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Abstract: Proton exchange membrane fuel cells (PEMFCs) are known to exhibit

strongly nonlinear dynamics

and input multiplicities. This paper presents an

approach for identifying GOBF-Wiener models towards representing the nonlinear
dynamics. The identified model is used to synthesis a MIMO nonlinear internal
model controller (NIMC). The average power density and solid temperature of the
PEMFC are controlled using (a)cell voltage and inlet coolant temperatures (b)
inlet molar flow rates of hydrogen and coolant. The proposed NIMC scheme is
able to operate the PEMFC at the optimum power density point where the steady
state gain reduces to zero and changes its sign. Copyright © 2007 IFAC
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INTRODUCTION
The need for an efficient, non-polluting power
source for stationary and mobile applications
has resulted in increased attention towards fuel
cells. The proton exchange membrane fuel cell
(PEMFC) has received much attention as a low
temperature fuel cell alternative for these applica-
tions. There are many difficulties in the design of
controllers for the PEMFC. The major challenges
are sign changes in the gain, severe nonlinearities
and possible starvation of reactants. Most of the
research literature on PEMFCs has focused on
steady-state operation and the study of trans-
port through the various layers in the PEMFC;
there are relatively few articles on the develop-
ment of effective control strategies. Pukrushpan
et al, (2002) used a feedback and feedforward
control strategy to maintain an excess oxygen
ratio and obtain the required power density from
the PEMFC. Na et al., (2005) linearized a nonlin-
ear model and developed a linear controller for
the PEMFC. However in the presence of non-
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linearities, there are significant constraints on
the achievable closed loop performance. Nonlinear
controller could there fore be necessary to achieve
tight control performance.

The strategy of using a low-order identified model
with a nonlinear controller has many advantages
for fuel cell control. Since fuel cells have fast dy-
namic response (of the order of seconds) and the
servo control requirements in load following appli-
cations are therefore stringent, the controller must
be able to decide on the manipulated variable
action within a small sampling period. Fuel cells
are complex systems, and therefore the use of first-
principles models (typically involving PDEs) for
model based control of these systems are difficult
to solve in the time period available for control.

In this article, we address some of the above prob-
lems towards the design of nonlinear controllers
for the PEMFC. The approach we propose is the
use of low-order, nonlinear empirically identified



models for the controller design, which obviates
the difficulty of solving a first principles model
online. With the identified model and the con-
troller being nonlinear, the strategy proposed here
is shown to provide good servo control for the non-
linear PEMFC. Furthermore, the controller is also
shown to be able to control the system at the peak
power density when there is an input multiplicity
with respect to voltage. The particular control
strategy adopted in our work is based on the prin-
ciple of NIMC (nonlinear internal model control).
While designing the controller, the PEMFC is con-
sidered as a MIMO (multi input and multi output)
system where the average power density and the
average solid temperature are the two controlled
outputs. Two sets of manipulated variables are
considered. In the first, the cell voltage and inlet
coolant temperature are manipulated. The system
exhibits input multiplicity and change in sign of
steady state gains for this combination. In the sec-
ond, the inlet flow rates of hydrogen and coolant
are manipulated, which have been shown to be the
best combination of inputs for decentralized con-
trol (Methekar et al., 2007). A Wiener-type model
is identified from simulation data using a first-
principles model (the identification can be per-
formed using experimental data, too), and is then
used to design a nonlinear internal model control
based on the analytical approach suggested by
Patwardhan and Madhavan (1998). Orthonormal
basis functions (OBF') are used to parametrize the
linear dynamic part of the model (Srinivasarao et
al., (2006)). The resulting discrete nonlinear state
space model, referred to as OBF-Wiener model in
the rest of the text, is then used to synthesize a
nonlinear IMC controller based on the analytical
approach suggested by Patwardhan and Madha-
van (1998). Unlike most of the NIMC formulations
available in the literature, the proposed NIMC
control law is derived using multi-step predictions.
The efficacy of the proposed modelling and control
scheme is demonstrated by simulating servo con-
trol problems involving operation of the PEMFC
at its optimum (singular) operating point.

This paper is organized in four main sections. The
method of identification using OBF-Wiener mod-
els and design of NIMC are presented in the next
section. Section 3 deals with the implementation
of NIMC on the reduced order PEMFC model.
The main conclusions are presented in the last
sections.
1. METHOD OF IDENTIFICATION USING
OBF-WIENER MODEL

Consider a process represented as a set of nonlin-
ear ODEs

dz

dt =F [Zv u(t)7 d, p]
y(t) =G [z] + vy (1)
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where z € R® represents the state vector, u € R™
represents the true value of manipulated inputs,
d € R? represents unmeasured disturbances, y
€ R" represents the vector of measured out-
puts corrupted with measurement noise w,(¢)
and p € RY represents the parameter vector.
The information available from the plant is the
sampled sequence of input and output vectors
Yy ={(y(k),u(k)) : k=1,2,....N}. Given input
and output data set X collected from a plant,
the problem of identifying a nonlinear time series
model can be stated as finding a nonlinear opera-

tor =[]
y(k) = Elp(k), 0] + e(k) (3)

plulk—1),...,u(l),y(k=1),....,¥(1)]

(4)
such that a suitable norm of model residuals
{e(k) : k=1,....N} is minimized with respect to
parameter vector 8. The modeling problem can be
further decomposed as (a) choosing a suitable re-
gressor ¢ [.] and (b) selecting a suitable nonlinear
mapping Z[.] from regressor space to the output
space. In this work we propose to develop MISO
Wiener type state models of the form

XDk +1) = DX (k) + TOu(k)
yi(k) = 20 [XO (k)] + v.(k)

e(k)

()
(6)

where X (k) € R™ represents the state vector
and Q) [.] represents some nonlinear static map
relating states with the outputs for the i** MISO
model. Here we propose to composite this MISO
models to generate an overall MIMO model.

1.1 Parameterization of Linear Dynamic Component

In this work, we choose to parametrize these
matrices using Generalized Orthonormal Basis
Filters, which represent an orthonormal basis for
the set of strictly proper stable transfer functions
(denoted as Hs). Ninness and Gustafson (1997)
have shown that a complete orthogonal set in Hy
can be constructed as follows

V-6 A 1 gz

(z = &) (z—&)

where {&, :k=1,2,...} is an arbitrary sequence
of poles inside the unit circle appearing in com-
plex conjugate pairs. Classical FIR models, La-
guerre filters or Kautz filters based models are
well known examples of the class of models pa-
rameterized using GOBF. The main advantage
of using orthogonal basis filters instead of {z_j }
in the classical FIR models is that the transfer
function G(z) can be approximated by only a
small number of coefficients in the expansion, i.e.
a parsimonious in parameters model is generated.
If the system under consideration has scattered
poles, GOBF is a better choice of orthonormal
basis filters than Laguerre or Kautz filters. Given
a set of real poles inside the unit circle, a method

k—1

I

i=1

Fk<z7€> =

(7)



of parameterization of matrices (®,I', K) using a
GOBF network for a multi-input model is given
in Patwardhan and Shah (2005).

1.2 Parameterization of State Output Map

The nonlinear state output map €;[.] : R" — R
can be parameterized as a function space expan-
sion

yilk) = [XOW)| +vitk)  (®)
6 [XOW] =Y ejwy [XOW] ©)

where w;; [.] represent some basis functions. In
the present work, these static non-linear maps are
chosen to be simple multi-dimensional polynomial
functions of finite order mainly with the intention
of simplifying the resulting parameter estimation
problem. For example, a quadratic polynomial
function can be expressed as

Q1] = CO XD ()4 (x<i>(k))T D (X (1))
(10)
for i =1,....,m, where C¥) represents a (1 x n;)
vector and D) represents a n; X n; symmetrical
matrix. Thus, with state-output map given by
equation (10), the output can be expressed as

yith) = (0) 200 +vi() (1)

x (k) = [(Xgi)(k))Q 29X () (k)X (k) r
(13)
and

; ; i) i T
eWw =[cO®p) DY .. DY\ | (9
Here, ®® is a N; x 1 vector with N; = n; x

(n; +3) /2, Xl(i)(k:) represents 1'th element of vec-

tor X (k) and D;Zl) represents (j,1)’th element of
matrix D). Thus, the main advantage of choos-
ing polynomial functions is that the resulting
state-output map is linear in parameters.

1.8 Model Parameter Estimation

The key step in the development of the GOBF
based models is the selection of filter poles and
number of basis filters (filter order) necessary to
develop a reasonably good approximation of the
system dynamics. Given an input-output data set
YN, the least squares estimate of the parameters
can be obtained by solving the following mini-
mization problem

arg min

(5 ’\(i)

! ZN: %k, 0 5(1‘))}2
N et 7 ) )
(15)
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subject to

¢ <0 for j=1,2...n

(16)
where 5(” represents the vector of GOBF poles.
To keep the variance errors low, we propose to
fix filter orders a-priori and perform a search in
the set of filter poles as proposed in Patwardhan
and Shah (2005). Thus, the parameter estimation
problem is formulated in terms of two nested
optimization problems as follows:

2@

~ arg min 1 s L2
®0,8") = " [9:(k, 8, €0)]

@ N
£ N k=1
(17)
subject to constraint (16). Here, given a guess of
pole vector E(Z), the parameter vector 0 is esti-
mated by solving another optimization problem

2
60 [¢] )

(18)
Since the state-output map is linear in parame-
ters, we can exploit the fact that the parameter
vector ©() can be estimated analytically by a sim-
ple linear regression scheme. Thus, the parameter
vector O can be estimated as follows

=10 [Eﬂ = [E(Zu(k)Zu(k)")]

5 (0)
3

. N
arg min 1
e N
k=1

{vxk, o0,

"B (Zu(l)Y)

(19)
Y = [vi(1) %2 - yi)]"

and E(.) represents the expected value operator.

2. DESIGN OF NONLINEAR INTERNAL
MODEL CONTROLLER

For development of NIMC, it is assumed that the
system under consideration is a square system.
Consider the p-steps ahead prediction obtained
using equations (5-6) under the constraints

u(k + ilk) = u(klk)

The p-steps ahead output prediction generated
can be expressed as

for i=1,2,..p—1

X O (k + plk) = (q»(i))p XO (k) + Qu(k) (20)

Q) — {(qﬁi))p_l + (<I><i>)p_2 bt I] 30
yi(k +plk) = ¥;(k + p|k) + u” (k)
[(Qu))T D(i)Q(i)} u(k)+
{C(im(i) ) K@@))” X(i)(k)r DWQ@)] u(k)

(21)
for i = 1,2,...r where vector ¥(k + p|k) is defined
as

vk +plk) = €O (80)"XO (k)
[l o] oo (o) x|

Defining matrix A®) as



cMa®™ 49 [(@(T))p X0 (1] T Do

and {¥} as the bilinear matrix representation
((Patwardhan and Madhavan (1998), for details)
of the following three dimensional array

[(Q(l))TD(l)Q(l)]

[(Q(T))T D(rm(r)}

{¥}

the above r quadratic output prediction equa-
tions can be represented as the following multi-
dimensional quadratic equation (Patwardhan and
Madhavan (1998)).

Y (k+plk) = ¥ (k+plk)+[A(K)] u(k)+{¥} [u(k), u(k)]

(22)
To account for plant-model mismatch and un-
measured disturbance mismatch, it is proposed
to use an open loop state observer with a dead
beat disturbance estimator. By this approach, the
output predictions are corrected as follows

ye(k + plk) = 5(k + plk) + d(k + p|k)

where the estimation of future disturbances is
generated as

(23)

o~ o~

d(k+j+1k)=d(k+j|k) for j=0,...p£24)
d(klk) = y(k) — 3 (k) (25)

Here, y(k) represents the measurement vector and
y(k) represents the output prediction generated
using MISO models in open loop as follows

@OX® (k- 1)+ TDu(k — 1) (26)
yilk) = 0 [XO )] (27)

If y,(k) represent the desired setpoint for the
process, then imposing the constraint that the
setpoint should be reached after p-steps in the
future, i.e., y.(k + plk) = y., gives the following
controller design equation @ (u(k)) = 0, where

Q (u(k)) = {®} [u(k), u(k)]
F[AS] u) + 3kl ety @Y
where e(k) = y,(k) — d(k). The above equation
is a multi-dimensional quadratic operator polyno-
mial, which can be solved analytically. Using the
approach suggested by Patwardhan and Madha-
van (1998), a quadratic control law can be derived
as follows. Let u denote some input vector such
that the matrix

Vo [Q @] =2[{T} @] +A® (29
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is nonsingular. Then, the equation (28) can be
transformed as

{¥(0)} (k) = 8, u(k) - @)+(alk)~@)+ Eo(k) =0

(30)
where
(W} = (vviQ@) " eqw} ()
Eo(k) = (Vo Q@) Q@] (32)

Here, symbol (e) denotes the ‘left dot product’
between matrix (Vg [Q (W)])”" and the bilinear
matrix {¥}, (Patwardhan and Madhavan (1998)).
The solution of the above transformed multidi-
mensional quadratic equation can be written as
1
~[3{r+@w

}
Eo (k) (33)
where A(k) = {I 4 {\i(k)} (Eo(k:))} (34)

-1
1
2

(u(k) —1)

Note that, in general, a matrix has multiple square
roots and consequently different values of u(k)
will be obtained for every choice of the square root
of matrix A(k). Also, even though the original
matrix has all real elements, the square root
can have complex elements and consequently the
resulting u(k) can be complex. Patwardhan and
Madhavan (1998) have suggested the following
remedies to alleviating these difficulties:

e The matrix square root (A(k))% should
beselected such that all its eigenvalues have
non-negative real parts. Specifically, when
matrix A(k) is a positive definite matrix, the
positive definite square root of the matrix
should be used for control law computations.
When the solution vector becomes complex,
the real part of the complex solution vector
can be used for manipulation.

They have also shown that the situation where
the solution becomes complex arises when the
specified setpoint is unattainable due to system
nonlinearity. A detailed discussion regarding the
rationale behind these recommendations and re-
lated theoretical results can be found in Patward-
han and Madhavan (1998). Thus, incorporating
the above suggestions, the quadratic control

law becomes
—1
}] Eo(k)}

(35)
Note that if the specified setpoint is attainable at
steady state and the prediction horizon is selected
sufficiently large, the complex solutions are not
expected to arise during control law implementa-
tion.

[N

u(k) = - REAL { B {1+ (@A)

The robustness of the control law in the presence
of plant model mismatch can be increased by



Fig. 1. Model Validation (Configuration I) : Com-
parison of steady state behavior of process
and model

introducing a diagonal filter Frprc(z) in the feed-
back path. This can be achieved by replacing e(k)
in equation (28) by €;(k) where €;(k) represents
the filtered feedback signal computed as

e4(2) = Frue(2) e(2) (36)

The IMC filter Frpco(2) is typically selected as a
diagonal matrix with first or higher order transfer
functions appearing on the main diagonal.

3. IMPLEMENTATION OF NIMC ON PEMFC

The process dynamics of the PEMFC is simulated
using the reduced order model given by Golbert
and Lewin (2004). The primary aim of any con-
trol scheme for PEMFC is control of the power
density, which is defined as P = I,y Veen. Apart
from power density, the other important con-
trolled output is the average solid/stack tempera-
ture (T'sqyg). While choosing manipulated inputs,
we consider following two possible configurations

(a) Configuration I: Cell voltage (Vi) and
coolant inlet temperature (T'w;,)

(b) Configuration II: Hydrogen flow rate(Mga in,)
and Coolant flow rate(Mcoor,in)

While the inputs for Configuration I can be used
to operate the system over a wider range, the con-
trol problem for this choice is difficult to handle
as the system exhibits input multiplicity behavior.
Figure (1) represents the steady state behaviour
of the system outputs with respect to the ma-
nipulated inputs of Configuration I. In order to
obtain smaller, lighter and cheaper fuel cells, it
is desired to operate them at the operating point
where power density attains a maximum (corre-
sponding to Veey = 053 V i Ty = 317 K
; P = 1.09 W/m? ; Tsaqy = 338.8 K in the
present case). As can be observed from this figure,
the power density exhibits a change in the sign of
steady state gain across the optimum operating
point with respect to V.. as well as T'w;,. Thus,
controlling the system at the peak power density
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ation of manipulated inputs

point is a challenging control problem as this is a
singular operating point.

The data required for parameter estimation of
the OBF-Weiner model was obtained by perturb-
ing the reduced order fuel cell model in open
loop by simultaneously introducing square pulse
sequences of random magnitude in manipulated
inputs. Two MISO OBF-Weiner models were de-
veloped in each case. Figure (1) presents steady
state model validation results for Configutaion
I. It can be observed that the identified OBF-
Weiner models capture the nonlinear steady state
characteristics of the process over a wide operat-
ing range. The model validation results using an
independent dynamic data set for Configuration
IT are shown in Figure (2). The corresponding
variation of manipulated inputs is shown in Figure
(3). As is evident from this figure, the identified
OBF-Weiner models are able to capture process
dynamics reasonably accurately. These models are
used to formulate the NIMC controller together
with a first order IMC filter of the form

€r(k) =ales(k — 1)+ (1 — a)lesf(k—1)

where 0 < o < 1.

For Configuration I, the control problem is formu-
lated as shifting the fuel cell operating point from
a given suboptimal initial steady state to the op-
timum operating point. The closed loop response
obtained using the NIMC controller (p = 20,
a = 0.9) is presented in Figures (4) and (5). The
NIMC controller quickly moves the system to the
singular operating point without excessive vari-
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