H for which the total approximation error∑K

k=1 ‖Tk−Tk
n‖ is minimal for all truncation lev-

els n. This is an empirical basis in the sense that
every POD basis depends on the data ensemble.

Using variational calculus, the solution to this
optimization problem amounts to finding the nor-
malized eigenfunctions ϕj of a positive semi-
definite operator R : H → H that is defined as

〈ψ1, Rψ2〉 :=
1
K

K∑
k=1

〈ψ1,Tk〉 · 〈ψ2,Tk〉 (6)

with ψ1, ψ2 ∈ H. R is well defined in this manner
and corresponds to a positive semi-definite matrix
whenever H is finite dimensional. In that case,
a POD basis is obtained from the normalized
eigenvectors of R (Astrid, 2004; Cazemier, 1997).

Subsequently, a Galerkin projection is used to
obtain the reduced model as follows. Suppose that
the system is governed by a PDE of the form (2).
Let Hn denote an n dimensional subspace of H
and let Pn : H → Hn and In : Hn → H denote
the canonical projection and canonical injection
maps. The reduced model is then given by

Pn
∂Tn

∂t
= PnA(Tn) + PnB(u) + PnF(Tn, u) (7)

where Tn(·, t) = Tn(t) belongs to Hn = PnH for
all t. In the specific case of a POD basis, the fi-
nite dimensional subspace Hn = span(ϕ1, . . . , ϕn)
where the ϕj ’s denote POD basis functions. In
that case, (7) becomes an ordinary differential
equation in the coefficients aj(t) in the expansion
of Tn.

3. METHODOLOGY

A conventional construction of a grey-box model
which approximates the model (3) without any
form of model order reduction consists of the
replacement of the relation (3b) by the empirical
model

q = E(T, u, θ) (8)
where E : H× U × Θ → H defines a parametriza-
tion of F . In a grey-box modeling framework F is
an unknown process part that is approximated by
an empirical model E . In a grey-box model reduc-
tion framework F is a possibly highly complex,
computationally expensive nonlinear term that is
approximated by a computationally less expensive
term E .

Identification of the model part q = E(T, u, θ∗)
takes place after discretization of the spatial do-
main Ω into N points. By this, the variable T(t)
becomes T(t) := col(T (x1, t), ..., T (xN , t)) which
is an element of a finite dimensional Hilbert space
H. Introducing expression M(T, u) = A(T )+B(u)
for the mechanistic model part, the identified full
order grey-box model is given by

∂T

∂t
= M(T, u) + E(T, u, θ∗) (9)

3.1 3-step method of Grey-box model identification

The reduction methodology that we propose in
this contribution is illustrated in Figure 1. The
method consists of the following steps:

(1) Reduction of the mechanistic part. The grey-
box model formulation as in equation (3) allows
a separate treatment of the separate model parts.
Following (7), a Galerkin projection is performed
on the mechanistic part (3a) to yield a reduced
order model

Pn
∂Tn

∂t
= PnM(Tn, u) + qn (10)

where Tn = PnT , and qn = Pnq and where
Pn : H → Hn is the projection matrix defined
in Section 2.2. This step reduces the order of the
model to n.

(2) Parametrization and estimation of empirical
part. After reduction of (3a), the reduced model

LO Black box 

Inputs Outputs
Reduced 

Mech.
model

Identified Reduced Model 

Reduced 
Mech.
model

Inputs Outputs

?

Initial Reduced Model 

Full order 
Mechanistic

model

Initial Full Order Model 

Inputs Outputs 

?

2. Identification
of black box

Full order 
Mechanistic

model

LO Black box 

Full Order Restored 

Inputs Outputs 

3. Model restoration 1. Model reduction 

Fig. 1. Scheme of the proposed methodology
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(10) is extended with the relation En (T, u, θ) =
col(E1(T, u, θ), . . . ,En(T, u, θ)) where En : Hn ×
U × Θ → Hn defines a parametrization of the
empirical part. An optimal parameter θ∗ ∈ Θ is
identified, such that a criterion function J : Θ →
R on the interconnection (10)-(11) is minimized.
This results in:

qn = En(Tn, u, θ∗) (11)

In this step a low order model with a low num-
ber of nonlinear function evaluations has been
obtained by the interconnection of (10) and (11)
which we refer to as the reduced model.

(3) Model restoration. In order to obtain solutions
in terms of the variable T (x, t), three possibili-
ties exist. Firstly, the solution trajectories of the
reduced model can be injected to the full order
space. Secondly, the reduced model equations (10,
11) as well as the variable Tn can be injected to
the full order space which results in the injected
model structure:

∂T

∂t
= InPnM(InPnT, u) + InEn(PnT, u, θ∗)

(12)
Thirdly, the identified low order empirical part
can be injected to the full order space and coupled
to the original mechanistic part, by which the
coupled model structure is obtained:

∂T

∂t
= M(T, u) + InEn(PnT, u, θ∗) (13)

With both the restored injected and coupled mod-
els structures are obtained in which fewer nonlin-
ear functions have to be evaluated than in (9).

3.2 Sparsity structure

Figure 2 illustrates the sparsity structure of the
full order model and the reduced model. In the full
order model M and E are solved on each (of the
N) grid points or mesh elements. In the reduced
model, the same structure is present whereby M
and E are only to be solved n times. The restored
coupled model has a structure where E is coupled
to M via the projection and injection matrices. In
case the input is a distributed variable u(x, t), the
input hast to be projected on a suitable subspace
as well in order to maintain a low order mapping
En : Hn × U × Θ → Hn.

Fig. 2. Sparse structure of models (9) and (13)

4. APPLICATION TO HEAT DIFFUSION

4.1 Model description

This section considers a simple one-dimensional
model for heat conduction and convection in
melted glass. The model is given by the PDE

∂T (x, t)
∂t

= −v
∂T (x, t)

∂x
+ α

∂2T (x, t)
∂x2

+ Q(x, t)

(14)
where T (x, t) is the temperature at position x and
time t, v is the convective flow velocity, α is the
thermal diffusivity coefficient and

Q(x, t) =
σ

ρcp

(
c1T

4
fl (x, t) − c2T

4(x, t)
)

(15)

is a spatially distributed heat input term depend-
ing on T and the heating flames Tfl above the
glass. The parameter values of the model are listed
in Table 1.

As a first step, the spatial domain is discretized
in N equidistant grid points at intervals dx. Let
T(t) = col(T (x1, t), . . . , T (xN , t)) denote the tem-
perature vector at the grid points. After the spa-
tial derivatives of T have been approximated by
central finite differences the resulting model as-
sumes the form

Ṫ = AT + BTb + Q(T,Tfl) (16)

where Tb is the temperature at the boundary at
the upstream side. The gradient of the glass tem-
perature at the downstream boundary is assumed
to be zero.

A hybrid structure is employed for (16) where the
nonlinearity Q(T,Tfl) is replaced by an empirical
function E(T,Tfl, θ) defined by a feed-forward
neural network in the parameter vector θ ∈ R

13.
Specifically, let E = col(E1, . . . , EN ) denote the
nonlinearity in each gridpoint x1 . . . , xN , the ith
output Ei of E is defined by

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎣

ai,1

ai,2

ai,3

⎤
⎦ = tanh

⎛
⎝

⎡
⎣

θ1 θ3 θ5

θ2 θ4 θ6

θ7 θ8 θ9

⎤
⎦

⎡
⎣

Ti

Tfl,i

1

⎤
⎦

⎞
⎠

Ei =
[
θ10 θ11 θ12 θ13

] [
ai,1 ai,2 ai,3 1

]�
(17)

The full order grey-box model then becomes

Ṫ = AT + BTb + E(T,Tfl, θ). (18)

Table 1. Parameter values

Parameter value unit

flow v 5E-4 ms−1

thermal diffusivity α 5E-3 Wm−2

density ρ 2500 kgm−3

specific heat cp 400 J
kgK

transmission coeff. c1, c2 0.20, 0.33

Stefan-Boltzmann const. σ 5.67E-8 W
m2K4

boundary temperature Tb 1773 K
glass bath length L 10 m
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4.2 Reduction of mechanistic part

The method of POD is employed to reduce the
mechanistic part of the model. A POD basis
{ϕk}N

k=1 for H = R
N is computed from a col-

lection of temperature measurements T(tk) ∈ H.
Here, N = 100 and we define the n = 5 dimen-
sional projection space H5 by the column-span of
the matrix Φ := [ϕ1, . . . , ϕ5] that consists of 5
dominant POD basis functions. Since the basis is
orthonormal, the canonical projection P5 = Φ�

and the canonical injection matrix I5 = Φ. A
Galerkin projection of the mechanistic part then
yields the model which we call the projected model.
E is still of dimension N :

ż = Arz + BrTb + Φ�E (Φz,Tfl, θ∗) . (19)

where Φz = T, Ar = Φ�AΦ and Br = Φ�B. A
gain in computational speed is noticeable for the
mechanistic model part (see Table 3).

4.3 Estimation of empirical part

To improve the computational speed, the empir-
ical part in (19) is replaced by a neural network
En(z, zfl, θ) with the same sparse structure as E in
(17) but with n = 5 dimensional input vectors.
This simplifies (19) to

ż = Arz + BrTb + En (z, zfl, θ∗) (20)

where zfl = Φ�Tfl denotes the projection of Tfl

on the dominant basis functions. This projection
which is required because of the enforced sparse
structure as mentioned in section 3.2, is not opti-
mal because Tfl has not been taken into account
when constructing Φ. However, since the argu-
ments of the nonlinear terms in E are affine com-
binations of T and Tfl (eq. 17), the exact sparse
structure between the states and input variables
is preserved:

Φ� (θ1T + θ2Tfl) + θ3 = θ1Φ�T + θ2Φ�Tfl + θ3.
(21)

Initial conditions are set to z(0) = Φ�T(0).
The grey-box model has now been completely
reduced to a system with both a reduced number
of equations and a reduced number of nonlinear
function evaluations. The parameter estimation
problem of the nonlinear dynamic system that has
been obtained can be formulated as follows:

min
θ

Nm∑
i=1

n∑
j=1

(zi,j − ẑi,j)
2

subject to

⎧⎪⎪⎨
⎪⎪⎩

ż = Arz + BrTb + En (z, zfl, θ)
En (z, zfl, θ) = col(E1, . . . ,En)
ẑ = Φ�T̂
z0 = Φ�T0

(22)
Nm is the number of measurements over time. The
data from the snapshot matrix have been used as

measurement data T̂. A standard Runge-Kutta
scheme has been used to solve the model equa-
tions. The SQP optimization algorithm SNOPT
(Gill et al., 2005) has been used to solve the
parameter estimation problem using finite differ-
ences to approximate the gradients.

A brief assessment of the computational load
of the parameter estimation is given in Table
2 which gives the averaged results for 10 runs
starting from random initial parameter values.
The estimation time has been reduced with an
order of magnitude. The exact reason for this
phenomenon and how to exploit it will be subject
to future research.

Table 2. Estimation results

function gradient CPU
model eval. eval. Iter. time

Full order 1864 112 111 1401 s
Reduced 1680 105 104 145 s

4.4 Model restoration and validation

The computational load of the different models
and the distribution over the empirical part and
the mechanistic part as well as the cost of the
actual evaluation of the nonlinear function are
shown in detail in Table. 3. The total computa-
tional load including overhead in the model eval-
uation, has been reduced from 0.738 to 0.446 s,
which is a reduction of about 40%. The computa-
tional load of the projected and restored models
lie in between these values.

Table 3. Simulation results

nonlin. emp. mech.
model (eq.) func. part part total

Original (16) .871 s .939 s .107 s 1.236 s
Full order (18) .247 s .409 s .192 s .738 s
Projected (19) .215 s .355 s .154 s .650 s
Reduced (20) .074 s .188 s .142 s .446 s
Coupled (13) .074 s .189 s .176 s .506 s
Injected (12) .086 s .214 s .252 s .613 s

The reduced, injected and coupled model are val-
idated by inspection of the quality of prediction.
Figure 3 shows the nominal trajectory when the
original model (16) is subjected to different inputs
and initial conditions as well as the prediction
errors of the reduced, the injected and the coupled
model:

|ε|val =
∣∣∣∣

Tprediction − Tnominal

max (Tnominal) − min (Tnominal)

∣∣∣∣ .

The figure shows the robustness of the coupled
model structure. Inputs and initial conditions that
have not been taken into account when construct-
ing the POD basis functions could be interpreted
as disturbances. Because the new inputs and ini-
tial conditions can not be projected sufficiently
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well on the POD basis, the reduced model and the
injected model show a discrepancy up to about
36% of the temperature variation. The coupled
model is more robust against these disturbances
and shows a maximum error of about 7%.
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Fig. 3. Validation results.

5. CONCLUSIONS

This paper is motivated by the observation that
many model reduction techniques for large-scale
dynamical systems yield lower order models that
fail to be computationally efficient. To remedy
this problem, a general framework is proposed
for model reduction for nonlinear systems using
a grey-box modeling approach. Grey-box models
allow a separation of a mechanistic, first principle
part and an empirical, black-box part. It is shown
that by combining model reduction and parameter
estimation on grey-box models, the computational
complexity can be reduced. The method is illus-
trated on a distributed model for heat diffusion.
The prediction error of the restored coupled grey-
box model is reasonably small and robust. A
considerable improvement in computational speed
of the parameter estimation problem has been
observed. As a result, a method that provides a
faster way to identify a non-linear reduced model
has been presented.
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