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Abstract: This paper investigates the effect of different discretization schemes for
observability analysis of distributed parameter models. While it is common knowledge
that approximating an infinite-dimensional model can introduce non-physical numerical
diffusion or numerical oscillation in the dynamics of finite dimensional approximation of
the distributed parameter system, less attention has been paid to the effect that these
approximations have on conclusions drawn about observability and controllability of the
system. This paper addresses this point and presents a detailed analysis of results obtained
for three approximation schemes for first-order hyperbolic partial differential equations
(PDEs). The different, and sometimes misleading, conclusions that can be drawn for the
three approximation schemes are discussed in detail and the analysis is illustrated with a
numerical example. The case study illustrates the point that a model which may
approximate the dynamic behavior of the distributed system accurately may not
necessarily correctly reflect observability of the original distributed system. Copyright ©
2007 IFAC
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1. INTRODUCTION of different approximation schemes for infinite-
dimensional models on the accuracy of the model
prediction (Finlayson, 1980; Ramirez, 1997), there
are almost no publications which investigate the
effect of different approximations on observability of
a system. Exceptions to this are the works by

Waldraff, et al. (1998), and Winkin, et al. (2000),

Observability analysis is one of the key steps for
designing observers or for computing measurement
structures for state estimation. While the tools for
observability analysis of linear and nonlinear lumped
parameter models are well developed, the same is not

true for processes described by PDEs. There are no
available techniques for observability analysis of
nonlinear infinite-dimensional systems and even the
tools developed for linear distributed parameter
models are rarely used due to their non-trivial
implementation/interpretation (Delatrre, et al., 2004).
As observability for distributed parameter system is
difficult to compute, the infinite-dimensional model
is often approximated by employing finite difference
techniques or by the use of orthogonal collocation
and observability analysis is performed on the finite-
dimensional approximation (Dochain, et al., 1997
Van den Berg, et al., 2000; Waldraff, et al., 1998).
While there is a large body of literature on the effect
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where it has been shown for specific cases and
approximations that infinite-dimensional model
observability can be inferred from finite-dimensional
models. However, there is no work in the literature
that directly compares the effect of different
discretization schemes on observability analysis of a
system. This work addresses this point and presents a
detailed analysis of observability results for three
different approximation schemes for hyperbolic
PDEs. Additionally, a case study comparing different
discretization schemes for observability analysis of a
distributed parameter model is presented. A
backward difference, a central difference scheme and
an approximation based on orthogonal collocation



are investigated. The results from observability
analysis for the different approximations are
compared with the ones for the infinite-dimensional
approach to illustrate that different, and sometimes
misleading, conclusions can be drawn from
observability analysis for distributed parameter
models depending upon the finite-dimensional
approximation that is used.

2. PRELIMINARIES

2.1 Observability analysis of first order hyperbolic
partial differential equation models.

Observability of first order hyperbolic PDEs can be
determined by tools derived from characteristic
theory (Goodson and Klein, 1970; Yu and Seinfeld,
1971). In case of a first-order hyperbolic flow
process given by:

ox(z,t) u ox(z,t)

+ px(z,t
ot oz px(z.1) )
x(0,¢) =x,
0<z<1
the solution takes the form
dx
—| = px(z,¢
al, Px(z,1) )
along the characteristic lines:
z
fhy 3
where,t, 20, xeR", zeR, aand [ are

parameters. If the output of the system (1) is given
by:
¥,(0) = Cx(z;,1), i=12,...,y 4)
then the system defined by (1) and (4) is observable,
if each characteristic line defined by (3) intersects a
sensor (z;) and the observability matrix defined by
(5) has rank n.
o-fw.orcri . oioe.07cr] O
®(t,0) from equation (5) is the state transition
matrix for the system defined in (2) and ¢ is
computed from equation (3) as:
Zi
t i tO )
o
for a sensor located at z, .

i=12,...,y (6)

2.2 Observability analysis of approximations of
infinite-dimensional models.

The infinite-dimensional approach for observability
analysis of distributed parameter models is usually
difficult to apply in practice (Waldraff et al., 1998).
Resulting from this, the model is often approximated
by finite difference or orthogonal collocation,
followed by observability analysis of the finite-
dimensional approximation.
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The original distributed parameter model given by
(1) can be approximated by a lumped parameter
model:

(LIED) = Ax(z,t)+ Bu M
dt
where, u e R", and
x=fG.0 Xz xzn ooacn] @

where #n is the number of spatial discretization points.

the

approximate lumped parameter model. If the output

of the system defined by (7) is given by:
y=Cx

Observability analysis is then carried out on

)

where, yeR”, then the observability matrix

(Brockett, 1970):
C

CA

0=|. (10)

cA™

can be computed in order to determine the
observability of the lumped model defined by (7) and
(9). If the observability matrix has full rank then the
system given by equation (7) and (9) is said to be
observable.

However, different discretization schemes can be
used to compute the lumped parameter model
defined by (7) and (9). If a backward difference
scheme is used for discretization of the spatial
derivatives, then the first order spatial derivatives for
each grid point are expressed as:

x(z, )| _ x(z,,0)—x(z,_,0)
0z a Az

where i represents the i th discretization point.
In case of central differences, the first order spatial
derivative for each grid point is given by:
(20| _ 6z, 1) = X(z,,1))
oz 20z (12)

The finite differences approach of transforming
partial differential equations to lumped parameter
models is simple to formulate. However, for an
accurate description of the system, the infinite-
dimensional system may have to be expressed as a
system consisting of a large number of ordinary
differential equations. One alternative for computing
a lumped model is to use functional approximation
techniques like orthogonal collocation (Finlayson,
1980; Ramirez, 1997). In this technique, the state
variables are expressed as the expansion of an
orthogonal polynomial function. The states are
defined as:

(11)

i

i

n+l

xw=2mm&) (13)

where, n is the number of discretization (or
collocation) points. The polynomial P,(z) is an
orthogonal polynomial, e.g. a shifted Legendre
polynomial. The collocation points are computed as
the roots of the polynomial P,(z;)=0. The state



expression in (13) can be further written in terms of
the collocation point as:

(14)

Therefore, the state variable at each collocation point
z; is defined as:

n+l
x(z;) =Y bz} (15)
i=1

Accordingly, the derivates are computed at each
collocation point by differentiating the above
equation with respect to z. In case of a first order
derivate, the approximation is given by:

n+l

dx .
Ziz)= b(i-Dz?
() ;,(z )z

Similarly, higher order derivative approximations
can be computed. The expression for state variable
x(z) and its spatial derivative can be written in

(16)

matrix form as:

x(z)=0b %zﬂ) (17)
where, the matrixces Q and T are given by:
jS = Z;‘_I Tji =(- I)Z;‘_Z (18)
The spatial derivatives can then be expressed as:
ox(z,1) _ 0™ x(z.0) (19)
oz

3. EFFECT OF DISCRETIZATION ON
OBSERVABILITY ANALYSIS OF
DISTRIBUTED PARAMETER MODELS

As distributed parameter models are usually
approximated by finite difference schemes or
orthogonal collocation techniques (Ramirez, 1997), it
is the purpose of this work to systematically analyze
the effect that different discretizations schemes have
on the conclusions drawn from observability
analysis. As discretization schemes can introduce
non-physical numerical diffusion and numerical
oscillations in the system dynamics (Wu et al,
1990), incorrect conclusions may be drawn not only
for the quality of the approximation but also for
observability analysis of distributed parameter
models. In fact, it will be shown that for some cases
the approximations which result in the best
approximation with regard to the time-profile may
result in inaccurate information about observability
of the system. As this type of analysis can be quite
general, a system described by a hyperbolic partial
differential equation, as in equation (1), is
investigated. Examples of processes modeled by this
class of PDEs include heat exchangers, plug flow
reactors, and pressure swing adsorption processes
(Christofides, 2000).

In order to carry out observability analysis, the
system given by equation (1) is approximated by a
lumped model described in equation (4). However,
the structure of the 4 matrix in equation (4) depends
on the type of discretization employed. If a backward
difference scheme is used for discretization of the
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spatial derivatives, the equivalent lumped parameter
model for the system (1) is obtained by writing the
following ordinary differential equation for each
discretization point:
dx(z;,t) —a (x(z,,t) = x(z;,1) + Bx(z,,1) (20)
dt Az

The system of ordinary differential equations (20) for
each discretization point can be further simplified
and written in states space form as in equation (7),
resulting in an 4 matrix given by:

4, 0 0 0 0
a,, a,, 0 0 . :
0 a a 0 0 0
A= 3,2 33
0 0 0 0
: ' 0 aan,nfl anfl,nfl 0
0 0 0 arkl,n an,n
&, 0 0 0 0o |
Az
- % % +B 0 0
o (21)
_| o 2 2i o0 0 0
- z Az . .
0 0 0 - " 0
g o X %ip o0
Az Az
o o
0 0 0 o B

where a,, are scalar, non-zero entries of the 4

matrix. In order to carry out observability analysis
for the lumped parameter model as in equation (7)
with the 4 matrix given by (21), an observability
matrix can be computed. If a measurement is placed
at the first spatial discretization point, the output
matrix in equation (9) is given by

c=[t o 0] (22)
and the observability matrix is computed to be:
i 1 0 0]
r 7 —+ 0 0
c Az P ,
[
O=| oo |~ 3 (23)
o
—+
Sl
_CAn_l_ . : - 0 0
—+ 0 0
()

The observability matrix has a rank of one for the
chosen measurement location. Similarly, it can be
shown that the rank of the observability matrix
increases as the measurement is moved from the first
spatial discretization point to the last discretization
point. The rank of observability matrix is two for a
measurement at the second discretization point, and
three for a measurement at the third discretization
point. In case of a measurement at the last
discretization point, the output matrix in equation (9)

is given by:
c=[ o 1] (24)

and the structure of the observability matrix is given
by the following triangular matrix:



0 0 0 1
(04 (04
0 0 Tk &ﬂ}z
v
0= o 0 ;| @Y
o
x
o n—1 o n—1
[ (]

The determinant of the observability matrix (25) is

n(n-1) o n(n-1)
given by (—1} 2 (_E) 2
observability matrix will have full rank for non-zero
a . Therefore, if a backward difference is used for
spatial discretization then the system can be
observable only if the measurement is placed at the
last discretization point.

Hence, the

If a central difference scheme is wused for
discretization of spatial derivatives, the ordinary
differential equation for each discretization point is
given by:

dx(z;,1) —a (x(z;41,1) — x(2,,,1)) T Bx(z,.1) (26)

dt 2Az

The structure of the A4 matrix for the central
difference discretization scheme is given by:

a, a, 0 0 0
Ay Gyp oy 0 - :
0 a a a 0 0
A= 3,2 3.3 3.4 )
0 0 . 0
' 0 au—l,n—Z au—l,n—l au—l,n
0 0 0 an,n—l an.n
. o -
— 0 0
P 2Az
e g e
2Az 2Az
o -2 g X 9 o |27
= 24z 2Az
0 0 " . " 0
S S S
2Az 2Az
o o
0 0 o - %
Az B_

In this case the 4 matrix has a tri-diagonal structure.
It should be noted that the entries @,  in the 4

matrix (27) will usually be different from the entries
in (21). It can be shown that the system defined by
(7) with the 4 matrix from (27) is observable for any
measurement location. For example, if the
measurement is placed at the first discretization
point, then the observability matrix is given by:
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1 0 0
o .
P
o V
03,1 03,2 [_]
O o\ (28)
= - - - 0 0
n-2
S
' (sz
n-1
o
On,l On—l,n (E]

where the entries O, , in the above matrix represent

the non-zero, scalar entries of the observability
matrix. The above observability matrix is of lower
triangular form and, therefore, the determinant of the
above matrix is given by the product of diagonal
elements. As a result, the observability matrix will
always have full rank for non-zero a . Hence, unlike
for the Dbackward difference scheme, the
observability matrix can have full rank even if the
measurement is placed at the first discretization
point. In fact, for central differences, it can be shown
that the determinant of observability matrix is given
n(n—1)
o
by e[ZAz
number that depends on the sensor location. Hence,
the system is always observable for non-zero o ,
irrespective of the measurement location, if a central
difference scheme is used to approximate the PDE.

, where 0 1is a non-zero scalar

An alternative for computing a lumped parameter
model are functional approximation techniques like
orthogonal collocation (Finlayson, 1980; Ramirez,
1997). The state variables are expressed as the
expansion of an orthogonal polynomial function
using this methodology. The lumped parameter
model is obtained by writing the following
differential equation for every collocation point or
discretization point:

dx(z,t)
—_—— a
dt

If the system is written in the states space form
shown in equation (7), then the structure of the 4
matrix is given by:

n+1

Yro™, x(zn)] +Prz0  (29)

a a, iy
as, %) Ao
A= (30)
an—l,l an—l,Z an—l,n
an,l an,Z an,n i

It should be noted that, although, the symbol a, . is

used in equation (30) that the matrix elements entries
are likely different from the ones in equation (21) or
equation (27). The A matrix in (30), unlike the 4
matrix in (21) and (27), can have all non-zero entries.
Accordingly, the observability matrix may be of full
rank for any measurement location.



From the above illustration of observability analysis
of an infinite-dimensional system, it can be inferred
that different observability conclusions can be drawn
for the same infinite-dimensional system. In the case
of a backward difference scheme, hyperbolic partial
differential equation models are only observable if
the “most downstream” state of the system is
measured. However, for a central difference scheme
and for models derived using orthogonal collocation,
the infinite-dimensional model can be observable for
a measurement placed at any discretization point. If
an infinite-dimensional approach as presented in
Section 2.1 is used, it can be shown that the system
can be observable only if measurement is placed at
the last discretization point. Therefore, only the
backward difference scheme can make accurate
predictions about observability of this type of
system.

The reason for the different observability results
determined for the individual approximation schemes
is that the central difference and orthogonal
collocation introduce non-physical numerical
diffusion in the dynamics of the system and as a
result the structure of the 4 matrix changes.
Therefore, the system is observable for
measurements placed at any location in the system.
The backward difference technique for the presented
model does not suffer from this drawback and the
results are in line with the infinite-dimensional
approach, i.e., the system is only observable if the
“most downstream” state of the systems is measured.
When selecting a discretization scheme it should be
kept in mind that the discretization scheme should
correctly describe the physics of the process such
that the observability analysis is not influenced by
phenomena like non-physical numerical diffusion or
numerical oscillations.

While the discussion in this paper is focused on
observability, it is possible to draw similar
conclusions about controllability as the two concepts
are closely related.

4. ILLUSTRATIVE EXAMPLE

A model of an isothermal plug flow reactor with first
order kinetics is investigated to illustrate the
argument presented above. The reactor model is
given by:

6CAa(tz,t) oo acAa(z,t) i,
Z
C,0,0)=1 G
C,(z,0)=1
0<2<02, k=I

The steady state profile of the reactor for different
discretization schemes is shown in Figure 1. The
number of spatial discretization points of these
schemes is the same and was fixed at 10. The central
difference approximation and orthogonal collocation
provide accurate model predictions for the
convective reactor model, which is a result
commonly reported in the literature (Ramirez, 1997).
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Fig. 1. Comparison of steady state profile of the
reactor for different discretization schemes with
the infinite-dimensional model.

In comparison, the approximation derived by the
backward difference scheme is not as good for this
case and requires a larger number of discretization
points for model predictions with the same accuracy.

Observability analysis has also been carried out for
the infinite-dimensional model and for the different
discretization schemes. According to the infinite-
dimensional approach presented in Section 2.1, the
reactor model will be observable only if the product
composition from the reactor is measured, i.c., a
sensor is placed to measure the concentration at
0.2m. In the case of the reactor model being
approximated by discretizing with central differences
or orthogonal collocation, inaccurate observability
results are obtained. The observability results for
different discretization schemes are summarized in
Table 1.

If backward differences are used for the
discretization, then the system is only observable for
a concentration measurement at the outlet of the
reactor. However, in case of central differences or
orthogonal collocation, the reactor would seem to be
observable for any measurement location. For the
central difference schemes, the smallest singular
value of the observability matrix remains the same
order of magnitude for any location in the reactor,
while for orthogonal collocation the smallest singular
value increases as the measurement is moved
towards the outlet of the reactor. It can be seen from
the presented results that central difference and
orthogonal collocation introduce non-physical
numerical diffusion in a pure convection plug flow
reactor model. As a result the lumped parameter
model is observable for any measurement in the
system, even though this is not the case for the
distributed system that it approximates. For this
reactor model, a backward difference scheme
produces results inline with those obtained from
analysis of the infinite-dimensional model.

While the central difference scheme and orthogonal
collocation  provide an accurate  model
approximation, these techniques result in increased
coupling of the discretized system. The increased



coupling, as evident from the structure of the 4
matrix in Section 3, results in non-physical numerical
diffusion. As a result, these techniques provide
misleading information regarding the observability
of the distributed parameter model despite resulting
in better accuracy for the description of the
concentration profile.

5. CONCLUSION

This work presents an analysis of the effect that the
use of different discretization schemes has on
observability analysis of infinite-dimensional
systems. It is shown that the choice of discretization
scheme can not only influence the accuracy of the
model prediction, which has been known for a long
time, but will also have a direct impact on the
conclusions drawn from observability analysis. For a
system described by a first order hyperbolic PDE,
discretization by backward difference will result in
more accurate information about observability than
discretization by central difference or orthogonal
collocation.

While controllability analysis was not specifically
investigated in this work, its conclusions will be
affected in a similar manner as the ones drawn for
observability analysis.

Tablel. Smallest singular value of observability
matrix for different discretization schemes

Measurement Smallest singular value of
location (in observability matrix
terms of Backward Central Orthogonal
discretization  difference  difference  collocation
point)
1 0 8.99E-04 4.12E-08
2 0 3.71E-04  4.86E-08
3 0 5.74E-04  4.42E-08
4 0 6.45E-04  1.03E-07
5 0 6.28E-04  3.68E-06
6 0 7.11E-04  2.05E-04
7 0 8.79E-04 0.02700
8 0 9.77E-04 0.04990
9 0 9.62E-04 0.04998
10 0.0036 8.89E-04 0.04992
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