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Abstract: This work proposes a framework for modeling disturbances that exhibit
time-varying characteristics typically witnessed in process industries. These in-
clude intermittent drifts and abrupt jumps. Through examples, it is shown that
the use of existing linear, stationary models is limiting. It is also demonstrated how
the proposed switching model may be identified in a computationally tractable
way. Copyright c©2007 IFAC
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1. INTRODUCTION

System identification plays a vital role in chemical
process control. For example, critical to the suc-
cessful implementation of Model Predictive Con-
trol (MPC), the de facto standard for industrial
advanced process control, is the availability of
an appropriate description of plant behavior. In
this context, disturbance modeling is crucial for it
accounts for the effect of unmeasured signals, un-
modeled plant dynamics as well as unexplainable
phenomena (the residuals).

In this paper, discrete 2 time linear models with
additive disturbances are the main concern. The
latters’ characteristics typically vary in time and
reveal complex non-stationary modes. Such be-
havior includes intermittent drifts, abrupt jumps,
and outliers, all commonly witnessed patterns in
process industries. For the purpose of illustra-
tion, consider, as an approximation of reality,
that depicted in Fig. (1), a time series plot of a
plant’s output under non-perturbed manipulated

1 The authors gratefully acknowledge the financial sup-
port from Honeywell.
2 Single time-unit sampling intervals are assumed
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Fig. 1. White noise probabilistically interspersed
with integrated white noise.

variables. It clearly exhibits dual-regime behavior.
Namely, there exists periods of relatively high fre-
quency process noise with probabilistic injections
of intervals revealing mean shifts. Modeling and
identification of such behavior is the focus of this
paper since system identification in the presence
of non-stationary noise is a relatively unexplored
area for the process control community. This work
is a step towards providing a formal framework
for more realistic description of hitherto unquan-
tifiable signals.
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1.1 Classical approaches

Faced with the aforementioned scenario, a control
engineer tasked with system identification is likely
to adopt a methodology developed for Eq.(1), the
archetypal plant description. Here the nomencla-
ture is standard. The interpretation is that the
first term accounts for deterministic plant behav-
ior whilst the second, the residuals, dk. It is widely
accepted that stochastic descriptions are natural
for the latter. In system identification literature,
dk is commonly approximated as (stationary) fil-
tered white noise.

yk = G(q−1)uk + H(q−1)nk︸ ︷︷ ︸
dk

(1)

Eq. (1) is extended to allow for “random” walk
type drifting behavior when nk is integrated white
noise, i.e. nk = ek

1−q−1 . Doing so allows one to take
advantage of the wealth of system identification
knowledge developed for systems experiencing low
frequency drifts, which are common in chemical
processes.

Regardless, the classical approach to identifica-
tion is limiting in the case depicted in Fig. (1).
One suboptimal method is to ignore portions of
data that exhibit ‘non-compliant’ behavior. This
is unsatisfactory (and impractical) in the face of
limited data. Another recourse is to use all the
data with existing methods, thereby implicitly
accepting performance degradation (in the accom-
panying estimators and controllers).

1.2 An HMM approach

The above example reveals a need for addressing
simultaneous discrete and continuous dynamics.
In light of this, the potential use of Hidden Markov
Models (HMMs) in providing a significant general-
ization of the current model form used for process
control, is explored. A finite-state Markov chain is
used for describing disturbance mode transitions.
The Markov chain reflects probabilistic state tran-
sitions which depend only on the immediate past.
Naturally, the characteristics of dk is postulated
to be dependent on the Markov state. The term
‘Hidden’ indicates that the latter is never known
with certainty and must be inferred from available
noisy measurements.

The resulting plant is termed a ‘Markov Jump
Linear System’ (MJLS) (Costa et al., 2005); where
the general representation follows

xk = Ark
xk−1 + Brk

uk−1 + ωrk

yk = Crk
xk + υrk

(2)

where

rk Markov state at the k-th time sample;
xk continuous internal state;

ωrk
i.i.d, Gaussian noise, ∼ N (0, Qrk

);
υrk

i.i.d, Gaussian noise, ∼ N (0, Srk
);

yk noisy measurements;
uk known, deterministic input signal;

{Ark
, Brk

, Crk
, Qrk

, Srk
} evolve according to the

Markov chain realizations, (r1, r2, . . . , rk, . . .). With-
out loss of generality, E(wrk

v′rk
) = 0, ∀k. Also,

rk ∈ J , {1, . . . , J}, where J ∈ Z+, denotes the
number of discrete Markov states.

The Markovian jumps are governed by a transi-
tion matrix Π = (Pr(rk = j|rk−1 = i) , pij) :∑J

j pij = 1∀i ∈ J . All Markov chains under con-
sideration are ergodic. For simplicity, the Markov
chain is assumed to be at steady state, satisfying
π = Π′π, where π is a column vector containing
the unconditional probabilities of each regime.

It is noted that the application of HMM’s and/or
MJLS’s (and their variants) in science and en-
gineering is not novel per se. Researchers in the
fields of speech recognition (Rabiner, 1989), ar-
tificial intelligence (Murphy, 1998), econometrics
(Kim and Nelson, 1999), automatic control (Bar-
Shalom and Li, 1993) and other communities have
employed MJLS’s since the 1960s. The references
in (Costa et al., 2005) mark a good starting point
for work on MJLS’s done by the control commu-
nity.

Encouraged by the successes in other fields, a
restricted MJLS representation is considered for
describing a wide class of commonly seen distur-
bances. This HMM approach has hitherto found
limited use for disturbance modeling. Robertson
and Lee (1998) proposed a special kind of Markov-
ian jump disturbances for the modeling of abrupt
changes but there, the focus was on state estima-
tion.

This contribution is chiefly to demonstrate the
viability of restricted MJLS’s as a model structure
suitable for a wide spectrum of interesting distur-
bance signals. Under consideration are two scenar-
ios in which the use of stationary models (as might
be done by practicing engineers during an identi-
fication experiment) results in unsatisfactory es-
timation. It is shown how the plant and Markov
chain parameters may be obtained via Maximum
Likelihood Estimation (MLE). This is facilitated
by viewing (r1, . . . , rk, ...) as an unknown sequence
to be estimated. Doing so addresses the fact that
exact MLE requires a number of filters that grow
exponentially with the data-length.

Section 2 presents the problem formulation. The
corresponding solution methodology is delineated
in Section 3. Numerical examples are presented
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in Section 4. Section 5 concludes the work and
comments on outstanding issues.

2. PROBLEM FORMULATION

The primary concern is disturbance modeling.
For this, the representation is given by Eq. (3).
The superscript n denotes noise (or equivalently
disturbance).

xn
k = Anxn

k−1 + ωrk

yn
k = Cnxn

k + υrk
(3)

This system defines the noise part of the model
(dk in Eq. (1)).

The (general) identification problem is to find
θ̃ , vec{Ai, Ci, Qi, Si,Π}, ∀i ∈ J , given data
of finite length, T . For notational ease, the fol-
lowing sequences are compactly represented viz
Y T

1 , (y1, ..., yT ); XT
1 , (x1, ..., xT ) and RT

1 ,
(r1, ..., rT ). From now on superscripts are dropped
wherever the contextual meaning is unambiguous.
The general term ‘system’ is used to refer to ei-
ther the plant dynamics or the dynamics of the
disturbance model.

3. SOLUTION METHODOLOGY

Identification of Eq. (3) is achieved via MLE,
i.e. θ̂∗ = arg maxθ{Lθ , log pθ(Y T

1 )}, where θ is
θ̃ concatenated with RT

1 . Direct maximization is
generally difficult. However, a key observation
is that maximizing the complete loglikelihood
log pθ(XT

1 , Y T
1 ), a quadratic form, is easier upon

knowing XT
1 . The Expectation-Maximization (EM)

algorithm (Dempster et al., 1977) formalizes this
and is developed briefly in the following para-
graphs. Readers are pointed to (Gibson and Nin-
ness, 2005) for a treatment on EM (albeit for non-
switching systems) with a control-theoretic bent.

Denote the conditional expectation operator, Êθ̂ ,
E{·|Y T

1 , θ̂}, where the expectation is over all un-
certainty and is evaluated based on θ̂ (an estimate
of θ). Then, definingQ(θ, θ̂) , Êθ̂{log pθ(XT

1 , Y T
1 )},

and V(θ, θ̂) , Êθ̂{log pθ(XT
1 |Y T

1 )}, it follows from
Eq. (4) that Lθ > Lθ̂, if Q(θ, θ̂) > Q(θ̂, θ̂), since
V(θ̂, θ̂)−V(θ, θ̂), being the Kullback-Leibler diver-
gence, is non-negative.

Lθ =Q(θ, θ̂)− V(θ, θ̂) (4)

This observation motivates the EM algorithm,
given by Eq. (5) and Eq. (6). Starting with initial
parameter guesses, the E-and-M-steps making up
the l-th iteration are

compute Q(θ, θ̂l) , Êθ̂l
{log pθ(XT

1 , Y T
1 )} (5)

calculate θ̂l+1 = arg max
θ
Q(θ, θ̂l) (6)

The first argument of Q(·, ·) indicates that the
complete loglikelihood is to be evaluated based
on θ, whereas the second argument is responsi-
ble for the conditional expectation. This gener-
ates smoothed state estimates via a Rauch-Tung-
Striebel (RTS) smoother. The associated quan-
tities are Êθ̂l

{xk}, Êθ̂l
{xkx

′
k}, and Êθ̂l

{xkx
′
k−1}.

Details of the EM algorithm are presented in Ap-
pendix A.

Without viewing RT
1 as parameters to be es-

timated, Q(·, ·) = Êθ̂l
{log pθ(RT

1 , XT
1 , Y T

1 )} =
E[E{·|RT

1 , Y T
1 , θ̂l}]. The second equality is from

the property of the expectation operator. The
outer operator is with respect to RT

1 and re-
quires an exponentially increasing number of fil-
ters. Murphy (1998) approximated the second
equality by removing the RT

1 dependence. See
(Pavlovic et al., 1999) for another approximate
method for overcoming this intractability. Finally,
it is noted that the EM algorithm is compatible
with Maximum-A-Posteriori (MAP) estimation
by viewing all parameters as random variables;
prior knowledge, if any, can be incorporated since
log p(θ|Y T

1 ) = log pθ(Y T
1 ) + log p(θ).

In the next section, several scenarios, where the
presence of switching disturbance dynamics is ev-
ident from data, are considered. There, it is shown
how the switching models may be obtained. Also
the deficiencies of using a stationary approxima-
tion are highlighted.

4. EXAMPLES

Two examples are considered. For data-based
process identification, as opposed to fundamental
modeling, it may be more realistic to lump all
switching dynamics into the residuals. This justi-
fies the restriction to switching behavior occurring
only in {Qrk

, Srk
}. The performance evaluation

is based on the error of a p-step-ahead (output)
predictor corresponding to an identified station-
ary model (N4SID (Ljung, 1999) identifies a state
space model in innovations form) against that of
one designed for an MJLS. The latter is identified
from the same data set. Prediction is carried out
over fresh data of length equivalent to the training
data.

For switching models, the optimal non-linear
filter grows exponentially (Jk) with time. As
a sub-optimal predictor, the nth-order General-
ized Pseudo-Bayesian (GPBn) methodology (Bar-
Shalom and Li, 1993) is favored. In the simula-
tions, n = 2 was chosen. With this, only tra-
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jectories whose last n terms differ are merged
via moment matching into a single Gaussian. Let
∆k

k−n+1 , (rk−n+1, . . . , rk) be a sequence of the
n most recent discrete-state trajectories. For the
sake of brevity, the following are the recursive
equations for the 1-step ahead output predictions
Eq. (7) and the corresponding error covariance,
Eq. (8).

xk|k−1(∆k
k−n+2) =

∑
rk−n+1

xk|k−1(∆k
k−n+1)Pr(rk−n+1|∆k

k−n+2, Y
k−1
1 )

(7)

Pk|k−1(∆k
k−n+2) =

∑
rk−n+1

[
{
xk|k−1(∆k

k−n+2)− xk|k−1(∆k
k−n+1)

} {·} ′

+Pk|k−1(∆k
k−n+1)] · Pr(rk−n+1|∆k

k−n+2, Y
k−1
1 )

(8)

The merging probabilities are obtained recursively
(Bar-Shalom and Li, 1993) via Bayes rule. Subse-
quently, equations for p-step ahead predictors can
be easily obtained.

4.1 Example 1:

The system description corresponding to Fig. (1)
is

(
x
z

)

k

=
(

0.61 1
0 1

)

︸ ︷︷ ︸
A

(
x
z

)

k−1

+
(

ω1

ω2

)

rk

yk =
(
0.79 0

)
︸ ︷︷ ︸

C

(
x
z

)

k−1

+ υk (9)

The other parameters are Q1 = diag[1, 10−5], Q2 =
diag[10−8, 1], S = 10−9, p11 = p22 = 0.995, indi-
cating that the probabilities of switching are rel-
atively low. In reality, high switching frequencies
would not be expected. Regime 1 corresponds to
signals depicting stationary noise and regime 2,
filtered integrated white noise. T = 2000 was used
during the simulation.

Due to the integrating elements, N4SID was run in
MATLABTM, with time differenced data (∆yk =
yk − yk−1). The system order was automatically
selected based on comparison of Hankel singular
values. During the numerical experiment, the EM
algorithm was initialized with 5% error distrib-
uted uniformly throughout the true RT

1 . This low
level of error is justified on the basis that the
generated signals show a clear demarcation of the

regimes, justifying the usage of switching models
in the first place. The guesses for the system
matrices contained 15% (zero mean, unit-variance
Gaussian) error on average, subject to the con-
straint of a stable initial system. The diagonals of
Π0 were initialized as diag[0.9, 0.9].

EM Alterations. Since the system matrices are
regime-invariant, the following adjustments were
made. In obtaining C,S, no distinction was made
between data from regime 1 or 2. For A, the
first row Â(1,:) 3 was obtained from regime 2
data and Â(2,:) from regime 1. This was found
to be appropriate since state-estimation (E-Step)
for the integrating mode z would generally be
poorer for regime 1. Of further note is that any
estimate of θ that increases Q(·, ·) increases the
likelihood. In light of this, it was found to be
beneficial, at each iteration, to perform another E-
Step prior to computing R̂T

1 l+1. Prior knowledge
was also incorporated when estimating Π. This
is done by setting a Beta prior for pii, ∀i. This
is to say, Pr(pii) ∝ (pii)αiiγT (1 − pii)(1−αii)γT ,
where αii represents the prior (or equivalently
initial) estimate of pii and γ, the strength of
the prior, relative to the observed training data.
The net effect is that p̂ii,∀i ∈ J is a convex
combination of that obtained via MLE and the
initial guess. A 20% − 80% split was selected,
respectively. Table (1) summarizes the various
performance indices and shows that suboptimal
output prediction occurs when a stationary model
is identified. The first three columns serve as
references. Notice that N4SID does marginally
better than the optimal predictor for integrated
white noise (i.e. ŷk|k−p = yk−p).

Table 1. Normalized sum of squared
p-step-ahead prediction errors for ex.1

(average of 500 realizations)

p GPB2 GPB2 Optimal GPB2 N4SID
(actual (initial predictor (identified
model) model) for model)

integrated
white noise

1 0.61 12.23 0.88 0.65 0.85
10 4.34 136.02 5.12 4.47 5.02

Further analysis revealed that N4SID, due to the
assumption of stationarity, yielded performance
inferior to GPB2 for both regimes. For example,
the normalized 1-step-ahead output-prediction er-
rors for regime 1 were 0.56 and 0.83 for a GPB2
predictor designed for the identified switching
model and the filter corresponding to N4SID, re-
spectively. For regime 2, the corresponding figures
are 0.57 and 0.78.

3 in Matlab notation
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Fig. 2. (a) An inferential control setup;
(b) a quad-regime scenario.

4.2 Example 2:

For the purpose of illustration, a situation where
a soft-sensor approach is employed for inferential
control (see the left panel of Fig. (2)) is consid-
ered. Namely, a model is constructed, so as to
deduce desired but hard-to-get primary variables
from the measurements of secondary ones.

In this example, Eq. (10), the secondary measure-
ments are y1, y2 ∈ R; yc ∈ R2 are the primary
ones. The situation reflects ω1 and ω2 switching
between the levels ‘low-low’ (regime 1), ‘low-hi’
(regime 2), ‘hi-low’ (regime 3) and ‘hi-hi’ (regime
4), with the first and last being the most improb-
able ones. The chances are that either (but not
both) ω1 or ω2 is dominant. This quad-regime
scenario is depicted clearly in the right panel of
Fig. (2). Implicit in this formulation is that all
disturbances are added to the output channel.
For simplicity, it is assumed that uk, ∀k is never
perturbed and all that is observed would be dis-
turbance patterns:




x1

x2

z1

z2




k

=




0.61 0 1 0
0 0.90 0 0.5
0 0 1 0
0 0 0 1







x1

x2

z1

z2




k−1

+




0
0
ω1

ω2




rk




y1

y2

yc1

yc2




k

=




2.0 0 0 0
0 0.95 0 0
5 5 0 0
7 7 0 0







x1

x2

z1

z2




k

+ υk (10)

For self-transitions, p11 = p44 = 0.96, p22 = p33 =
0.994. The remaining probability is distributed
uniformly over the remaining regimes, with the
constraint that transitions between regimes 1 and
4 are forbidden. With this, the system is in ei-
ther regime 1 or 4 for 10% of the time and
in regime 2 or 3 for the other 90%. Further-
more, Q1 = diag[10−3, 10−3], Q2 = diag[10−3, 1],
Q3 = diag[1, 10−3], Q4 = diag[1, 1], S =
diag[10−4, 10−4, 10−4, 10−4]∀j. T = 3600 and yc

were assumed to be available only for the sake of
modeling but not for estimation after the model

construction. The performance index is the p-step-
ahead prediction errors of yc.

As before, a stationary model was obtained via
N4SID (without data differencing this time due
to the nature of the performance index). In ac-
quiring a switching model, the initial trajectory
contained 5% error. The starting guesses for the
system matrices contained 20% error on average.
The diagonals of Π were [0.90, 0.97, 0.97, 0.90]; the
other entries followed the same pattern exhibited
by the true transition matrix. As is with example
1, Π was obtained via MAP estimation, assuming
20% confidence in the data and 80% confidence in
the initial estimates.

The resultant models were tested on fresh data
in the absence of yc measurements. This is con-
sistent with inferential control setups. It is noted
that oftentimes, N4SID would yield an unstable
predictor (i.e. the poles of AN4 −KN4CN4, with
rows and columns corresponding to yc removed,
were outside the unit disc). A possible reason is
that N4SID essentially identifies a near open-loop
observer (as suggested by the previous example).
The results are summarized in Table (2).

Table 2. Normalized sum of squared
p-step-ahead prediction errors for ex.2

(average of 500 realizations)

p GPB2 GPB2 GPB2 N4SID
(actual model) (initial model) (identified)

1 47.07 551.02 49.88 ∞
10 3856 33470 3892 ∞

5. CONCLUSIONS, LIMITATIONS &
FUTURE RESEARCH

Below is a list of some possible concerns which
reflect the fact that identification of MJLS is an
open area for research.

• Observability : It has been shown (Vidal et
al., 2002) that for general MJLS’s there exists
an infinite number of combinations of dis-
crete and continuous state cardinalities that
will give the same input-output behavior. To
mitigate this, scenarios depicting switching
only in the noise parameters were chosen.
Also, only scenarios where the existence of
regimes was obvious were under considera-
tion. The automatic selection of the system
order is also another area of research.

• Local Optima: MLE optimization is typically
non-convex; the likelihood surface is fraught
with multiple optima. As such, the EM al-
gorithm converges to the nearest stationary
point. This was implicitly overcome by choos-
ing suitably ‘close’ initial guesses. It is the
authors’ intentions to explore various initial-
ization schemes. Deterministic annealing has
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been proposed by Murphy (1998) as a possi-
ble avenue to explore.

• Consistency : It was previously pointed out
(Logothetis and Krishnamurthy, 1999) that
(r̂1, . . . , r̂T ) estimates are generally inconsis-
tent since they are time-varying.

• Jumps, Outliers: Abrupt step jumps can be
modeled per Example 4.1 by adding a third
regime with low self-transition probability
where Q3 = diag[10−5102], say. Likewise,
infrequent outliers may be captured in the
same framework by superimposing an addi-
tional Markov chain that corresponds to a
large covariance.

• Future work : It is postulated that more
realistic disturbance modeling would result
in better identification of plant dynamics
(G(q−1) in Eq. (1)). A possible recursive al-
gorithm would involve Output-Error identi-
fication combined with the EM framework.

It is believed that the proposed approach is a
suitable mathematical framework for describing
a wide class of disturbance patterns commonly
found in process industries. Also, it has been
shown the adoption of stationary models often-
times results in sub-par performance, in terms of
estimation and therefore model-based control. By
restricting the general class of MJLS’s, and using
prior knowledge where appropriate, it is hoped
that a suitable balance between the expressive
power of the models and computational tractabil-
ity, has been achieved.
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Appendix A. DETAILS OF THE EM
ALGORITHM

For brevity, we only show Âj , Q̂j computations.
At the lth iteration, we have δ(·, ·) as the
Kronecker delta, Nx,j ,

∑T
k=2 δ(rk, j|Y T

1 , θ̂l),
Êθ̂{xk1xk2

′} , Êθ̂{xk1}Êθ̂
′{xk2} + Êθ̂{xk1 −

Êθ̂{xk1}}{xk2 − Êθ̂{xk2}}′

Denoting and subsquent optimization in the M-
Step yields,

Φx,j , 1
Nx,j

T∑

k=2

Êθ̂{xkxT
k }δ(rk, j|Y T

1 , θ̂l)

Ψx,j , 1
Nx,j

T∑

k=2

Êθ̂{xkxT
k−1}δ(rk, j|Y T

1 , θ̂l)

Σx,j , 1
Nx,j

T∑

k=2

Êθ̂{xk−1x
T
k−1}δ(rk, j|Y T

1 , θ̂l)

Âj = Ψx,jΣ−1
x,j

Q̂j = Φx,j −Ψx,jΣ−1
x,jΨ

T
x,j

The transition probability matrix is estimated
by a simple counting procedure. R̂T

1 l+1 is com-
puted via Pr(rk|ω̂1, . . . , ω̂T ) and taking the corre-
sponding mode as the Markov state estimate. For
computing log pθ(XT

1 , Y T
1 ), readers are pointed to

Gibson and Ninness (2005). The extension to the
switching case is straightforward with the excep-
tion that the following terms be appended.

−2
T∑

k=2

∑

i,j

δ(rk−1, i; rk, j|Y T
1 , θ̂l) log pij

−2
J∑

j=1

δ(r1, j|Y T
1 , θ̂l) log π(r1)
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