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Abstract: This paper shows a new approach of Model Predictive Control (MPC). A 

multivariable bilinear multi-model is presented. A set of local bilinear models is 

identified and the proposed algorithm implements the timestep quasilinearization in 

trajectory. A metric based in norms is presented to measure the distance from the current 

operation point to a designed controller in other operation point. Application results are 

showed in a case study.  Copyright © 2007 IFAC 

 

Keywords: Predictive control; Nonlinear systems; MIMO; Model-based control; Metrics.

 
 

 

 
 

1. INTRODUCTION 
 

Linear controllers (like MPC based in linear models) 

can exhibit some performance problems when applied 

in processes with strong nonlinearities, since linear 

models can not represent the process behavior in 

whole operating range as showed in (Aslan, et al., 

2004). 

 

Several algorithms and techniques have been 

proposed by researches in order to improve control 

systems with strong nonlinearities.  This approach 

considers one trajectory with many equilibrium 

points. For each equilibrium point, a bilinear model is 

obtained and a quasilinear GPC (Generalized 

Predictive Controller) is designed. 

 

The multi-model idea has been proposed for many 

researches in order to solve control system problems  

 

for strongly nonlinear plants operating in a large 

range. In (Foss, et al., 1995), a set of nonlinear state-

space models is obtained, and an interpolation 

function is defined to build a global nonlinear model. 

In that case, the optimization problem is solved by a 

nonlinear programming algorithm. (Foss, et al., 1995) 

applied this described method in a batch fermentation 

process, that is kind of process that exhibit large 

variations in the operating conditions during a batch.  

 

In (Azimzadeh, et al., 1998) a multi-model based 

approach is used with approximated local linear state-

space state. In that approach, a local model validity 

function based in statistical datas from the process 

(means and standard deviations) is presented. 

 

A similar method based in gap metrics is presented in 

(Aslan, et al., 2004) where authors apply a closed 

loop gap metric to measure the distance from the 
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current operation point to a tabled operation point 

(where a PI controller is designed). 

 

The basic idea of multivariable multi-model based 

control is to identify local models and to build a 

global controller with these models (by using a 

proposed metric).  

 

In this work, for each local model, a 2-norm is 

calculated like weighting factor to generate the 

suitable control signal in that operation point.  

 

2. THE METRIC 

 

In this paper, a different metric is proposed in order to 

measure the distance from a designed multivariable 

quasilinear predictive controller in a known operation 

point to the current operation point. In multivariable 

case, in a process with p-inputs and q-outputs, the 

output is qRy ∈  and the input is p
Ru ∈ . In a known 

trajectory of process output, the distance from the 

first operation point to the last operation point is 

given by: 
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where NOP  is the number of operation points. For 

each operation point, a controller is designed. 

 

To measure the distance from the current operation 

point to the operation point of i
th

 designed controller, 

we can use the expression: 
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where COP  is the current operation point in 

trajectory. The weighting factor for the i
th

 designed 

controller is given by: 
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This metric has the property ∑
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1 defined.  

In the metric proposed by (Aslan, et al., 2004) the 

metric is based in H∞ norm. For this reason, although 

this metric guarantee the closed loop stability, its 

calculation is much more complex than this proposed 

metric and in each instant, a transfer function for that 

operating regime must be available. In the metric 

proposed by (Azimzadeh, et al., 1998) the metric is 

based in Gaussian local model validity function. No 

comparison has been done between this approach in 

relation of other metrics. 

 

3. QUASILINEAR MULTIVARIABLE 

GENERALIZED PREDICTIVE CONTROL 

 

The designed controllers are based in quasilinear 

generalized predictive control (QGPC). Theses 

controllers are based in multivariable bilinear 

NARIMAX (Non Linear, Auto-Regressive, Moving 

Average, with exogenous input) models. 

 

The basic idea of QGPC algorithm is calculate a 

control effort sequence, based in the minimization of 

a multi-step objective function, in a defined 

prediction horizon. 

 

3.1 Multivariable Model 

 

The multivariable bilinear NARIMAX model with p-

inputs and q-outputs is given by: 
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where qRky ∈)(  is the process output vector, 

pRku ∈)(  is the process input vector and qRke ∈)(  

is the gaussian white noise with zero mean and 

covariance )( 2σdiag . The matrices )( 1−qA , )( 1−qB  

and )( 1−qC  are polynomials matrices in shift operator 

1−q  and are defined by: 
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where qqRqA ×− ∈)( 1 , pqRqB ×− ∈)( 1 , qqRqC ×− ∈)( 1 , 

pq

e
RqD ×− ∈)( 1  and qp

d
RqD ×− ∈)( 1  and the matrix 

)]1([ −kuD  is defined as: 
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This nonlinear model is quasilinearized to be used in 

QGPC. The multivariable quasilinear model must be 

obtained by rewriting the expression (4) of the 

following form: 
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where: 
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The polynomial matrix ),( 1 uqA −  is calculated 

considering )]1([ −kuD  as constant in prediction 
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horizon. The polynomial matrix ),( 1 uqA −  is 

considered diagonal in this paper. 

 

3.2 The Predictor 

 

The output prediction i-step ahead may be calculated 

making: 
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In this case, the polynomial matrix 
pp

IqC
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 is 

uncorrelated (white noise). Consider the following 

Diophantine equation: 
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Pre-multiplying (13), with 
pp

IqC
×

− =)(
1

, for 

),( 1 uqE
i

−  we obtain: 
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Rewriting (14) of the following form: 
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Substituting (18) in (17) we obtain: 
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As the degree of ),( 1 uqE
i

−  is 1−j , then the sub-

optimal prediction of )( iky +  is: 
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Make: 
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As the degree of  ),( 1 uqH i

−  is less than 1−j , the 

predictor may be written as: 
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The last term of (22) considers the future inputs 

(forced response) and the two first terms consider 

only past inputs (free response). 

 

Make: 
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where: 
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3.3 The Objective Function 

 

The objective function is given by: 
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Where 1N  is minimum prediction horizon, 2N  is 

prediction horizon, NU  is the control horizon, R  

and Q  are weighting matrices of error signal and 

control effort, respectively, )(ˆ iky +  is the sub-

optimum i-step ahead predicted output, )( ikr +  is the 

future reference trajectory. 

 

3.4 The Control Law 

 

The control effort is obtained, without constraints, by 

the minimization of the objective function. This 

minimization is obtained by the calculation of its 

gradient (making it equals zero), of the following 

form: 
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Consider the predictions set: 
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The objective function (25) may be rewritten of the 

following form: 

 

NU

T

NUlNNUN

T

lNNUN uQuyuHRyuHJ
yyuyyu

+++= )()(
1111

  (32) 

 

Where ],,[ RRdiagR L=  and ],,[ QQdiagQ L= . 

 

The minimization of (32) produces the following 

control law: 
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Because of the receding control horizon, only the first 

p rows of (33) are computed. 

 

3.5 The Control Law Considering the Presented 

Metric 

 

For each operation point, a quasilinear controller is 

designed. So, there is NOPp ×  control efforts 

computed. The control effort sent to the process is a 

weighting combination of control efforts calculated 

for each operation point: 
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where pi ,,1 L= . 

 

 

4. CASE STUDY: DEBUTANIZER 

DISTILLATION COLUMN 

 

4.1 Description of Distillation Column 

 

Debutaziner distillation column is usually used to 

remove the light components from the gasoline 

stream to produce Liquefied Petroleum Gas (LPG) as 

showed in (Fontes, et al., 2006). 

 

The most common control strategy is to manipulate 

the reflux flow rate and the temperature in column's 

bottom and, to control the concentrations of any 

product in butanes stream and in C5+ stream as 

showed in (Almeida, et al., 2000). The chosen 

process variables are: concentration of i-pentane in 

butanes stream (y1) and concentration of i-butene in 

C5+ stream (y2). The studied column is simulated in 

Hysys software and is showed in Figure 1. 

 

 

 
Fig. 1. Distillation Column simulated in Hysys 

Software. 

 

 

The reflux flow rate (u1) is manipulated through the 

FIC-100 controller and the temperature of column's 

bottom (u2) is manipulated through the TIC-100 

controller.  The reflux flow rate is measured in m
3
/h 

and the temperature of column's bottom is measured 

in 
o
C. 

 

4.2 Chosen Operation Points 

 

In this case study, three operation points were chosen, 

as showed in Table 1. The identified bilinear models 

were obtained using the multivariable recursive least 

squares algorithm and the model's structure has been 

chosen by using the Akaike criterion.  In all points, 

the chosen sample rate is 4 minutes. 

 

For this article, only monotonic trajectories are being 

considered. The trajectory of 1y  is monotonically 

increasing and the trajectory of  2y  is monotonically 

decreasing. 

 

Table 1 Three operarion points chosen in distillation 

column. 

 

Operation 

Point 
Input 

Output 

(Mass Fractions) 

u1 = 40 m
3
/h y1 = 0.014413 

1 
u2 = 147 

o
C y2 = 0.001339 

u1 = 37 m
3
/h y1 = 0.017581 

2 
u2 = 147.5 

o
C y2 = 0.001161 

u1 = 34 m
3
/h y1 = 0.021994 

3 
u2 = 148 

o
C y2 = 0.001004 

 

 

This distillation column has nonlinear behaviour (like 

anti-symmetrical behavior) in chosen trajectory. A 

single-model based controller presents a poor 

performance when applied in all trajectory. The next 
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subsection will show the results comparing the single-

model and multi-model approach.  The subsection 4.4 

shows the comparison results, by using some indices 

in order to quantitatively assess the performance of 

the systems. 

 

4.3 Results 

 

The proposed quasilinear multi-model is compared 

with quasilinear single-model (using the 3
rd

 bilinear 

model). Figures 2 and 3 show the output comparison.  

 

 
Fig. 2. Concentration of i-pentane (in mass fraction) 

in butanes stream. 

 

 
Fig. 3. Concentration of i-butene (in mass fraction) in 

C5+ stream. 

 

 

The process, showed in Figures 3 and 4, is in 3
rd

 

operation point and the controllers will lead the 

process until close to the 1
st
 operation point. The 

comparisons of control efforts are showed in Figures 

4 and 5. 

 

 
Fig. 4. Control effort (reflux flow rate in m

3
/h). 

 
Fig. 5. Control effort (temperature in column's bottom 

in 
o
C). 

 

Figure 6 shows the behaviour of weighting factors in 

time. In beginning of simulation, the 3
rd

 weighting 

factor is close to 1 and will be decreased (because the 

process is not close to this point anymore). The first 

and the second weighting factor are close to zero in 

beginning (because the process is close to the third 

operation point). 

 
Fig. 6. Behaviour of weighting factors in time and in 

trajectory consequently. 

 

4.4 Comparison of Results 

 

Observing the Figures 2, 3, 4 and 5, we can observe 

that quasilinear multi-model presents better 

performance in relation to the product quality and 

better performance in control effort (less control 

effort). In order to quantitatively assess the 

performance of multi-model quasilinear GPC, some 

indices like showed in (Goodhart, et al., 1994) are 

calculated. Theses indices may be extended to 

multivariable case, of the following form: 

 

Nku ii /)(,1 ∑=ε                     (35) 

 

where pi ,,1 L=  and N  is the amount of control 

effort applied in the process to achieve the desired 

response. The index showed in (35) is the account of 

total control effort to achieve a given response. The 

variance of controlled actuators is: 
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The deviation of the process of integral of absolute 

error (IAE) is: 
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Nykr jjj /)(,3 ∑ −=ε                (37) 

 

where qj ,,1 L= . 

 

The overall measure of effectiveness is defined as: 
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where qj ,,1 L= . The factors iα , iβ  and jρ  are 

weightings chosen to reflect the actual financial cost 

of energy usage, actuator wear and product quality, 

respectively. In this case, we consider 1.0=iα , 

15.0=iβ  and 5.0=jρ  because we have established 

as priority the product quality. The values of Equation 

(37) are multiplied by 610  in order to keep the same 

order of magnitude of (36) and (35).  

The Table 2 shows the comparison between 

quasilinear single-model and quasiliner multi-model. 

 

Table 2 Comparison of Performance indices between 

Quasilinear single-model and Quasilinear multi-

model 

 

I/O Model 
1ε  2ε  3ε  ε  

1 Single 38.41 1.41 251.61 144.64 

2 Multi 38.38 0.32 248.41 142.83 

1 Single 147.01 0.37 117.16 77.42 

2 Multi 146.94 0.29 103.48 70.36 

 

Table 2 shows the performance of quasilinear multi-

model approach in terms of less energy usage, less 

actuator wear and better product quality in relation to 

quasilinear single-model performance. 

 

5. CONCLUSIONS 

 

This paper has presented a new approach of 

quasilinear predictive control by using a defined 

discrete quasilinear multi-model. The case with 

constraints treatment was not analyzed. Simulation 

results have shown the best performance (quantitative 

and qualitative) of quasilinear multi-model approach 

in relation of quasilinear single-model. The analysis 

robust stability was not studied. The next step of this 

research consists of to analyze the robustness and 

stability of this approach. 
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