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Abstract: A methodology for determining optimal sensor network design for multirate 
systems is presented. This methodology is based on generating trade-off (Pareto optimal) 
solutions between the quality of state estimation and the total measurement cost 
associated with the sensor network. Variances associated with the states estimated using a 
Kalman filter in a multirate setting are used to calculate the state estimation quality. The 
resulting multiobjective optimization problem is solved using the well known non-
dominated sorting genetic algorithm-II. The resulting solutions can be then further 
analyzed by the process designer for determining the optimal sensor network. The 
methodology is demonstrated using simulations on the benchmark quadruple tank set up 
(Johansson, 2000). Copyright © 2007 IFAC
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State space models are widely used in process control 
and estimation literature for representing process 
dynamics. Kalman filtering techniques are preferred 
techniques to infer process variables (states) using 
incomplete or partial measurements and a first-
principles based state space model. The performance, 
as characterized by the uncertainty in the estimated 
states in Kalman filtering strategy, can be improved 
by formally incorporating the infrequently available 
measurements. The uncertainty in the estimated 
states depends on the total number of sensors (and 
their noise characteristics), their location (in terms of 
which variables they sense) and their sampling 
frequencies. 

1.  INTRODUCTION 

In the process industry, measurements of different 
process variables are often obtained at different 
sampling rates. Such multirate measurement 
scenarios are encountered frequently in chemical and 
bio-chemical processes, for e.g. secondary variables 
(such as temperature, pressure) are measured at a 
higher frequency while some quality variables (such 
as molecular weight) are measured relatively slowly. 
In such situations, for monitoring and control, it is 
possible to generate estimates of the quality variables 
and secondary variables at frequent rates using 
(inferential) observer-based schemes that rely on 
both fast and slow measurements, as well as the 
process model. The quality of estimates (in terms of 
their variance) generally increases with the number 
of sensors and their sampling frequencies, but this 
also increases the associated measurement cost. 
Hence, there is a trade-off between the quality of 
estimates that can be obtained and the measurement 
cost. In sensor network design literature this trade-
off is analyzed through the formulation of a Pareto 
optimization problem. 

In literature, recent research in the area of sensor 
network design based on state space models includes 
the work of Muske and Georgakis (2003) and 
Musulin et al. (2005). Earlier approaches for optimal 
sensor location and their selection are reviewed 
briefly by Muske and Georgakis (2003). The trade-
off between measurement cost and the process 
information in the optimal determination of 
measurement systems for chemical processes is 
considered by Muske and Georgakis (2003). The 
inverse norm of a weighted steady state prediction 
error covariance matrix (SPECM) was used in their 
work as a scalar measure of the process information 
associated with a given measurement system. The 
corresponding measurement cost is determined by 
summation of the installation and operating cost for 
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each sensor. The same idea is extended by 
considering time varying state estimation error 
covariance matrix (SEECM) to compute scalar 
measure of process information by Musulin et al. 
(2005).  

All of the above work deals with sensor network 
design for single rate processes. However in a typical 
chemical process, variables are measured at different 
rates. There are several incentives to include the 
slowly sampled and/or irregularly available 
measurements, in the overall estimation scheme 
(Gudi et al. 1995).  While these measurements have 
been shown to enhance observability of the system as 
well as reduce variance of the estimates, they can 
also influence the overall sampling requirements of 
the frequently measured variables. Considering that 
even the frequency of the regular measurements is 
influenced by cost considerations, it is important to 
include this frequency as a decision variable in a 
generic multirate framework that focuses on cost as 
well as accuracy of the estimates. Such a multirate 
treatment of the sensor network design problem is 
quite relevant in the context of chemical and 
biochemical systems and has not received any 
attention in the literature. 

In this work, the problem of sensor network design 
has been formulated in a generic, multirate 
framework that considers both location of the sensors 
and frequencies of sampling as decision variables to 
assess the trade-off between quality of the estimates 
and the overall cost of the measurement system.  As 
in existing literature reported earlier, we analyze the 
trade-off by representing it as a Pareto optimization 
problem, which is solved using the popular non-
dominated sorting genetic algorithm (NSGA-II) (Deb 
et al. 2002). We demonstrate the suitability of the 
proposed approach by implementing it on the 
benchmark multivariable quadruple tank problem 
(Johansson, 2000). 

The organization of this article is as follows. A brief 
description of the sensor network design approach 
followed in this work is presented in section 2. The 
case study results are discussed in section 3 and 
concluding remarks are made in section 4.  

2. DESIGN APPROACH 

In present work, the problem of sensor network 
design includes two objective functions viz. 
maximizing the quality of estimates and minimizing 
the measurement cost subject to a constraint of 
system detectability. The objective function values 
characterizing the quality of estimates are based on a 
Kalman filter implemented for different rates of 
sampling. We next briefly review the basic Kalman 
filter and present its extension to the multirate 
estimation scenario. 

2.1. Kalman filtering algorithm 

A Kalman filter is an optimal recursive data 
processing algorithm. Consider the problem related 

to the optimal estimation of states of a linear discrete 
time invariant (LTI) system represented by: 

k+1 k k kx = x + u + w                            (1) 

k ky = Cx + v                                        (2) 

where k represents the sampling instant, xk Rn

represents the vector of states of interest for 
measurement and control, uk Rm is the vector of 
manipulated input variables, yk Rr is the vector of 
measured variables, Rnxn is the state transition 
matrix, Rnxm is the control gain matrix and C Rrxn

is the measurement matrix. The process noise wk
represents the unmodelled process dynamics in 
equation (1) and is assumed to be Gaussian with zero 
mean and covariance matrix Q. The measurements 
are corrupted by noise vk which is also assumed to be 
Gaussian with zero mean and covariance matrix R. 
The error covariance matrices associated with 
predicted state vector and estimated state 

vector are given by (Gelb, 1988): 
kx̂ (-)

k (+)x̂

T

k k-1P (-)= P (+) + Q                            (3) 

k kP (+) = [ I - K C ]P (-)                       (4) 

where I is the identity matrix of suitable size, Pk(-) 
and Pk(+) are called as SPECM and SEECM 
respectively. The (–) and (+) refers to the time just 
before and immediately after measurement 
respectively. The Kalman gain matrix K is given by 

T T

k kkK =P (-)C [CP (-)C + R ]              (5) 

Equation (4) can be interpreted as a step towards 
minimization of the objective function of estimation 
error suitably weighed by the Kalman gain. The 
weights in Kalman gain matrix are generated by use 
of model, measurements and measurements noise. To 
implement the algorithm, the following initial 
conditions should be provided: 

T

0 0 0 0 0 0 0
ˆ ˆE x = E x -x x -x =Px̂  ;        (6)                      

However, the Kalman filtering algorithm presented 
above assumes that measurements are available at 
every sampling instant and as such it can be used 
only for single rate systems. But in actual practice, a 
multirate scenario could be possible since all 
measurements may not be available at all time 
instants. Further, as mentioned earlier, there appear 
to be sufficient incentives to actually explore such a 
scenario of multirate measurements from the 
perspective of trade-off between cost and quality of 
estimates. To account for different measurements at 
different time instants we propose to suitably modify 
the above Kalman filter algorithm. Since at each time 
instant the size of r (number of measurements 
available) changes, the sizes of matrices C and R 
vary. With the following two modifications, above 
Kalman filtering algorithm can be used for multirate 
scenario: 
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Generation of appropriate C & R matrices 

Let s sensors, viz. s1, s2,…, ss be available for 1 to s 
measurements respectively and further let us assume 
that ith sensor can be used for measurements with a 
sampling time fi

t Di, where Di={ fi
1, fi

2,….fi
Ni} is the 

set of allowed sampling times for sensor i. Let k=1 to 
T be the time interval used for Kalman filter to 
generate time varying SEECM. Under this situation, 
if the remainder of k/fi

t=0, then measurement from ith

sensor is available at the kth instant. Hence the 
corresponding ith row in C and R matrices are 
retained. On other hand, if remainder of k/ fi

t  0, 
then ith sensor measurement is not available at kth

instant and the ith row in C and R matrices are 
deleted. Once this is done for all sensors, the 
resulting C and R matrices are used in Kalman 
filtering calculations. Hence the Kalman filtering 
algorithm discussed earlier can now be used for 
multirate processes with appropriate C and R 
matrices at different sampling instants to calculate 
SEECM at each sampling instant. It is to be noted 
that in this multirate Kalman filtering procedure, use 
of the updated values of C and R at each time instant 
provides a link between sensor availability, accuracy 
and state estimation quality through equations (4) 
and (5).  

Time interval for simulation (T)

k

ik i

For the multirate sampling system, due to the 
periodic availability of measurements, a periodic 
output relation is obtained (Lennartson,1988) with 
period  z   where z is the least common multiple 
(LCM) of the different sampling times, i.e. 
z=LCM{f1

t, f2
t,…. fs

t} . A sensor network with large 
sampling time for each sensor will have large value 
of z. The simulation interval T for multirate Kalman 
filtering algorithm should be larger than z to allow 
the SEECM to attain steady state.  

2.2. Scalar measure for quality of estimate 

The model based multirate Kalman filtering strategy 
as described in section 2.1 is used to generate 
optimally filtered estimates of the states from the 
measurements which arrive at different sampling 
times. For a particular sensor network, the multirate 
Kalman filter provides the knowledge of SEECM, 
which varies with each time instant. The trace of 
SEECM gives the sum of variances of all the 
estimated states, which in turn gives an idea about 
the quality of estimation. As in earlier work
(Musulin et al. 2005), the sum of trace of SEECM 
over the selected simulation time interval T is 
considered in our work as scalar measure of process 
information i.e. quality of estimation. 

2.3. Scalar measure of cost 

In general, a scalar measure of cost can be computed 
as the sum of installation and operating cost. 
Generally, the cost of sensor  varies inversely with its 
measurement accuracy. Hence, accurate sensors 
measured frequently will lead to good quality 

estimates but will incur high costs, and vice-versa 
low cost sensors may not lead to good quality 
estimates.  Optimization problem to generate this 
tradeoff between cost and estimation quality is 
discussed next. 

2.4. Sensor network optimization problem 

The sensor network optimization problem is 
multiobjective in nature. It can be formulated as 
follows: 

1 2min{F (q),F (q)}                                (7) 
             s.t. system detectability,  
              q D

where q is the decision variable vector i.e. time 
intervals at which different measurements can be 
taken. D is feasible space as characterized by set of 
{D1,D2,…Ds}. It is to be noted that since Di is a set of 
integers, the optimization problem (7) is non-convex. 
Further Di can also be a union of disjoint subsets, for 
e.g. Di = {[0,1,…,5] [15,16,…,20]}sec for a given i. 
It is also to be noted that if the sampling time is zero 
for a particular sensor, then that sensor is not part of 
the measurement scheme. Hence, in our proposed 
formulation for sensor network design for multirate 
systems, there is no need to introduce artificial 
variables to indicate absence or presence of a sensor. 
The objective functions F1(q) and F2(q) 
corresponding to quality of estimation and cost 
respectively, are computed as: 

                   (8) 
T

1
k=1

F (q)= trace{P (+)}

          (9) 2

s T s

i
i=1 k=1 i

F (q)= Fc c

where F1(q) is sum of trace of SEECM over 
simulation time T. In equation (9) the first term 
represents total installation cost and the second term 
represents measurement or operating cost. The 
variables Fci and ci represent the installation cost and 
operating cost for sensor i respectively. The variable 

ik can take a value of either 0 or 1 and is defined as: 

i

t
ik

1, if  remainder{k/f }=0 

0, otherwise
 =         (10) 

The value of ik=1 indicates presence of ith sensor at 
kth time instant.  

Problem (7) is a multiobjective optimization problem 
since in absence of any weighting criteria for 
combining the objectives F1(q) and F2(q) into a single 
objective, this problem may have several solutions 
corresponding to trade-offs between these two 
objectives. Generation of these trade-off or Pareto 
solutions is the aim in this article. The Pareto 
solutions are the set of non-dominated feasible 
solutions. Solution qi is said to be non-dominated if it 
is feasible and there is no other feasible solution qj
which has better (lower) values of both objectives F1
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and F2 compared to the values obtained with qi (Deb, 
2003). The concept of Pareto optimal solutions is 
illustrated in Figure 1. In this Figure, solutions A, B 
and C are Pareto optimal since they are not 
dominated by any other solution, but solution D is 
not Pareto optimal since it is dominated by solution 
B. The set of Pareto optimal points is also labelled as 
the Pareto optimal front. 

Another feature of formulation (7) is that it is not in 
standard explicit optimization form since calculation 
of F1(q) given the decision variables q, requires the 
solution of multirate Kalman filtering equations.  

Due to these features (non-convexity, implicit nature, 
and multiple objectives) traditional optimization 
solution strategies are not suited for solving this 
problem. Hence we use genetic algorithms for 
solving problem (7). This solution strategy is 
discussed next. 

2.5. Solution approach 

In this work we propose the use of genetic algorithm 
since it does not require the problem to be convex or 
be presented in an explicit optimization form. 
Further, it is suited for generating multiple solutions 
since it works with a population and not with a single 
solution. The well-known NSGA-II as introduced by 
Deb et al., (2002) is used to solve above Pareto 
optimization problem where the decision variables 
are sampling times for the available sensors. In 
NSGA-II algorithm, the population needs to be 
sorted according to ascending levels of non-
domination. It uses crowding distance technique for 
maintaining diversity in the population. Further, the 
non-dominating sorting is done for combined 
population (parent and offspring) to preserve elitism. 
The algorithm is terminated when number of 
generations reaches a predefined maximum value or 
when not much improvement in population is 
obtained in successive generations.  

3. CASE STUDY AND RESULTS 

The issues related to trade-off in the sensor design 
objectives as discussed in this article, have been 
further analyzed by application on the quadruple tank 
setup of Johannsen (2000) which has been used as a 
benchmark problem in the process control literature. 

3.1. Case study : Quadruple Tank set-up 

The quadruple tank process shown in Figure 2, 
consists of four interconnected water tanks and two 
pumps. The inputs are the voltages to the two pumps 
and the outputs are the levels in the tanks as 
measured by voltages from level measurement 
devices. A non-linear mathematical model for the 
quadruple tank process based on first principles is 
given as (Johansson, 2000) 

31 1 1 1
1 3

1 1

acdh ac k
=- 2gh + 2gh +

dt Ac Ac Ac 1

1

       (11)          

2 2 4 2 2
2 4

2 2

dh ac ac k
=- 2gh + 2gh +

dt Ac Ac Ac 2

2

     (12) 

2 23 3
3

3 3

1- kdh ac
=- 2gh +

dt Ac Ac 2                    (13)     

1 14 4
4

4 4

1- kdh ac
=- 2gh + 1dt Ac Ac

                    (14) 

F 1
(q

)

F2(q)

A

B

D

C

where, the voltage applied to Pump p is p and the 
corresponding flow is kp p. The parameters 1, 2
(0,1) are determined from setting of valve positions. 
The flow to tank 1 is 1k1 1 and flow to tank 4 is (1-

1)k1 1 and similarly for tanks 2 and 3. Variables h1
to h4 are the heights in the tanks 1 to 4 respectively. 
The measurement level signal from tank j is kchj
where kc is a constant. Detailed description of this 
model and the values of various parameters have 
been obtained from Johansson (2000). In this work, 
we restrict our attention to linear state space models. 
The continuous time, linear state space model for the 
above presented non-linear equations (Equations 11-
14) is obtained using a first order Taylor series 
expansion around the steady state values for these 
equations. The discretization of the linearized 
continuous model to obtain  and  matrices 
(Equation 1) is performed using the matlab command 
“c2d” with discretization time=1 sec. 

Figure1: Concept of Pareto optimal solutions 

Tank 1 Tank 2

Tank 4Tank 3

Pump 2Pump 1

Figure 2: Schematic diagram of quadruple tank 
process 

3.2. Results and discussion 

The water level in each tank is considered as a state. 
There are four states and two input variables. We 
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have considered summation of trace of recursive 
SEECM over the time interval T=1000 sec, as a 
scalar measure of process information. The inverse 
of variance of a sensor noise is considered to be its 
measurement cost when the corresponding state is 
measured. The total cost is obtained by summation of 
total measurement cost for all sensors over given 
time interval. The installation cost is considered to be 
zero. The parameters used for the genetic algorithm 
and multirate Kalman filter are given in Table 1. 

The decision variables in this problem are the 
sampling times for measuring the different height 
signals. For each of the four signals, the allowed set 
of sampling times Di={0,1,2…….31}sec  i=1,2,3,4. 
Hence there are a total of 324=1048576 ( 106)
measurement combinations possible. For the present 
work, population size of 1000 and 100 generations in 
the GA strategy are used. Hence a total of 105

combinations of sensors networks (less than 10% of 
all possible combinations) are enumerated by GA. To 
check the quality of results obtained from GA we 
additionally also enumerate all feasible solutions. 
The final Pareto optimal front obtained by GA and 
that obtained by complete enumeration are shown in 
Figure 3. It can be seen from this Figure that the 
Pareto optimal front found by GA is very close to 
true front obtained by complete enumeration. The 
optimal front is divided into 3 regions viz. regions-A, 
B and C. These regions are broadly highlighted in 
Figure 3.  Regions A and C are sensor networks 
corresponding to low cost-poor estimation quality 
and high cost-good estimation quality respectively. 
On other hand region-B sensor networks have 
moderate cost and quality of estimates. Now the 
process designer can select a particular sensor 
network depending on his/her constraint on available 
cost and need for accuracy in the state estimates. The 
results reported (in terms of optimal networks) did 
not change when the simulation time interval T for 
the multirate Kalman filtering calculations was 
increased to 10000 sec. The representative solutions 
for above three groups are shown in Table 2. 

It can be noticed from this table that height of the 
liquid in Tank 4 is measured at each instant 
(maximum sampling rate) for each of the three 
solutions due to its low measurement cost compared 
to rest of the measurements. The variations in 
variance of state estimation error (VSEE) for 
different states corresponding to three representative 
measurement schedules are given in Figures 4-6. In 
this case study  is stable; hence any measurement 
strategy ensures system detectability. For the 
detectable case, single rate system states converge to 
single steady state values, while multirate system 
states exhibit a periodic steady state pattern. Figure 4 
shows the variation in VSEE corresponding to 
measurement schedule [0 31 27 1], which indicates 
that state h1 is not measured at any time while states 
h2,h3 and h4 are measured at every 31, 27 and 1sec 
intervals respectively. It can be seen from Figure 4 
that the VSEE curve shows an increasing trend for 
state h1 since it is never measured. Even though no 
measurement is available for state h1, some 

reduction in its VSEE still occurs at time period of 
27sec. This is due to the inferential correction of state 
h1 by the Kalman filter based on measurement of 
state h3 and its relationship with state h1 as captured 
by the state space model. Since system is detectable 
the VSEE will also settle for this unmeasured state 
h1 (Nicolao, 1992). The actual simulation is carried 
out for 1000 sec but the changes of VSEE in Figures 
4-6 are shown only upto 100 sec for clarity.  Even 
though Figure 4 shows continuous increment in state 
h1, it reaches its periodic steady state value after 700 
sec. The state h4 is measured at every time instant 
and its VSEE quickly settles to a steady state value. 
Figure 4 shows a periodic pattern for states h2 and 
h3, since these states are measured infrequently and 
their VSEE value increases when the corresponding 
measurements are not available. However when 
measurements for these states are available the VSEE 
is reduced to a lower value due to the multirate 
Kalman filter correction. The same pattern is 
repeated over successive sampling instants and the 
VSEE finally attains a periodic steady state A similar 
description holds for Figures 5 and 6 depending on 
sampling time for each state  

Table 1 GA and Kalman filter related parameters

Parameter Value
Length of chromosomes : 20 bits 
Population size : 1000 
Number of generations : 100 
Crossover frequency : 0.9 
Mutation parameter : 0.01 
T for Kalamn filter : 1000 sec 
Q : Identity matrix of 

appropriate size 
The variances of sensor 
noise (cm2) for: 
           i.    state h1  : 0.01 
           ii.   state h2  : 0.1 
          iii.  state h3  : 1 
          iv.  state h4  : 10
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Figure 3: Optimal Pareto Front for Multirate sensor 
networks.  
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Table 2: Representative solutions for optimal 
measurement time

Region Measurement  
time interval 
(sec)
[h1  h2 h3 h4] 

Measure 
of
 Cost  x 
10-5

Measure of 
quality of  
estimate x 
10-5

A  0   31   27    1 0.0046 1.3748 
B 31  14    3     1 0.0434 0.2893 
C   1   3     3     1 1.0376 0.1008 
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3 1] 

4. CONCLUSIONS 

The methodology for determining optimal sensor 
network design for multirate systems presented here 
is relevant to chemical and bio-chemical processes 
since they are multirate in nature. Further, the 
methodology is also applicable for the problem of 
determining measurement time intervals for regular 
systems, where measurement procedure/availability 
is not a constraint. The model based Kalman filtering 
strategy in the multirate framework is proposed to 
generate optimally filtered estimates of the states 
which in turn are used for determining the scalar 
measure of quality of estimation. The resulting 
Pareto optimization problem is solved by using 
NSGA-II. The optimal solutions provide several 
choices to process system designer to select a 
suitable sensor network depending upon his/her 
choice for measurement cost and quality of estimates. 
The methodology is demonstrated using simulations 
involving the benchmark quadruple tank set up. The 
extension of this methodology for dealing with non-
linearity, non-Gaussian noise, and measurement 
delays is currently under study.  
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