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Abstract: A new adaptive control method based on supervision is presented. The
algorithm only updates the control estimates when new relevant information is
obtained. The technique is based on a dual-model approach. The first model acts
as the control model and the second model is the supervisor which determines when
the control model should update its estimated parameters. Simulation results using
a CSTR illustrate the set point tracking capabilities of the algorithm. Experimental
studies on a heat exchanger showcase how the algorithm successfully suppresses
output bursting. Copyright c©2007 IFAC.
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1. INTRODUCTION

Adaptive control is a method to optimize control
parameters in uncertain and time-varying sys-
tems. In a typical application a linear transfer
function model is estimated using input output
data and recursive least squares. Once the model
has been obtained it can be used to design a num-
ber of different controllers, such as predictive con-
trol, extended horizon and pole-placement. De-
scriptions of these and many other effective adap-
tive control methods are presented by Goodwin
and Sin (1984), Åström and Wittenmark (1995)
and Mareels and Polderman (1996). Many differ-
ent approaches and applications of adaptive con-
trol have been reported in the literature. Further-
more, commercial software systems for adaptive
process control have been developed as well.

Adaptive control has not won widespread accep-
tance in the chemical process industries, however.
The main reason for this is that many of the pro-

posed adaptive control algorithms are not robust
with respect to un-modeled dynamics and noise.
The problem was recognized in the early adaptive
control literature (Rohrs et al., 1985) and many
methods were subsequently proposed to make
the adaptive controllers more stable. One of the
most effective techniques is the deadzone method.
In this approach the estimation algorithm stops
when the prediction error becomes smaller than a
preset value (Egardt, 1979), (Peterson and Naren-
dra, 1982) and (Middleton et al., 1988). One prob-
lem with this approach is the difficulty of choosing
an appropriate value for the magnitude of the
deadzone. Another method called leakage ensures
that the parameter estimates stay close to the
initial conditions (Ioannou and Sun, 1996). Persis-
tent excitation ensures stability by manipulating
the input signals so that data remain informative
(Mareels and Polderman, 1996). Finally, param-
eter projection can be used to ensure that the
parameter estimates do not exceed pre-specified
bounds. The main disadvantage of these methods
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Fig. 1. Block diagram showing the supervised
dual-model algorithm approach.

is that they make unrealistic assumptions about
the process and the disturbances (Hill and Yd-
stie, 2004).

The objective of the present paper is to describe
a new method to improve robustness of adaptive
process control. The proposed method is closely
related to the deadzone method since it relies on
the idea of turning estimation off once the predic-
tion is smaller than a given threshold. However,
in this case we adapt the threshold by using a
second adaptive controller (Ydstie, 2005). Adap-
tive prediction theory can be used to show that
the prediction error of the second model converges
to an optimal estimate of the plant disturbances.
The deadzone is now optimally tuned and it is
possible to show that the parameter estimates and
controller converge close to optimal performance.
In a companion paper we show the theoretical
stability analysis to support this claim for the
special case of direct adaptive predictive control
(Dozal-Mejorada and Ydstie, 2006).

The paper is organized as follows. In the next sec-
tion we describe the new method for supervisory
adaptive control. We then introduce a predictive
controller which is suitable for adaptive control
of open loop stable systems. Lastly, we present
simulation and experimental studies that support
the proposed method.

2. SUPERVISED ADAPTIVE CONTROL

In our novel approach to adaptive control we
monitor the performance of the estimated control
with a supervisor. Figure 1 shows that the method
uses a dual-model concept where one model is
used by the controller to regulate the plant to
constant or time-varying set points while the
second model is used by a supervisor to decide
when to update the control model. Ideally the first
model should only be updated when the data are
excited so that the estimated parameters converge
to better values.

In order to highlight the technique, consider
a single-input single-output discrete time plant
given by

A(q−1)y(t) = B(q−1)u(t) + γ(t) (1)

The signals {y(t), u(t), γ(t)} are the measured
output, manipulated input and unmeasured dis-
turbances respectively. A(q−1) and B(q−1) are
polynomials in the backward shift operator, q−1

so that

A(q−1) = 1 + a1q
−1 + · · · + anq−n (2)

B(q−1) = b0 + b1q
−1 + · · · + bmq−m (3)

System (1) is written in shorthand notation

y(t) = ϕ(t − 1)T θ� + γ(t) (4)

with the regression vector ϕ(t) defined by

ϕ(t)T = (−y(t), . . . ,−y(t − n + 1), (5)

u(t), . . . , u(t − m + 1))

The parameters of the polynomials{
A(q−1), B(q−1)

}
are used to define the vector

θ� = (a1, . . . , an, b0, . . . , bm)T (6)

The certainty equivalence principle applied to
adaptive control gives a method for control which
involves fitting a linear model to plant data and
calculating the control law as if the estimated
parameters gave a perfect representation of the
plant dynamics (Ydstie, 1997). Thus, replacing θ�

with estimates

θ̂(t)T = (â1(t), . . . , an(t), b̂0(t), . . . , b̂m(t)) (7)

allows the online development of feedback and
feed forward controllers. The controllers are up-
dated whenever the parameter vector θ̂(t) changes.
Then, the adaptive control problem is to develop
a self-tuning controller for system (4) while satis-
fying stability and robustness conditions.

The schematic depicted in Figure 1 shows that the
supervisory approach involves two models being
estimated in parallel with a switch determining
when to update the control model. The controller
and supervisor models are expressed in terms of
the regression vector and their respective esti-
mated parameters

ŷC(t) = ϕ(t − 1)T θ̂C(t − 1) (8)

ŷS(t) = ϕ(t − 1)T θ̂S(t − 1) (9)

where the subscripts C and S denote controller
and supervisor respectively. The corresponding
model prediction errors are given by

ei(t) = y(t) − ϕ(t − 1)T θ̂i(t − 1) (10)

where i ∈ [C,S] represents the Controller and
Supervisor model respectively. In addition, the
variance of the disturbance sequence for each
model is approximated by

ri(t) = σ2ri(t − 1) + (1 − σ2)ei(t)2 (11)
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with σ defined in terms of M0 ≥ 1, the estimation
memory length,

σ = 1 − 1
M0

(12)

Typically M0 ∈ [100, 105]. Lastly, define the nor-
malization sequences

ni(t) = λi(t)ri(t)+ϕ(t−1)T Pi(t−1)ϕ(t−1) (13)

The least squares algorithm for parameter estima-
tion can be written in its recursive form (Goodwin
and Sin, 1984)

θ̂(t) = θ̂(t − 1)

+
P (t − 1)ϕ(t − 1)e(t)

λ(t)r(t) + ϕ(t − 1)T P (t − 1)ϕ(t − 1)
(14)

P (t) = C(t) + {P (t − 1)}λ(t)−1

−
{

P (t − 1)ϕ(t − 1)ϕ(t − 1)T P (t − 1)
λ(t)r(t) + ϕ(t − 1)T P (t − 1)ϕ(t − 1)

}
λ(t)−1

(15)

Here P (t) is the inverse of the Fisher information
matrix called the covariance matrix and λ(t) is the
forgetting factor which may be constant or time-
varying (Goodwin and Sin, 1984). The matrix
C(t) is chosen so that Pmin ≤ P (t) ≤ Pmax.

Two main modifications to (14) are made in
order to improve control model stability. First,
introduce parameter projection following the work
by (Ydstie, 1992). Here, the parameters of (14) are
projected onto a convex set yielding the update
law for the models

θ̂i(t) = FΘ�

{
θ̂i(t − 1) +

Pi(t − 1)ϕ(t − 1)ei(t)
ni(t)

}

(16)

Second, leakage is introduced into the supervisor
model to change its fixed point so that the closed
loop convergence to the leakage parameters is
stable. This effectively adds an extra term in the
parameter update law and favorably drives the es-
timates towards (or away from) a particular choice
of values (Hovd and Bitmead, 2006) (Ioannou
and Kokotovic, 1983). Incorporating leakage into
equation (14) gives the supervisor parameter up-
date expression

θ̂S(t) = FΘ�

{
θ̂S(t − 1) +

PS(t − 1)ϕ(t − 1)eS(t)
nS(t)

}

+σ2(θ̂S(t − 1) − θS,0) (17)

The last component of the algorithm is the switch-
ing condition. This condition determines when
and how to pass information from the supervisor

model to the control model. The metric used to
evaluate model performance is based on the cor-
responding model prediction errors. The switch
obeys

Switch =
{

1(ON) if ||eC(t)||2 ≥ ε||eS(t)||2
0(OFF ) else

(18)
Expression (18) states that as long as the mag-
nitude of the prediction error from the control
model is smaller than the one from the supervisor
model then the control model provides a better
approximation to the plant and should not update
its parameters. Otherwise, parameter estimation
should be implemented in the control model.

The following Supervised Adaptive Control
algorithm results

Step 0 Initialize all estimated parameters,
signals and covariance matrices

θ̂C(0), θ̂S(0), u(0), y(0), PC(0) and PS(0)

Step 1 Calculate prediction errors
and normalization sequences
eC(t), eS(t), nC(t), nS(t), rC(t), and rS(t)
Equations (10), (13) and (11)

Step 2 Update the supervisor parameters
and the supervisor covariance matrix
Equations (17) and (15)

Step 3 Check Switch Condition, if satisfied
update the control parameters and the
control covariance matrix
Equations (18), (16) and (15)

Step 4 Design a stabilizing control law
according to the estimated control parameters

Step 5 Set t = t + 1 and GOTO 1

3. ADAPTIVE PREDICTIVE CONTROL
WITH SUPERVISION

One powerful characteristic of adaptive supervi-
sion is the ability to couple the algorithm to other
well-established control concepts. In this section,
the supervisory algorithm introduced in section 2
is coupled with Model Predictive Control (MPC)
to yield an algorithm with both adaptive and
predictive capabilities. The predictive control ap-
proach includes concepts from Self Tuning Control
(STC) and Extended Horizon Control (EHC). The
former provides control weighting parameters and
the latter provides the ability to handle unknown
delays (Goodwin and Sin, 1984)

There are two main approaches to achieve adap-
tive control. Namely,

(1) Direct Adaptive Control. The control param-
eters are estimated directly therefore remov-
ing the control law design calculations.

(2) Indirect Adaptive Control. The estimation is
performed on the plant and the estimates
are used to possibly design a family of con-
trollers. This method adds an extra calcula-
tion step as compared to the direct approach.
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The supervision concept will be applied to a
direct adaptive controller. In order to derive the
predictive controller, first start with the system
given by equation (1) and assume there is no
external disturbance or noise.

A(q−1)y(t) = B(q−1)u(t) (19)

Introduce the Diophantine equation

FAΔ + q−T GΔ = (1 − q−T ) (20)

where Δ = 1 − q−1, T is the prediction horizon
and for simplicity the (q−1) terms have been
suppressed. Multiply (19) through with FΔ

FAΔy(t) = FBΔu(t) (21)

Substituting (20) into (21)[
(1 − q−T ) − q−T GΔ

]
y(t) = FBΔu(t) (22)

It follows that

y(t) = y(t − T ) + ϕ(t − 1)T ˆ̄θ(t − 1) (23)

with

ϕ(t − 1)T = (Δy(t), Δu(t))
ˆ̄θ(t − 1) = (G, FB)T

Multiply equation (23) by qT to get the T -step
ahead predictor form

y(t + T ) = y(t) + ϕ(t + T − 1)T ˆ̄θ(t + T − 1) (24)

The final controller design is posed as an opti-
mization problem. The objective function is to
minimize the difference between the observed and
predicted outputs while imposing a penalty if the
input magnitude becomes “too large”. Namely,

min
Δu(t)

J = [y(t+T )�−y(t+T )]2 +rTΔu(t)2 (25)

In order to get an optimizing controller, equation
(25) is solved subject to equation (24) and Δu(t+
i) = u(t + i) − u(t) for all i ≥ 1. Solving the
optimization problem for the manipulated input
yields

Δu(t) =
∑T

i=1 βi

rT +
∑T

i=1 βi

[y(t + T )� − y(t) (26)

− α1Δy(t) − · · · − αnΔy(t − n)
− β1Δu(t − 1) − · · · − βmΔu(t − m)]

where ˆ̄θ(t − 1) = (α′s, β′s)T has replaced ˆ̄θ(t −
1) = (G, FB)T .

4. CASE STUDIES FOR DIRECT ADAPTIVE
CONTROL WITH SUPERVISION

A series of simulations and experiments have
been conducted to test and validate the adaptive
scheme. Here, two case studies are presented. The
first case is simulation based and involves inves-
tigating the behavior of the adaptive algorithm
applied to a chemical reactor. The second case is
experimental in nature and involves regulation of
a shell and tube heat exchanger.

4.1 Chemical Reactor

Simulations were carried out on an isothermal
CSTR in order to highlight the capabilities of
the supervisory algorithm (Douglas, 1972). The
reactions taking place in the reactor are

A + R → B

B + R → C

C + R ↔ D

D + R → E

Assume that component R is present in excess so
that all the reaction rates can be approximated
by first order expressions of the form

k1 = kAR (27)
k2 = kBR (28)
k3 = kCR (29)
k4 = kDR (30)

The system equations are developed by perform-
ing material balances on the species under consid-
eration around the reactor.

V
dA

dt
= QAf − qA − k1V A (31)

V
dB

dt
= −qB + k1V A − k2V B (32)

V
dC

dt
= −qC + k2V B − k3V C + k′

3V D (33)

V
dD

dt
= −qD + k3V C − k′

3V D − k4V D (34)

where V is the vessel volume, Q and q are flow
rates, {Af , A, B, C, D, E} are component compo-
sitions and the feed compositions of B,C,D, and
E have been assumed to be zero. A complete de-
scription of the system would necessitate a mate-
rial balance equation for component R. However,
because this component is in large excess and
remains relatively unchanged the choice to neglect
it is appropriate.

Consider the design of a control scheme which
will maintain the composition of component C
as close to as possible to the steady state design
value despite disturbances entering the system.
The controller measures the actual composition of
C and uses the difference between the desired and
measured values to manipulate Q, the inlet flow
rate. In this study, it is assumed that the system
disturbances are due to changes in the composi-
tion of R in the vessel. The system expressions are
linearized for small deviations from steady state
conditions. All system parameters are specified in
(Douglas, 1972).

The CSTR was subjected to set point changes for
the concentration of C. Figure 2 shows the set
point, measured output and manipulated input
signals for the system. The adaptive controller
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Fig. 2. CSTR simulation showing the reactor
signals while undergoing set point changes.
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Fig. 3. Controller and supervisor estimated pa-
rameters for the CSTR simulation during set
point changes.

succesfully achieves the desired set points with
minimum overshoot. Figure 3 shows the param-
eter estimates for both the control (top) and su-
pervisor (bottom) models. Note that the control
model parameters are more stable while a notice-
able spike or burst occurs in the supervisor around
t = 3500. The estimated control parameter con-
verge slowly.

4.2 Heat Exchanger

Experimental studies were carried out on a pi-
lot plant scale standard shell and tube heat ex-
changer. The operational conditions placed hot
water flow through the shell side of the exchanger
and cold water flow in the tube side. The super-
vised adaptive predictive control algorithm was
implemented in LabVIEW� with adjacent field
point boxes holding the A/D and D/A converters.
A thermocouple was used to obtain temperature
measurements. The sampling time used was Ts =
2 sec.

The control objective was to regulate the hot wa-
ter outlet temperature to specific set points. The
cold water flow rate was used as the manipulated
variable and disturbances were introduced to the
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Fig. 4. Heat exchanger experiment showing the
bursting output behavior observed for regular
adaptive control scheme without supervision.
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Fig. 5. Heat exchanger experiment under super-
vised adaptive control.

system by varying the hot water flow rate through
the heat exchanger.

The supervisory algorithm was compared to an
adaptive control set-up without supervision. Fig-
ure 4 shows the hot water temperature outlet
controlled by an adaptive regulator without super-
vision. Here the typical output bursting reviewed
in (Hill and Ydstie, 2004) is observed. In this case,
the estimated parameters cross the linear stabil-
ity boundary and bursts are seen first around
t = 1100 and then again around t = 2600. The
heat exchanger was then put under supervisory
adaptive control. The bursting behavior has been
eliminated with the supervisor algorithm as can
been seen in Figure 5. The parameters involved in
the heat exchanger controller converge as seen in
Figure 6. Lastly, Figure 7 shows the drifting pa-
rameters in the supervisor estimated model. The
control performance does not seem to be affected
by the supervisor’s slowly converging estimated
parameters. The control model only updates its
parameters when the predicted error is worse than
the one obtained from the supervisor.
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Fig. 6. Heat exchanger control model parameter
estimates for the supervised adaptive control
case.
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Fig. 7. The supervisor parameter estimates during
adaptive control of heat exchanger.

5. CONCLUSIONS

Un-modelled dynamics and unknown disturbances
are known to cause problems in adaptive con-
trollers. The supervised adaptive control algo-
rithm presented here addresses these issues by
coupling together two adaptive controllers so that
the control model only updates its parameters
when new and relevant information enters the sys-
tem. The supervisor model never stops estimating
parameters. The control model, however, stops the
estimation process according to a given metric.
The proposed metric compares the prediction er-
rors from the supervisor and the control models.
Estimation is based on recursive least squares with
appropriate projection and leakage modifications
to ensure stability and convergence. Simulation
and experimental studies show the potential of the
supervision approach to adaptive control.
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