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This paper considers the convergence upon grid refinement of control strategies derived from ODE aproxima-
tions of diffusive boundary-controlled linear PDE systems. It focuses specifically on the Dirichlet boundary
control of the heat equation as a canonical model for more general diffusive PDE systems. It treats two classes
of problems: the controllability problem (that is, the determination of a control distribution to move a system
exactly from a specified initial state to a specified terminal state in finite time) and the state feedback control
problem (that is, the determination of an optimal feedback rule u = Kx which minimizes some quadratic
cost function J measuring both the state of the system and the control input), in the latter problem focusing
specifically, for simplicity, on the infinite-horizon (that is, constant-gain) case. Both classes of problems re-
quire special attention beyond the usual considerations commonly known for the control of low-order ODE
systems. Specifically, convergence of the control strategies upon refinement of the ODE approximation used
in the controller calculation is not guaranteed. Note that the present study considers sine, finite difference,
and Chebyshev discretizations, all of which provide consistent results, indicating that the results reported are
not a spurious artificat of any particular numerical discretization.

1 The 1D heat equation

Consider first the PDE system

∂Φ
∂t

= AΦ on 0 < y < 1, t > 0, (1a)

with A = ∂2/∂y2 and Φ = Φ(y,t) with inhomogeneous boundary conditions

Φ(y = 0,t) = v0(t) and Φ(y = 1,t) = v1(t). (1b)

To simplify the analysis, we may lift the boundary conditions by defining φ = φ(y,t) such that

Φ(y,t) = φ(y,t)+ f (y)v0(t)+g(y)v1(t) (2a)

where f (y) = 1− y and g(y) = y. (2b)

Note that f (0) = 1 and f (1) = 0, whereas g(1) = 1 and g(0) = 0, and that A f = Ag = 0. Defining

b0(y) = − f (y), b1(y) = −g(y), u0(t) = dv0(t)/dt, and u1(t) = dv1(t)/dt, (2c)

it follows that

∂φ
∂t

= Aφ+b0u0 +b1u1 on 0 < y < 1, t > 0, (3)

with A = ∂2/∂y2 and φ = φ(y,t) with homogeneous boundary conditions φ(y = 0,t) = φ(y = 1,t) = 0. Given
(2), the systems defined by (1) and (3) are equivalent. The analysis below is performed using the more
“convenient” (in terms of the application of control theory) form in φ, as given in (3), whereas many of the
subsequent plots are made using the more “intuitive” (in terms of the physical application) form in Φ, as
given in (1).
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1.1 Approximate controllability

The control problem considered in §1.1 is to find u0(t) and u1(t) on t ∈ [0,T ] to bring the system (3) from a
specified initial state φ(y,t = 0) = φ0 to a specified terminal state φ(y,t = T ) = φT . Without loss of generality,
we will select φT = 0. As φ(y,t) has homogeneous boundary conditions, consider the sine series expansions

φ(y,t) =
∞

∑
n=1

φ̂n(t)sin(kyny) and φ0(y) =
∞

∑
n=1

φ̂0
n sin(kyny), (4)

where kyn = πn. Defining the inner product 〈a,b〉 = 2
R 1

0 a ·bdy, note that

〈sin(kyny),sin(kyn′y)〉 =

{
1 n = n′

0 otherwise.
(5)

Taking the inner product of (3) with sin(kyn′y), applying the expansions in (4), and noting (5) leads to a
system that may be written in the form

∂φ̂n

∂t
= −ky

2
nφ̂n + b̂0

nu0 + b̂1
nu

1 on t > 0 for n = 1,2,3, . . . (6)

where φ̂n = φ̂n(t), u0 = u0(t), u1 = u1(t), and

b̂0
n = 2

Z 1

0
(y−1)sin(kyny)dy = −2/kyn, b̂1

n = 2
Z 1

0
(−y) sin(kyny)dy = (−1)n2/kyn.

Note that the b̂0
n are all distinct and nonzero, as are the b̂1

n. The exact solution of (6) for each n is given by

φ̂n(t) = e−ky
2
nt φ̂0

n + b̂0
n

Z t

0
u0(t ′)e−ky

2
n(t−t′) dt ′ + b̂1

n

Z t

0
u1(t ′)e−ky

2
n(t−t′) dt ′. (7)

Now consider the finite-dimensional approximation of the PDE control problem given by truncating the sine
decompositions in (4) after the N’th terms. We may proceed by assuming the control distributions u0(t) and
u1(t) on t ∈ [0,T ] are expanded using cosine series in time,

u0(t) =
M

∑
m=1

û0
m cos(ωmt), u1(t) =

M

∑
m=1

û1
m cos(ωmt), (8)

where ωm = πm/T . Noting (7), defining

cnm =

Z T

0
cos(ωmt)e−ky

2
n(T−t) dt =

(−1)m − e−ky
2
nT

(ωm/kyn)
2 + ky

2
n

, (9)

taking M = N/2, and applying the desired result that φ̂n(T ) = 0 for the modes n = 1,2, . . . ,N which have been
retained in the finite-dimensional approximation leads to an N×N nonsingular linear system of equations

0 = e−ky
2
nT φ̂0

n + b̂0
n

N/2

∑
m=1

cnmû0
m + b̂1

n

N/2

∑
m=1

cnmû1
m for n = 1,2, . . . ,N, (10)

which may be written in matrix form as

[
C0 C1

][
û0

û1

]
= φ̂φφ0

, (11)
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where

û0 =

⎛
⎜⎝

û0
1
...

û0
N/2

⎞
⎟⎠ , û1 =

⎛
⎜⎝

û1
1
...

û1
N/2

⎞
⎟⎠ , φ̂φφ0

=

⎛
⎜⎝φ̂0

1
...

φ̂0
N

⎞
⎟⎠ , c0

nm = −eky
2
nT b̂0

ncnm, c1
nm = −eky

2
nT b̂1

ncnm.

Given the expansion coefficients of the initial conditions φ̂0
n for n = 1,2, . . . ,N for any even N, this non-

singular system may be solved (using Gaussian elimination) for the expansion coefficients û0
m and û1

m for
m = 1,2, . . . ,N/2, thereby achieving φ̂n(T ) = 0 for the modes n = 1,2, . . . ,N. Thus, any finite-dimensional
approximation of the system (3) [equivalently, (6)] given by truncating the expansions in (4) after the N’th
terms is controllable via appropriate selection of u0(t) and u1(t) on t ∈ [0,T ]. In the limit that N → ∞, the
issue of the regularity of the resulting control distributions u0(t) and u1(t) on t ∈ [0,T ] is governed by the
rate of decay of |û0

m| and |û1
m| with m [see (8)], and is a function of the coefficients c0

nm and c1
nm in (11) as

well as the regularity of the initial conditions φ0(y) considered (that is, the rate of decay of |φ̂0
n| with n). If

a control distribution of the requisite regularity on u0(t) and u1(t) may be found for any initial conditions
of the assumed regularity on φ0(y), then the PDE system is said to be controllable; if it can not, but (as
in this problem) any finite-dimensional approximation of the control problem is solvable and the neglected
system modes are exponentially stable, then the PDE system is said to be approximately controllable. In
the present case, considering arbitrary initial conditions φ0(y) ∈ L2(y|0 ≤ y ≤ 1) and seeking appropriate
control distributions u0(t) ∈ L2(t|0 ≤ t ≤ T ) and u1(t) ∈ L2(t|0 ≤ t ≤ T ), the PDE system (3) is found to be
approximately controllable, as discussed further below and illustrated in Figures 1-2.

Recall that (1) is equivalent to (3); thus, the above discussion also applies to (1), taking [noting (2c) and (8)]
the control distributions

v0(t) =
M

∑
m=1

û0
m

ωm
sin(ωmt) and v1(t) =

M

∑
m=1

û0
m

ωm
sin(ωmt). (12)

By (12), u0(0) = u0(T ) = u1(0) = u1(T ) = 0, and thus Φ(y,t = 0) = φ0 and Φ(y,t = T ) = φT . Note that v0(t)
and v1(t) are more regular than u0(t) and u1(t), as the sine series expansion coefficients of v0(t) and v1(t)
decrease more quickly with m than do the cosine series expansion coefficients of u0(t) and u1(t).

Solving (11) in the case with φ0(y) chosen to be a square wave (see solid curves in Figure 1), selecting a
time horizon T = 0.03, and approximating the PDE system with various values of N in the ODE control
formulation described above results in control distributions of

N = 2 ⇒ u0(t) = u1(t) = [3.38cos(ω1t)]×102,

N = 4 ⇒ u0(t) = u1(t) = [3.84cos(ω1t)+12.4cos(ω2t)]×102,

N = 8 ⇒ u0(t) = u1(t) = [−0.908cos(ω1t)+12.7cos(ω2t)+45.5cos(ω3t)+35.6cos(ω4t)]×102,

N = 16 ⇒ u0(t) = u1(t) = [−5.46cos(ω1t)−17.0cos(ω2t)−4.20cos(ω3t)+77.5cos(ω4t)+

193cos(ω5t)+219cos(ω6t)+125cos(ω7t)+28.9cos(ω8t)]×102.

The resulting distributions of Φ(y,t) in the controlled PDE system (1) are plotted in Figures 1-2. Note in
Figure 1 that, as N is increased, an increasing number of the low frequency modes of the terminal state of
the PDE system, Φ(y,T ), are brought close to the target distribution φT = 0. Unfortunately, as shown above,
the magnitude of the cosine coefficients generally increase with m. In other words, as N is increased in the
control formulation, the control distributions do not converge to smooth functions of time, as illustrated in
Figure 2. We thus say that the present PDE system is only approximately controllable. Reducing the time
horizon T results in control distributions that are even larger in magnitude (due to the fact that the diffusion
in the system works to the controller’s advantage when larger time horizons are used), and further excites the
modes that are not targetted by the ODE controller formulation.
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Figure 1: Distributions of Φ in the controlled PDE system (1) with T = 0.03. (a) The initial state (solid),
the terminal state without control applied (dashed), and the terminal states with control applied using N = 2
(black dot-dashed), N = 4 (blue dot-dashed), N = 8 (red dot-dashed), and N = 16 (green dot-dashed) in the
ODE controller calculation. Note that, as N is increased, an increasing number of the low frequency modes
of the terminal state of the PDE system, Φ(y,T ), are brought close to zero; the corresponding evolutions of
the controlled PDE system in space-time are depicted in Figure 2. (b) The magnitudes of the leading odd
sine series coefficients of the corresponding states, using the same line styles as used in (a). Note that, in
the controlled cases, the desired number of modes are driven to values that are several orders of magnitude
smaller than the uncontrolled case, but not to zero due to numerical errors in the computation. Also note
that the control applied excites higher modes of the temperature distribution not accounted for in the low-
dimensional ODE controller calculation.
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Figure 2: The evolution of the controlled PDE system in the T = 0.03 case in space-time with control applied
using a value of N in the controller calculation of N = 2 (a), N = 4 (b), N = 8 (c), and N = 16 (d).
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Defining

φ̂φφ =

⎛
⎜⎝ φ̂1

...
φ̂N

⎞
⎟⎠ , Λ =

⎛
⎜⎝
−k2

y,1 0
. . .

0 −k2
y,N

⎞
⎟⎠ ,

b̂0 =

⎛
⎜⎝ b̂0

1
...

b̂0
N

⎞
⎟⎠ , b̂1 =

⎛
⎜⎝ b̂1

1
...

b̂1
N

⎞
⎟⎠ , B̂ =

[
b̂0 b̂1

]
, u =

(
u0

u1

)
,

(13)

we may write the relation in (6), truncated at the N’th term, in the modal-coordinate state-space form

dφ̂φφ
dt

= Λφ̂φφ+ B̂u. (14)

Note that the system matrix Λ is diagonal in this representation. This numerical approximation of the PDE
system (3) is clearly controllable, as

rank{
[
B̂ ΛB̂ . . . ΛN−1B̂

]
} = N. (15)

Now define a matrix S with components s jn = sin(kyny j) where y j = j/(N + 1) for j = 1,2, . . . ,N, noting
that the n’th column sn of the matrix S =

[
s1 s2 . . . sN

]
is a discretization of the mode sin(kyny) on

the gridpoints y1 to yN . We also define φφφ = Sφ̂φφ, which simply amounts to enforement of (4), with the sums
truncated after the N’th term, on the N gridpoints y1 to yN . Premultiplying (14) by S thus leads to the
equivalent state-space form

dφφφ
dt

= Aφφφ+Bu, (16)

where we have defined A = SΛS−1, b0 = Sb̂0, b1 = Sb̂1, and B = SB̂ =
[
b0 b1

]
. Note that the system

matrix A is full in this representation. By (15) and the equivalence of (14) and (16), it follows that (16) is
controllable.

Note that A is some numerical approximation of A = ∂2/∂y2, and that the columns of B are some discretiza-
tions of (y−1) and (−y). It is thus quite tempting to conclude that AB should be zero in any “good” numerical
discretization of (3), and thus

rank{
[
B AB . . . AN−1B

]
} (17)

should be two, from which it would follow that (16) would in fact not be controllable. This line of reasoning,
however, is not correct. Indeed, for the N modes retained in the truncated form of the expansions (4), the
present numerical approximation is, in a sense, “exact”, as it follows from the definition A = SΛS−1 that Asn =
−ky

2
nsn where the vector sn is a discretization of the sine wave sin(kyny). However, it is important to note

that A is built from the discretization of the modes sin(kyny), which effectively incorporate the homogeneous
boundary conditions1 on φ(y,t); these boundary conditions are not shared by b0(y) and b1(y). Thus, as
illustrated in Figure 3, AB 	= 0, and the conclusion that (17) should be two is in fact incorrect. Indeed, we
may write[

B AB . . . AN−1B
]
=

[
SB̂ (SΛS−1)SB̂ . . . (SΛS−1)N−1SB̂

]
= S

[
B̂ ΛB̂ . . . ΛN−1B̂

]
,

from which it follows immediately, by (15) and the invertability of S, that (17) is in fact N.

1Note that (3) is not satisfied at the discretization points y0 = 0 and yN+1 = 1 on the boundary of the domain y ∈ [0,1]. In fact,
the only way that the homogeneous boundary conditions on φ inherent to the PDE form (3) may be enforced when writing a discrete
approximation of (3) in the general state-space form (16) is by somehow incorporating the effect of these boundary conditions in A.
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Figure 3: Demonstration of Gibbs phenomenon when performing a sine reconstruction of a sawtooth func-
tion (that is, a periodic extension of a linear function): (left) b1(y) and three N-term sine reconstructions of
b1(y) using (top) N = 8, (middle) N = 16, and (bottom) N = 32, and (right) the second derivative of these
N-term sine reconstructions of b1(y).

In general, the problem of controllability (that is, the question of whether or not a control distribution can
be found to move a system exactly from a specified initial state to a specified terminal state in finite time) is a
demanding problem that often far exceeds the actual needs of the controller effectiveness in real applications.
It is often quite sufficient for the control algorithm to bring the system in some sense close to the desired
target in the specified time, and for the perturbations of the system to be stable thereafter. Thus, the problem
of stabilizability (that is, the question of whether or not the unstable modes of the system are controllable) is
often the more relevant question to address2. Indeed, assuming infinite-precision arithmetic, we can move as
many individual modes of the PDE system as we like exactly to the desired target in finite time via solution
of the nonsingular system of equations in (11). Further, the higher modes of a diffusive system are certainly
very stable. We thus say that the PDE control problem considered here is approximately controllable—a
characterization which is, in a sense, somewhere between being stabilizable and being controllable.

Note in Figure 2 that, as the discretization is refined (that is, as N is increased) in the ODE control formulation,
the control distribution generated to move the ODE approximation of the system described above exactly to
the specified target becomes increasingly irregular. As N → ∞, the control distribution does not converge to
a smooth function of time; in other words, it fails the test of convergence upon grid refinement which is
essential in connecting the ODE control problem solved numerically to the PDE control problem which it
purports to approximate. Also, as N is increased, the matrix in the linear system of equations determining
the control distribution, (11), becomes increasingly ill-conditioned; thus, its solution using finite-precision
arithmetic becomes increasingly prone to numerical error. This is reflected by the green curve of Figure 2
for the first few modes reported, which would be closer to zero if (11) were solved using higher-precision
arithmetic.

2Note that the present problem is not only stabilizable, it is in fact stable with no control inputs applied whatsoever. However, an
argument may still be made that this problem is a useful one to study, as several related PDE systems (e.g., the forced heat equation,
Burgers’ equation, the Orr-Sommerfeld/Squire equation, the Navier-Stokes equation, etc.), are dominated by a diffusion component at
the higher wavenumbers, and thus the consideration of how to handle these wavenumbers correctly in a control-oriented context is of
significant interest.
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1.2 Alternative formulations

Before moving on to the problem of feedback, it is worthwhile to mention that there are several alternative
ways to formulate and discretize the control problem considered above. We present three such alternative
formulations below. The terminal states reported in Figure 1, which were computed “semi-analytically” via
a sine decomposition of φ as described above, were also determined numerically via the alternative formu-
lations presented below, all of which confirmed the results reported in Figure 1. The fact that sine, finite-
difference, and Chebyshev discretizations all accurately reproduced Figure 1 in this study verify that the
result reported is not a spurious artifact of the particular numerical discretization used.

1.2.1 A generalized formulation based on sine-series expansions

Following the notation of §1, we have

∂Φ
∂t

= AΦ, Φ(y = 0,t) = v0(t), Φ(y = 1,t) = v1(t),

with A = ∂2/∂y2. Defining

Φ(y,t) = φ(y,t)+ f (y)v0(t)+g(y)v1(t),

where now f (y) and g(y) are some (as-yet, unspecified) continuous functions with

f (0) = 1, f (1) = 0, g(1) = 1, and g(0) = 0, (18)

and defining

b0(y) = − f (y), b1(y) = −g(y), dv0(t)/dt = −av0(t)+u0(t), and dv1(t)/dt = −av1(t)+u1(t)

for some a > 0, it follows [cf. (3)] that

∂φ
∂t

= Aφ+(a−Ab0)v0 +(a−Ab1)v1 +b0u0 +b1u1 on 0 < y < 1, t > 0, (19)

with A = ∂2/∂y2 and φ = φ(y,t) with homogeneous boundary conditions φ(y = 0,t) = φ(y = 1,t) = 0. Again,
consider the sine series expansion

φ(y,t) =
∞

∑
n=1

φ̂n(t)sin(kyny) where kyn = πn. (20)

Defining the inner product 〈a,b〉 = 2
R 1

0 a ·bdy, taking the inner product of (19) with sin(kyn′y) gives

∂φ̂n

∂t
= −ky

2
nφ̂n + ̂(a−Ab0)nv0 + ̂(a−Ab1)nv1 + b̂0

nu0 + b̂1
nu

1 on t > 0 for n = 1,2,3, . . .
(21)

where φ̂n = φ̂n(t), u0 = u0(t), u1 = u1(t), and

b̂0
n = 2

Z 1

0
b0(y) sin(kyny)dy, b̂1

n = 2
Z 1

0
b1(y) sin(kyny)dy, (22a)

̂(a−Ab0)n = 2
Z 1

0
[a−Ab0(y)]sin(kyny)dy, ̂(a−Ab1)n = 2

Z 1

0
[a−Ab1(y)]sin(kyny)dy. (22b)
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Equation (21) is still exact. We now approximate the system numerically by retaining only the first N modes
of (21). Writing

x̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎝ φ̂1

...
φ̂N

⎞
⎟⎠

(
v0

v1

)

⎤
⎥⎥⎥⎥⎥⎥⎦ , Â =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎝
−ky1 0

. . .
−k2

yN

⎞
⎟⎠

⎛
⎜⎜⎝

̂(a−Ab0)1
̂(a−Ab1)1

...
...

̂(a−Ab0)N
̂(a−Ab1)N

⎞
⎟⎟⎠

0

(
−a 0
0 −a

)

⎤
⎥⎥⎥⎥⎥⎥⎦ , B̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎝ b̂0

1 b̂1
1

...
...

b̂0
N b̂1

N

⎞
⎟⎠

(
1 0
0 1

)

⎤
⎥⎥⎥⎥⎥⎥⎦ , u =

(
u0

u1

)
,

we have

dx̂
dt

= Âx̂+ B̂u. (23)

Defining C =
[
B̂ ÂB̂ Â2B̂ . . . ÂN+1B̂

]
, it follows immediately, as before, that

rank(C) = N +2 if a = 0︸ ︷︷ ︸
(i)

, and ̂(Ab0)n = 0, ̂(Ab1)n = 0 ∀n︸ ︷︷ ︸
(ii)

.

That is, if conditions (i) and (ii) hold, the system given in (23) is controllable. If conditions (i) and/or (ii) are
relaxed, this rank condition would not necessarily change; however, for particular (that is, bad) choices for
a, f , and g, it is possible that the rank condition might fail. One might be tempted to bypass the continuous
description of b0(y) = − f (y) and b1(y) = −g(y), instead selecting only their discretizations on the interior
gridpoints y1 to yN to be in the nullspace of some discretization of A together with the specified inhomo-
geneous boundary conditions (18). It is important to identify that continuous functions b0(y) and b1(y) that

discretize in such a manner do not satisfy ̂(Ab0)n = 0 and ̂(Ab1)n = 0 for all n [see (22b)], and thus it follows
from the definition of C given above that the conclusion that rank(C) should reduce to two whenever such
lifting functions are used is again incorrect.

1.2.2 A second-order central finite difference discretization

As an alternative to the formulations based on sine-series expansions illustrated above, we may instead dis-
cretize (1) directly with the state-space form

dΦΦΦ
dt

= AΦΦΦ+Bv,

using standard second-order central finite difference methods, taking Φ j as the discretization of Φ(y) on the
interior gridpoint y j = j/(N +1) for j = 1,2, . . . ,N, in which case

A =
1

(Δy)2

⎛
⎜⎜⎜⎜⎜⎝
−2 1 0
1 −2 1

. . .
. . .

. . .
1 −2 1

0 1 −2

⎞
⎟⎟⎟⎟⎟⎠ , ΦΦΦ =

⎛
⎜⎜⎜⎜⎜⎝

Φ1

Φ2
...

ΦN−1

ΦN

⎞
⎟⎟⎟⎟⎟⎠ , B =

1
(Δy)2

⎛
⎜⎜⎜⎜⎜⎝

1 0
0 0
...

...
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎠ , v =

(
v0

v1

)
,

where Δy = 1/(N +1). Note that a so-called boundary bordering method is used above to account for the
effect of the inhomogeneous boundary conditions (that is, for v0 = Φ0 and v1 = ΦN+1) as a rhs forcing vector
v.
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In this case, the controllability matrix is

C =
[
B AB A2B . . . AN−1B

]
=

1
(Δy)2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −2
(Δy)2 0 5

(Δy)4 0 . . .

0 0 1
(Δy)2 0 −4

(Δy)4 0 . . .

0 0 0 0 1
(Δy)4 0 . . .

...
...

...
...

...
... . . .

0 0 0 0 0 1
(Δy)4 . . .

0 0 0 1
(Δy)2 0 −4

(Δy)4 . . .

0 1 0 −2
(Δy)2 0 5

(Δy)4 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

RearrangingC by premultiplying by a permutation matrix P (that is, without changing its eigenvalues) reveals
that

PC =
1

(Δy)2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −2
(Δy)2 0 5

(Δy)4 0 . . .

0 1 0 −2
(Δy)2 0 5

(Δy)4 . . .

0 0 1
(Δy)2 0 −4

(Δy)4 0 . . .

0 0 0 1
(Δy)2 0 −4

(Δy)4 . . .

0 0 0 0 1
(Δy)4 0 . . .

0 0 0 0 0 1
(Δy)4 . . .

...
...

...
...

...
... . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 0
0 0 0 . . . 0 0 1
0 1 0 . . . 0 0 0
0 0 0 . . . 0 1 0
0 0 1 . . . 0 0 0
0 0 0 . . . 1 0 0
...

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is thus seen again that, for any finite-dimensional discretization of this problem, the controllability matrix
C has full rank. However, as N → ∞, and thus Δy → 0, the controllability matrix C becomes increasingly
ill-conditioned; in fact, the ratio of the first singular value to the third grows without bound as N is increased.

1.2.3 A Chebyshev discretization

Similarly, we may discretize (1) with the state-space form

dΦΦΦ
dt

= AΦΦΦ+Bv,

using Chebyshev methods, now taking Φ j as the discretization of Φ(y) on the interior gridpoint y j = cos( jπ/(N+
1)) for j = 1,2, . . . ,N. In this case, A is the section of the Chebyshev collection second derivative matrix cor-
responding to the interior gridpoints, and, following a boundary bordering method analogous to that described
above, B is built from the first and last columns of the Chebyshev collection second derivative matrix, thereby
corresponding to the effect of Φ at the boundary gridpoints (that is, for v0 = Φ0 and v1 = ΦN+1). Follow-
ing this approach for various values of N, it is again found that the controllability matrix has full rank, but
becomes increasingly ill-conditioned as N is increased.

1.3 Infinite-horizon (i.e., constant-gain) feedback control

1.3.1 Formulation penalizing φφφ and u = dv/dt

Now consider the generation of an infinite-horizon, constant-gain, optimal feedback control rule for the PDE
system (3) defined such that

u0(t) =
Z 1

0
k0(y)φ(y,t)dy, u1(t) =

Z 1

0
k1(y)φ(y,t)dy, (24)
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Figure 4: The elements of the first (ilustrated in blue in subfigures a-c) and second (ilustrated in red in
subfigures a-c) rows of the infinite-horizon LQR feedback matrix K in (26), plotted sideways as a function
of the y location to which the gains correspond, as N is increased from N = 8 to N = 256 by powers of
two, taking (a) �2 = 10−4, (b) �2 = 10−6, and (c) �2 = 10−10. In each of these three cases, note that the two
columns of K0 converge to continuous functions, denoted k0(y) and k1(y), as N is increased. (d) Effectiveness
of these feedback gains on the state φ at time t = 0.03 for the control cases with �2 = 10−4 (black, dot-dashed),
�2 = 10−6 (red, dot-dashed), and �2 = 10−10 (blue, dot-dashed), as compared with the case with no control
(dashed), and the initial conditions of the system (solid). Note that the red curve lies almost exactly on top of
the blue curve. (e) The same as in (d) above, but plotting Φ instead of φ; cf. Figure 1 for the case in which
the control u(t) on the interval t ∈ [0,T ] is computed directly.
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Figure 5: The elements of the first (blue) and second (red) rows of the infinite-horizon LQR feedback matrix
K in (30), plotted sideways as a function of the y location to which the gains correspond, as N is increased
from N = 8 to N = 256 by powers of two, taking (a) �2 = 1, (b) �2 = 10−2, and (c) �2 = 10−6. Again, note that
the two columns of K converge to continuous functions as N is increased. (d) Effectiveness of these feedback
gains on the state Φ at time t = 0.03 for the control cases with �2 = 1 (black, dot-dashed), �2 = 10−2 (red,
dot-dashed), and �2 = 10−6 (blue, dot-dashed), as compared with the case with no control (dashed), and the
initial conditions of the system (solid). Again, note that the red curve lies almost exactly on top of the blue
curve.
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where the gain functions (a.k.a. functional gains) k0(y) and k1(y) are to be chosen to minimize the cost
function

J =
Z ∞

0

(Z 1

0
{φ(y,t)}2 dy+ �2[{u0(t)}2 +{u1(t)}2]

)
dt. (25)

Discretizing (3) with the state-space form (16) as presented in §1.1, we may approximate this control problem
with the state-space feedback control rule

u(t) =
1
N

Kφφφ(t), (26)

where K is chosen to minimize a cost function approximating (25) such that

J =
Z ∞

0

[
φφφT Qφφφ+uT Ru

]
dt where Q = I/N, R = �2I. (27)

This discretized optimal control problem may be solved by the standard LQR approach via solution of the
associated continuous-time algebraic Riccati equation. When the problem is scaled appropriately, as illus-
trated above, the two rows of K are found to converge upon grid refinement to two functions k0(y) and k1(y),
as indicated in (24), which are continuous and smooth, as illustrated in Figure 4a-c. The effectiveness of this
feedback is illustrated in Figure 4d.

Note very little change in the controller effectiveness between the �2 = 10−6 and �2 = 10−10 cases, as illus-
trated in Figure 4d, even though the feedback gains differ by two orders of magnitude, as illustrated in Figures
4b and c. In these cases, due to the large feedback gains used, the state φ is essentially constrained to evolve
on a manifold which is orthogonal to the gain functions k0(y) and k1(y). There are effectively two factors
“limiting” or “regularizing” the control effort applied. The first factor is the standarad penalty on the control
effort, [u2

0(t)+u2
1(t)], incorporated into the cost function [see (25)]. Note, however, that as the coefficient �2

on this term is reduced towards zero, there is a limit to the controller’s effectiveness, indicating that there is
something in the formulation preventing the control from returning the system state to zero faster than that
depicted by the red and blue dot-dashed curves at t = 0.03 in Figure 4d. This is due to a second important
factor that comes into play: that is, that the present system is severely underactuated, meaning that it has
significantly fewer independent actuators (in this case, 2) than it has degrees of freedom (in this case, once
the problem is discretized, N). Effectively, control of the states on the interior of the system is achieved by
exciting the states near the boundary of the system, which are, in turn, penalized by the cost function defined
in (25) even for vanishing values of the factor �2.

Note that the control problem formulated above only penalizes the discretization of the homogeneous part
of the state, φ, and the time derivative of the actual boundary conditions on the physical system, u = dv/dt.
Thus, the control objective in this formulation in terms of the original PDE [see (1)], stated in words, is
to make the state approximately constant (but not necessarily zero) across the domain, while keeping the
square of the time rate of change of the boundary values (but not necessarily the square of the boundary
values themselves) small. When plotting the solution of the system in the physical variable Φ, as illustrated
in Figure 4e, it is seen that, for small �2, the controller indeed achieves these objectives fairly well. An
alternative control formulation targetting Φ and v directly is presented in the following section.

1.3.2 A generalized formulation capable of penalizing ΦΦΦ and v directly

Now consider the generation of an alternative optimal feedback control rule for the PDE system (1) defined
such that

v0(t) =
Z 1

0
k0(y)Φ(y,t)dy, v1(t) =

Z 1

0
k1(y)Φ(y,t)dy, (28)
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where k0(y) and k1(y) are to be chosen to minimize the cost function

J =
Z ∞

0

(Z 1

0
Φ2(y,t)dy+ �2[v2

0(t)+ v2
1(t)]

)
dt. (29)

In this case, for simplicity, we discretize (1) with the state-space form

dΦΦΦ
dt

= AΦΦΦ+Bv,

where A and B are constructed using standard second-order central finite difference methods, as described in
§1.2.2. We then design a state-space feedback control rule

v(t) =
1
N

KΦΦΦ(t), (30)

where K is chosen to minimize the cost function

J =

Z ∞

0

[
ΦΦΦT QΦΦΦ+vTRv

]
dt where Q = I/N, R = �2I.

This discretized problem may again be solved via the standard approach via solution of the associated
continuous-time algebraic Riccati equation. When the problem is scaled appropriately, as illustrated above,
the two rows of K are again found to converge upon grid refinement to two functions k0(y) and k1(y), as
indicated in (28), which are continuous and smooth, as illustrated in Figure 5a-c. The effectiveness of this
feedback is illustrated in Figure 5d. Similar trends are seen as in §1.3.1, though in this case it is the weighted
sum of the integral of the square of Φ and the square of v that are of minimized via the control input.

2 The 2D heat equation

In order for the ODE control problem solved numerically to be directly applicable to the PDE control problem
which it purports to approximate, it is essential that it pass the test of convergence upon grid refinement. As
introduced in the previous section, the standard “controllability problem” applied to the boundary control
of the 1D heat equation fails this important test (see §1.1), whereas the (perhaps, more relevant) feedback
problems posed previously pass this test (see §1.3). Unfortunately, not all feedback formulations for the
boundary control of PDE systems pass the test of convergence upon grid refinement. To examine this issue
further, we first extend the PDE control problem considered above to two dimensions. Towards this end,
consider now the PDE system [cf. (1)]

∂Φ
∂t

= AΦ on 0 ≤ x < Lx, 0 < y < 1, t > 0, (31a)

with A = ∂2/∂x2 + ∂2/∂y2 and Φ = Φ(x,y,t) with inhomogeneous boundary conditions in y such that

Φ(x,y = 0,t) = v0(x,t) and Φ(x,y = 1,t) = v1(x,t) (31b)

and periodic boundary conditions in x such that

Φ(x = Lx,y,t) = Φ(x = 0,y,t). (31c)

To simplify the analysis, we decompose v0(x,t) and v1(x,t) with infinite Fourier series in x such that

v0(x,t) =
∞

∑
m=−∞

v̂0
m(t)eikxmx, v1(x,t) =

∞

∑
m=−∞

v̂1
m(t)eikxmx with kxm = 2πm/Lx, (32a)
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and then lift the boundary conditions by defining φ = φ(x,y,t) such that [cf. (2)]

Φ(x,y,t) = φ(x,y,t)+
∞

∑
m=−∞

[
f̂m(y)v̂0

m(t)+ ĝm(y)v̂1
m(t)

]
eikxmx (32b)

where f̂m(y) =

{
1− y m = 0,

f̂ +
m ekxmy + f̂−m e−kxmy m 	= 0,

ĝm(y) =

{
y m = 0,

ĝ+
mekxmy + ĝ−me−kxmy m 	= 0, (32c)

with f̂ +
m = −e−kxm/(ekxm − e−kxm), f̂−m = ekxm/(ekxm − e−kxm), and ĝ+

m = 1/(ekxm − e−kxm), ĝ−m = −ĝ+
m . Note

that f̂m(0) = 1 and f̂m(1) = 0, whereas ĝm(1) = 1 and ĝm(0) = 0, and that A f̂m(y)eikxmx = A ĝm(y)eikxmx = 0
for all m. Defining

u0(x,t) =
dv0(x,t)

dt
, u1(x,t) =

dv1(x,t)
dt

⇔ û0
m(t) =

dv̂0
m(t)
dt

, û1
m(t) =

dv̂1
m(t)
dt

, (32d)

it follows [cf. (3)] that

∂φ
∂t

= Aφ−
∞

∑
m=−∞

[
fm(y)û0

m(t)+gm(y)û1
m(t)

]
eikxmx on 0 ≤ x < Lx, 0 < y < 1, t > 0,

(33a)

with A = ∂2/∂x2 + ∂2/∂y2 and φ = φ(x,y,t) with homogeneous boundary conditions in y such that

φ(x,y = 0,t) = φ(x,y = 1,t) = 0 (33b)

and periodic boundary conditions in x such that

φ(x = Lx,y,t) = φ(x = 0,y,t). (33c)

Given (32), the systems defined by (31) and (33) are equivalent.

2.1 Approximate controllability

As φ(x,y,t) has periodic boundary conditions in x and homogeneous boundary conditions in y, consider the
Fourier/sine series expansions [cf. (4)]

φ(x,y,t) =
∞

∑
m=−∞

∞

∑
n=1

φ̂m,n(t)e
ikxmx sin(kyny) and φ0(x,y) =

∞

∑
m=−∞

∞

∑
n=1

φ̂0
m,neikxmx sin(kyny), (34)

where kyn = πn. Defining the inner product 〈a,b〉 = 2
Lx

R Lx
0

R 1
0 a · b̄dydx, note [cf. (5)] that

〈eikxmx sin(kyny),eikxm′ x sin(kyn′y)〉 =

{
1 for m = m′ and n = n′,

0 otherwise.
(35)

Taking the inner product of (33) with eikxm′ x sin(kyn′y), applying the expansions in (34), and noting (35) leads
to a system that may be written in the form [cf. (6)]

∂φ̂m,n

∂t
= (−kx

2
m − ky

2
n) φ̂m,n + b̂0

m,nû0
m + b̂1

m,nû1
m on t > 0 for n = 1,2,3, . . . and m = 0,±1,±2 . . .

(36)

where

b̂0
m,n = −2

Z 1

0
fm(y) sin(kyny)dy = −2kyn/(kx

2
m + ky

2
n),

b̂1
m,n = −2

Z 1

0
gm(y) sin(kyny)dy = (−1)n2kyn/(kx

2
m + ky

2
n).
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Note that the subset of the equations given in (36) for each particular value of m is completely decoupled
from those equations for other values of m, with the subset corresponding to m = 0 identical to (6).

We now proceed with discretization, again in an analogous manner as to that done in §1.1. Defining [cf. (13)]

φ̂φφm =

⎛
⎜⎝φ̂m,1

...
φ̂m,N

⎞
⎟⎠ , Λm =

⎛
⎜⎝−kx

2
m − ky

2
1 0

. . .
0 −kx

2
m − ky

2
N

⎞
⎟⎠ ,

b̂0
m =

⎛
⎜⎝

b̂0
m,1
...

b̂0
m,N

⎞
⎟⎠ , b̂1

m =

⎛
⎜⎝

b̂1
m,1
...

b̂1
m,N

⎞
⎟⎠ , B̂m =

[
b̂0

m b̂1
m

]
, u =

(
û0

m
û1

m

)
,

(37)

we may write the relation in (36), truncated to include N sine modes in the y direction and 2M + 1 Fourier
modes in the x direction, in the modal-coordinate state-space form [cf. (14)]

dφ̂φφm

dt
= Λmφ̂φφm + B̂mûm for m = 0,±1,±2, . . . ,±M. (38)

Note that φ̂φφm is completely decoupled from one value of m to the next, and that the system matrix Λm is
diagonal for each value of m in this representation.

Note also that, for each m, the b̂0
m,n are all distinct and nonzero, as are the b̂1

m,n. Thus, by the same argument as
that given in §1.1 above, it follows that (36), and therefore (33) and (31), are approximately controllable. That
is, truncating the expansions of the state in x and y [see (34)] to any desired order, assuming infinite-precision
arithmetic is used, a control distribution may be found to bring the discrete approximation of the system [see
(38)] back to rest exactly from arbitrary initial conditions. However, as the numerical discretization is refined,
this control distribution becomes highly irregular; that is, the control formulation fails the test of convergence
upon grid refinement.

Again, however, the problem of controllability (that is, the question of whether or not a control distribution
can be found to move a system exactly from a specified initial state to a specified terminal state in finite
time) is a demanding problem that often far exceeds the actual needs of the controller effectiveness in real
applications. Thus, in the following section, we focus more carefully on the feedback problem.

In order to better understand the PDE considered, we also introduce a useful “half-transformed” (that is,
physical in y but Fourier in x) representation φ̌φφm = Sφ̂φφm where, as before, the matrix S has components
s jn = sin(kyny j) where y j = j/(N +1) for j = 1,2, . . . ,N. The elements of φ̌φφm represent the values of φ̌m(y)
on the corresponding y gridpoints. Multiplying (38) by S, it follows that the dynamics are still decoupled for
each m, that is [cf. (16)],

dφ̌φφm

dt
= Ǎmφ̌φφm + B̌mûm for m = 0,±1,±2, . . . ,±M, (39)

where Ǎm = SΛmS−1 and B̌m = SB̂m. Note that φ̌φφm is completely decoupled from one value of m to the next,
and that the N ×N system matrix Ǎm is full for each value of m in this representation.

Further transforming the φ̌φφm completely back to physical space (that is, physical in both y and x) leads to a
single (that is, coupled) system for the discretization of φ(x,y) on the entire 2D domain. The [(2M +1)N]×
[(2M +1)N] system matrix in this representation is full. For “reasonable” values of N and M [say, N = M =
O(100)] designed to resolve a diffusive PDE system with any substantial degree of complexity (for instance,
if the system considered is extended to include a nonlinear term; see footnote 2 on page 6), the feedback
control formulations considered in the following section become intractable without first applying some sort
of open-loop model reduction, which poses certain disadvantages (specifically, a loss of any guarantees of
closed-loop stability, robustness, and performance). Thus, we primarily leverage the decoupled (that is,
Fourier-in-x) formulations listed above in the discussion that follows.
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2.2 Infinite-horizon feedback control

Now consider the generation of an infinite-horizon, constant-gain, optimal feedback control rule for the PDE
system (33) defined such that [cf. (24)]

u0(x,t) =
1
Lx

Z 1

0

Z Lx

0
k0(x′,y)φ(x− x′,y,t)dxdy, u1(x,t) =

1
Lx

Z 1

0

Z Lx

0
k1(x′,y)φ(x− x′,y,t)dxdy,

(40)

with

u0(x,t) =
∞

∑
m=−∞

û0
m(t)eikxmx and u1(x,t) =

∞

∑
m=−∞

û1
m(t)eikxmx,

where the feedback convolution kernels3 k0(x′,y) and k1(x′,y) are to be chosen to minimize the cost function

J =
Z ∞

0

1
Lx

Z Lx

0

(Z 1

0
{φ(x,y,t)}2 dy+ �2[{u0(x,t)}2 +{u1(x,t)}2]

)
dxdt. (41)

The feedback convolution kernels k0(x′,y) and k1(x′,y), which are used to determine u0(x,t) and u1(x,t) as
shown above, are said to be shift invariant when, as in the present case, they do not explicitly depend on
x (that is, they only depend on x′). It is easily argued that the shift invariance of the feedback convolution
kernels associated with the solution of an optimal control problem such as that formulated above is a direct
consequence of the shift invariance of the underlying PDE [see (31)], cost function [see (41)], and feedback
control rule [see (40)] upon which this optimal control problem is based.

As mentioned above, determination of such energetically-optimal feedback convolution kernels (by solution
of the associated Riccati equations) is computationally intractable in typical well-resolved discretizations
when performed in physical space unless open-loop model reduction is used, as the system matrix is both
very large and full in such discretizations. Thus, as in [1], we leverage the equivalent, decoupled, Fourier-in-
x system formulations listed above in the derivation that follows in order to block decouple a single, large,
unmanageble control problem into an equivalent set of many small, decoupled, manageable control problems.

Note first that a convolution integral in physical space (for example, u(x) = 1
Lx

R Lx
0 k(x′)φ(x−x′)dx′ for all x),

corresponds to a product at each wavenumber in transform space (that is, ûm = k̂mφ̂m). This can be seen by
expanding u(x), k(x′), and φ(x− x′) in the former with infinite Fourier series, which leads to

∞

∑
m=−∞

[ûm]eıkmx =
1
Lx

Z Lx

0

( ∞

∑
p=−∞

k̂peıkpx′
)( ∞

∑
m=−∞

φ̂meıkm(x−x′)
)

=
∞

∑
m=−∞

∞

∑
p=−∞

k̂pφ̂m

( 1
Lx

Z Lx

0
eı(kp−km)x′dx′︸ ︷︷ ︸
=δpm

)
eıkmx =

∞

∑
m=−∞

[k̂mφ̂m]eıkmx ∀x.

Applying this result to the feedback control rules in (40) leads to

û0
m(t) =

Z 1

0
ǩ0

m(y) φ̌m(y,t)dy, û1
m(t) =

Z 1

0
ǩ1

m(y) φ̌m(y,t)dy. (42)

Similarly, by Parseval’s theorem, the cost function (41) may be rewritten

J =

Z ∞

0

∞

∑
m=−∞

(Z 1

0
{φ̌m(y,t)}2dy+ �2[{û0

m(t)}2 +{û1
m(t)}2]

)
dt. (43)

3Note that “feedback convolution kernels”, as discussed here, are distinct from “functional gains”, as discussed in 1.3.1, as the latter
are not associated with convolution integrals, whereas the former are.
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Applying the discretization presented in §2.1 by restricting our attention to a finite range of both m and n, the
feedback control rules (42) may be approximated [cf. (26)] as

ûm(t) =
1
N

Ǩmφ̌φφm(t), (44)

where the columns of Ǩm are discretizations of ǩ0
m(y) and ǩ1

m(y) on the gridpoints y1 to yN , and are to be
chosen to minimize a cost function approximating (43) such that [cf. (27)]

J =
M

∑
m=−M

Jm where Jm =

Z ∞

0

(
φ̌φφH

mQφ̌φφm + ûH
mRûm

)
dt, where Q = I/N, R = �2I. (45)

Examining (39), (44), and (45) together, it is seen that the problem of minimizing each Jm by the appropriate
selection of the Ǩm is completely decoupled at each m, and thus each of these fairly small LQR problem
may be solved independently. Once each of these LQR problems is solved using standard techniques, the net
result minimizes J. Finally, the resulting columns of the the Ǩm can be assembled and inverse transformed to
physical space to obtain a numerical approximation of the feedback convolution kernels k0(x′,y) and k0(x′,y)
sought [see (40)].

3 Summary of the key result

The key result of the present investigation is now summarized. After a series of related warm-up problems,
the problem of the feedback control of the 2D heat equation on a periodic strip via actuation of the Dirichlet
boundary conditions on the temperature was considered carefully. In this study, Φ(x,y,t) denotes the tem-
perature within the strip, v0(x,t) and v1(x,t) denote the boundary values of this temperature on the upper and
lower edges of the strip, u0(x,t) = ∂v0(x,t)/∂t and u1(x,t) = ∂v1(x,t)/∂t denote the time derivatives of these
boundary values, and φ(x,y,t) denotes a convenient transformation of Φ(x,y,t) with homogeneous boundary
conditions on the upper and lower edges of the strip.

The problem set up and solved in §2.2, penalizing the squares of φ(x,y,t), u0(x,t), and u1(x,t) in the cost
function in a manner analogous to that presented in §1.3.1 for the 1D case, happens to converge upon grid
refinement to smooth 2D feedback convolution kernels k0(x′,y) and k1(x′,y), in a manner similar to that
depicted in Figure 4 for the 1D case.

However, a very slightly modified formulation, penalizing the squares of Φ(x,y,t), v0(x,t), and v1(x,t) in the
cost function in a manner analogous to that presented in §1.3.2 for the 1D case, spectacularly fails to converge
upon grid refinement to smooth 2D convolution kernels, in sharp contrast to the result depicted in Figure 5
in the 1D case. Rather, when this formulation is used, the feedback gain functions get larger and larger
in magnitude as the wavenumber kxm is increased. Thus, when inverse transformed, the resulting feedback
convolution kernels are dominated by oscillations at the highest frequencies retained in the discretization, in
a manner similar to that depicted for the controllability problem considered in Figure 2.

Further, this failure to obtain convergence upon grid refinement is not a consequence of the discretization
method implemented in the y direction, as similar results are obtained for all of the numerical discretizations
in y used in this study (sine, Chebyshev, and finite difference). Rather, it is delicate issue related to the
regularity of the PDE control problem posed (even in this fairly “simple” canonical problem). Notably, it is
not sufficient simply to penalize the mean squares of Φ, v0, and v1 for the system described in (31) in order
to obtain a feedback control solution that passes the important test of convergence upon grid refinement.

The problem described here is not new; in fact, for those working in this area, it has been a longstanding
challenge in the boundary control of diffusive PDE systems that not all “reasonable” feedback control formu-
lations appear to converge upon grid refinement to something meaningful, indicating a gap in the available
regularity theory for feedback control problems for diffusive, spatially-invariant PDE systems.

18



A new mathematical theory to establish a sharp sufficient condition which guarantees that a given feedback
control formulation will in fact converge upon grid refinement in the manner described above is currently
under development by the authors, and will be discussed at the conference.
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