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Abstract: This paper addresses the problem of performance evaluation for decentralized
multivariable PID controllers, by comparing the actual performance with that of a
benchmark multivariable state-feedback LQR controller. The procedure can be used at a
design stage and for closed-loop performance monitoring of industrial plants. An overall
measure of controller suboptimality is proposed along with a matrix that quantifies the
closed-loop interactions among control loops. The minimum interactions evaluated under
the benchmark controller can be regarded as an intrinsic process property. Finally, a
retuning procedure for the decentralized controller is proposed with the aim of improving
the overall closed-loop performance. Several extensions of the benchmark controller are
discussed, such as how to identify a process model from data and how to consider output
feedback. The features of the proposed methodology are explained by application to the
Shell Control problem. Copyright 2007 IFAC c©
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1. INTRODUCTION

Control Loop Performance Monitoring (CLPM) is
widely recognized as a mean of large importance to
improve product quality and then the overall economy
of industrial plants. The complete job of a CLPM
system includes a reliable performance evaluation,
a prompt detection of low performing loops, a de-
tection of the causes and suggestion of actions to
take. Tools for automatic monitoring control loops
recently proposed by software houses (e.g. Aspen-
Watch/PIDWatch by Aspentech, LoopScout by Hon-
eyWell) aim at this scope by different ways. Despite
of this fact, several issues are still open, not only in
implementation (e.g. on-line versus off-line architec-
tures, interaction with the operator) but also with re-
gard to theoretical aspects. In the case of multivariable

1 Corresponding author. Email: g.pannocchia@ing.unipi.it, Fax:
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plants, the very basic issue of defining appropriate per-
formance indices is not yet completely solved (Schäfer
and Cinar, 2004) and also in the tracking of root
cause of a perturbation there is still much work to
do (Tornhill and Horch, 2006).
This paper focuses on the evaluation of loop per-
formance in the particular case of multi-input multi-
output (MIMO) plants under decentralized control,
an aspect of interest both for a continuous evalua-
tion/improvement of SISO loops and to decide from a
“una tantum” analysis to change to a MIMO control
system. Traditionally, the problem of evaluating the
suitability of a decentralized control to cope with a
MIMO process has been faced starting from the anal-
ysis of plant interactions (e.g. with RGA technique),
seen as an intrinsic property of the process (to be min-
imize with an appropriate choice of couplings between
manipulated and controlled variables).

Preprints Vol.3, June 6-8, 2007, Cancún, Mexico

187



However, it is evident that a perturbation transmit-
ted from one loop to another depends both on pro-
cess characteristics and on controller tuning/design;
thus the evaluated performance index is necessarily
affected by both features. Following this track in pre-
vious work two indexes were proposed: a Time Do-
main Interaction and a Controller Performance In-
dex (Rossi et al., 2006). Going one step forward, in
the present work a minimum degree of interaction,
depending on the optimal MIMO controller (bench-
mark) which can be designed for that plant, is defined.
With these premises, a global approach to the problem
has been undertaken trough a strategy based on the
following steps: i) definition of a performance index
for the actual controller, ii) performance evaluation
by comparison with a benchmark MIMO controller,
iii) retuning procedure to obtain the “best” achievable
performance.

2. METHOD: BASIC IDEAS

2.1 Preliminary definitions

In this work we consider linear multivariable discrete
time-invariant systems in the form:

xk+1 = Axk + Buk

yk = Cxk + ek ,
(1)

in which x ∈ Rn is the state, u ∈ Rm is the input, y ∈
Rm is the output, e ∈ Rm is white noise, (A,B, C)
have appropriate dimensions, the pair (A,C) is ob-
servable and the pair (A,B) is controllable, and the
following condition is satisfied:

rank
[
I −A −B

C 0

]
= n + m . (2)

The process (1) is assumed to be controlled by
a decentralized multivariable proportional-integral-
derivative (PID) control systems in the form:

uk = KP εk + KI

k∑
j=0

εj + KD(εk − εk−1) , (3)

in which KP , KI , KD are square diagonal matrices of
dimension m×m and ε ∈ Rm is the tracking error:

εk = r − yk , (4)

where r is the output setpoint.
It is assumed that outputs are appropriately scaled so
that an equal tracking error of different outputs can be
regarded as equivalent in terms of performance loss.
Similarly, it is assumed that inputs are appropriately
scaled so that an equal variation of different inputs can
be regarded as equivalent in terms of control effort.
Given a sequence of input and output data, collected in
closed loop from time k = 0 up to time k = N−1, the
following “cost function” is defined for each control
loop i = 1, 2, . . . ,m:

Φi =
N−1∑
k=0

(1′iεk)2 + λ(1′i∆uk)2 , (5)

in which 1i ∈ Rm is i−th column of the identity
matrix, ∆uk = uk − uk−1 is the input variation, and
λ is a positive scalar, defined by the user to weigh the
relative importance between output tracking error and
input usage. Consequently the “overall” cost function
is defined as:

Φ =
m∑

i=1

Φi =
N−1∑
k=0

ε′kεk + λ∆u′k∆uk . (6)

2.2 Closed-Loop Interaction Array (CLIA)

In order to quantify the effect of “perturbations” trans-
mitted from one loop to the other ones, we propose
to collect closed-loop data during setpoint changes
superimposed on each loop, separately, i.e. with un-
changed setpoints of all other loops. This is a com-
monly accepted industrial practice, used for instance
in preliminary identification tests for MPC projects.
A typical pattern requires the setpoint of the i−th
loop to be changed from 0 (i.e. the reference value)
to a positive value a, then from the corresponding
negative value −a, and finally back to 0 (while the
setpoints of all other loops are kept equal to 0). Let Φi

j

be the cost function defined in (5) for the j−th loop
during the time period involving setpoints changes in
the i−th loop, and let Φi be the corresponding overall
cost function defined in (6). With these definitions we
can now introduce the Closed-Loop Interaction Array
(CLIA) as follows:

Γ = {γji} =

{
Φi

j

Φi

}
. (7)

It is straightforward to see that the matrix Γ ∈ Rm×m

satisfies the following conditions:

γji ≥ 0,

m∑
j=1

γji = 1 . (8)

It is clear from its definition that the ideal situation
from an interaction point of view is when Γ is equal (or
close) to the identity matrix. In practice, instead, the
matrix Γ may be significantly different from the iden-
tity matrix, thus showing relevant interactions among
the control loops, especially when a decentralized con-
troller is adopted.

2.3 Benchmark controller definition

In order to evaluate how far the current controller’s
performance is from the least interacting situation,
we propose to define a “benchmark” controller the
solution to the following optimization problem:

min
u0,u1,...

∞∑
k=0

ε′kεk + λ∆u′k∆uk (9a)

subject to:
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x0 = 0, u−1 = 0 (9b)
xk+1 = Axk + Buk (9c)

εk = r − Cxk . (9d)

In order to solve problem (9) we preliminary make two
assumptions, which will be removed later on, namely:
(i) the full state of the system x is measurable, (ii)
the system matrices (A,B, C) are known. First we
evaluate the steady-state targets for state and input as
the solution of following linear square system:[

I −A −B
C 0

] [
x̄
ū

]
=
[
0
r

]
, (10)

to obtain
[
x̄
ū

]
= Mr (with M trivially defined),

and we introduce the following augmented state and
decision variable:

wk =
[

xk − x̄
uk−1 − ū

]
, vk = ∆uk . (11)

Next, we rewrite the problem (9) in a standard Linear
Quadratic Regulation (LQR) form:

min
v0,v1,...

∞∑
k=0

w′kQwk + v′kRvk s.t. (12a)

wk+1 = Âwk + B̂vk , (12b)

where the matrices Q,R, Â, B̂ are defined as follows:

Q =
[
C ′C 0

0 0

]
, R = λI,

Â =
[
A B
0 I

]
, B̂ =

[
B
I

]
. (13)

Hence, the solution of (12) is [see e.g. (Kwakernaak
and Sivan, 1972)]:

vk = Kwk = −(R + B̂′ΠB̂)−1B̂′ΠÂwk , (14)

in which Π is the unique stabilizing solution of the
following Riccati equation:

Π = Q+Â′ΠÂ−Â′ΠB̂(R+B̂′ΠB̂)−1B̂′ΠÂ , (15)

and, therefore, the optimal state feedback control law
solution to (9) is given by:

uk = uk−1 + Kwk = uk−1+
K1(xk − x̄) + K2(uk−1 − ū) , (16)

where K1 ∈ Rm×n and K2 ∈ Rm×m are trivially
defined.
By simulating the same pattern of setpoint changes,
we compute the cost associated to each “loop” during
setpoint changes on the i−th loop, denoted with Φ̄i

j , an
overall cost, denoted with Φ̄i, then we build the “opti-
mal” CLIA, denoted as Γ̄ = {γji}. Notice that, in gen-
eral, the optimal cost function for a setpoint change r
can be computed analytically as Φ̄ = r′M ′ΠMr.

2.4 Decentralized controller performance evaluation

The performance of the decentralized controller can
be now assessed in terms of global (i.e. multivariable)

cost function during the pattern of setpoint changes by
defining the Controller Suboptimality Index (CSI):

σ =
1
m

(
m∑

i=1

Φi

Φ̄i

)
− 1 . (17)

We propose the following “grades” for evaluation of
the overall performance:
• if σ ≤ 0.25, suboptimality is irrelevant;
• if 0.25 < σ ≤ 1.0, suboptimality is moderate;
• if 1.0 < σ, suboptimality is significant.

Since CSI does not explain directly which closed-
loop interactions are more relevant, we can compute
the difference between the off-diagonal elements of
CLIA and the corresponding elements of the “opti-
mal” CLIA, i.e.

δji = γji − γ̄ji, j 6= i , (18)

and propose the following “grades” of interaction
toward the j−th loop during a setpoint change in the
i−th loop:
• if δji < 0.05, interaction is irrelevant;
• if 0.05 ≤ δji < 0.20, interaction is moderate;
• if 0.20 ≤ δji ≤ 1, interaction is significant.

It is clear that the proposed grades, although derived
from extensive simulations, are somewhat arbitrary
and one may consider different grades specifically
suited for each application.

2.5 Decentralized controller retuning

If the performance of the multivariable decentralized
controller is regarded as unsatisfactory, we can try to
modify the controller’s tuning parameters. We propose
to compute the new tuning parameters from the solu-
tion of an optimization problem in which the overall
cost function is minimized, as detailed. Let θ ∈ R3m

be a vector containing the diagonal elements of the
controller matrices KP , KI , KD. Next, let Φ be over-
all closed-loop cost function defined over an infinite
horizon, i.e. Φ =

∑∞
k=0 ε′kεk + λ∆u′k∆uk, associ-

ated to a generic setpoint change vector r, when the
controller parameters are given in θ, and let Φ̄ be
the corresponding “optimal” cost function achieved by
the benchmark controller. With these definitions, the
“optimal” decentralized controller tuning parameters
are obtained from the following optimization problem:

θ∗ = argmin
θ

Φ
Φ̄
− 1, s.t. (9b)–(9d) and (19a)

θmin ≤ θ ≤ θmax , (19b)

in which the bounds θmin, θmax are defined by the
user. The closed-loop evolution of the process model
controlled by the multivariable decentralized con-
troller can be written by introducing the augmented
state and output: Xk =

[
x′k I ′k−1 ε′k−1 ε′k−2

]′
, Yk =[

ε′k ∆u′k
]′

, as follows:
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Xk+1 = AXk + Br

Yk = CXk +Dr ,
(20)

in which

A =


A−BKT C BKI −BKD 0

−C I 0 0
−C 0 0 0
0 0 I 0

 B =


BKT

I
I
0


C =

[
−C 0 0 0

−KT C 0 −KP − 2KD KD

]
D =

[
I

KT

]
and KT = KP + KI + KD. We can now write

Φ =
∞∑

k=0

Y ′kQYk , (21)

where Q =
[
I 0
0 λI

]
. After some algebraic manipula-

tions (omitted in the sake of space) it we can see that:

Φ = r′M′PMr (22)

in which M = (I − A)−1B and P is solution to the
Lyapunov equation:

P = C′QC +A′PA . (23)

It is important to point out that the solution to (19)
depends on the setpoint vector r, because the consid-
ered controller is decentralized and with fixed (PID)
structure, while the optimal multivariable controller
defined as a benchmark is independent of the setpoint
vector. Clearly, one can compute the optimal con-
troller parameters for the most frequent “directions”
of the setpoint, or simply for the m unitary directions,
1i (i = 1, . . . ,m). According to this latter choice we
rewrite (19) as (recall that Φ̄ = r′M ′ΠMr):

θ∗ = argmin
θ

m∑
i=1

{M′PM}ii

{M ′ΠM}ii
, s.t. (19b) , (24)

which can be solved by means of constrained nonlin-
ear optimization routines.

3. METHOD: COMPLEMENTS

The procedure outlined in the previous section can be
used in a straightforward way at a design stage, when
a process model is known, to evaluate the suitability of
decentralized PID control systems against a multivari-
able alternative. In the framework of CLPM, instead,
when the process model is not known or changes with
the operating conditions and only input/output data
are available, the two preliminary assumptions con-
sidered in the benchmark controller definition can be
removed, as discussed in the sequel.

3.1 Output feedback and noise

Since the decentralized control system is an output
feedback controller, a fairer comparison can be made
against an output feedback controller that solves (9).
Moreover, during the simulation of the benchmark

controller response it may be appropriate to add nor-
mally distributed noise to the process output.
As it is standard in LQ control (Kwakernaak and
Sivan, 1972, Ch.5,Sec.6.6) we make use of an ob-
server to obtain an estimate of the state vector from
measurements of the output vector and then apply the
optimal state feedback control law (16) to this esti-
mate. More in detail, let x̂k denote an estimate of xk

computed at time k − 1, and let yk be the measured
output. We now define the control input at time k as:

uk = uk−1 +K1(x̂k− x̄)+K2(uk−1− ū) , (25)

and then compute the estimate of the state for the next
sampling time as:

x̂k+1 = Ax̂k + Buk + L(yk − Cx̂k) , (26)

in which L ∈ Rn×m is a constant matrix chosen such
that A− LC has all eigenvalues inside the unit disk.

3.2 Subspace model identification

Since in general the process model is not known we
propose to use a Subspace IDentification (SID) algo-
rithm to obtain a model necessary to build the bench-
mark controller and evaluate the “optimal” perfor-
mance. The identification algorithm is a variant of the
closed-loop “projection” method proposed in (Huang
et al., 2005), and is applied to closed-loop data col-
lected to evaluate the performance of the decentralized
controller.

3.2.1. Data projection. Given a positive integer `,
assumed to satisfy ` > n, let the vector of “future”
outputs ȳk =

[
y′k y′k+1 · · · y′k+`−1

]′
and similar

straightforward definitions are given for vectors of
future inputs and noise, denoted with ūk and ēk. From
the model (1), we can obtain:

ȳk = O`xk + H`ūk + ēk , (27)

in which O` is the extended observability matrix, H`

is a lower block-triangular Toeplitz matrix (omitted
in the sake of space). Next, we write (27) for k =
`, . . . , ` + M − 1:

Yf = O`X + H`Uf + Ef , (28)

where Yf , X , Uf , Ef are constructed just placing
side by side vectors ȳk, xk, ūk and ēk respectively,
for M sampling times. Now, post-multiplying both
sides of (28) by an appropriate matrix, W ′, such
that limM→∞

1
M EfW ′ = 0, we can rewrite (28) as

follows: [
I −H`

]
ZfW ′ = O`XW ′ , (29)

in which Zf = [Y ′f U ′f ]′. Since the data are collected
in closed loop, a possible choice to avoid problems of
correlation of W ′ with the future noise matrix is to
choose: ZCL =

[
R′f Z ′p

]′
, in which Rf is the matrix

of future setpoints, defined similarly to Yf , and Zp is
defined as Zf but with data shifted ` times in the past.

190



-1.5

-1

-0.5

0

0.5

1

1.5

0 500 1000 1500 2000

O
ut

pu
ts

Sample instant

y1

y2

y3

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

In
pu

ts

Sample instant

u1

u2

u3

Fig. 1. Closed-loop simulation results with decentral-
ized controller (original tuning)

3.2.2. Recovering model matrices. In order to ob-
tain O`, we can pre-multiply (29) by a matrix O⊥`
orthogonal to O`, i.e. such that O⊥` O` = 0, and obtain

O⊥`
[
I −H`

]
ZfW ′ = 0 . (30)

Let Z = ZfW ′, it is clear that O⊥`
[
I −H`

]
= Z⊥

and hence it is necessary to compute Z⊥. This can be
done performing an SVD of Z:

Z =
[
U1 U2

] [S1 0
0 0

] [
V ′1
V ′2

]
, (31)

in which the dimension of the square diagonal matrix
S1, i.e. the rank of Z, should be m` + n (Wang and
Qin, 2002, Lemma 1). In practice, however, the rank of
Z may be different from m` + n because of the noise.
Hence, the dimension of S1, and consequently the
system’s order n, should be obtained from the singular
values, using e.g. an Akaike Information Criterion as
in (Wang and Qin, 2002) or a heuristic PCA approach
as described in (Micchi and Pannocchia, 2006). Next,
from (31) it can be seen that (30) is satisfied if:

O⊥`
[
I −H`

]
= TU ′2 , (32)

where T is a nonsingular transformation matrix of
dimension m`− n. Finally, by partitioning:

TU ′2 =
[
P ′1 P ′2

]
, (33)

in which P1 ∈ Rm`×(m`−n), it is easy to see that:

P ′1O` = 0, −P ′1H` = P ′2 , (34)

which can be readily solved to find estimates of O` and
H`. Once the estimate of O` is computed, it is possible
to recover an estimate of A and C simply observing
that (in a MATLAB notation)

C = O`(1 : m, :) (35a)
O`(1 : (`− 1)m, :)A = O`(m + 1 : m`, :) , (35b)

and solving equation (35b) for A in least square sense.
The original method (Wang and Qin, 2002; Huang
et al., 2005) computes B from H`, which is also
obtained from (29). Here, instead, we propose to solve
(34) directly in terms of B enforcing causality. In
particular we exploit the structure of H` (linear in B)
and rewrite the second equation in (34) as:

M1B = M2 , (36)

with M1 and M2 suitably defined. Clearly (36) is
solved for B in a least-square sense.

4. ILLUSTRATIVE EXAMPLE

4.1 Process and controller

As an example we consider the Shell Control Problem,
whose process transfer function is given below:

G(s) =


4.5e−27s

50s + 1
1.77e−28s

60s + 1
5.88e−27s

50s + 1
5.39e−18s

50s + 1
5.62e−14s

60s + 1
6.9e−15s

50s + 1
4.38e−20s

33s + 1
4.42e−22s

44s + 1
7.2

19s + 1

 ,

(37)
and the sampling time is Ts = 4. A normally dis-
tributed output noise with standard deviation of 0.01
is added to each output. A decentralized control sys-
tem of PI type is considered (KD = 0) in which
the elements of KP , KI are obtained from the SIMC
rules (Skogestad, 2003) applied to the corresponding
diagonal elements of G(s) (including Ts/2 as addi-
tional delay due too the sampling).

4.2 Performance evaluation and controller retuning

We consider a pattern of setpoint changes on each
loop (with setpoints of the other loops kept at 0):
ri = 1 for 250 sampling times, followed by ri =
−1 for 250 sampling times, and finally ri = 0 for
250 sampling times. Closed-loop outputs and inputs
are reported in Figure 1. Next, by means of the SID
algorithm discussed in the previous section we obtain
a process model (in state-space form, with n = 28).
By choosing a steady-state Kalman filter as observer
gain, tuned with state and output noise covariance
of 10−4, we build an output feedback LQ controller
(using λ = 1.0). Thus, for the current decentralized
controller the following CSI and CLIA are evaluated:

σ = 7.19, Γ =

0.834 0.509 0.808
0.160 0.480 0.108
0.006 0.011 0.084

 , (38)

while for the “optimal” controller (σ = 0), CLIA is:

Γ̄ =

0.958 0.026 0.054
0.032 0.965 0.047
0.010 0.009 0.899

 , (39)
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Table 1. Decentralized controller tuning pa-
rameters (original and optimized)

Case Gain Integral time
# 1 # 2 # 3 # 1 # 2 # 3

Original 0.192 0.334 0.660 50.0 60.0 16.0
Optimized 0.176 0.524 0.514 10.0 89.4 25.9
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Fig. 2. Closed-loop simulation results with decentral-
ized controller (optimized tuning)

Finally, we apply the retuning procedure outlined in
the previous section, and the obtained tuning param-
eters are reported in Table 1 along with the original
ones. Closed-loop results obtained with the retuned
decentralized controller are reported in Figure 2. The
corresponding performance measures are:

σ = 1.45, Γ =

0.528 0.189 0.389
0.439 0.749 0.274
0.033 0.062 0.337

 . (40)

4.3 Discussion

The results presented show that the plant controlled by
the original decentralized controller suffer from sig-
nificant interactions especially towards the first con-
trol loop. In particular when a setpoint change occurs
in the third loop, relevant perturbations are shown in
the first loop (δ12 = γ12− γ̄12 = 0.483, δ13 = 0.754).
As a result, the overall performance is significantly
suboptimal (σ = 7.2). On the other hand, irrelevant
interactions are shown in the third loop when set-
point changes occur in other loops (γ31 = 0.006,
γ32 = 0.011). Notice that results of the optimal con-
troller clarify that almost “perfect” decoupling among
the loops is achievable if an appropriate multivariable
controller is adopted (γ̄ii are at least 0.9). The opti-
mal “picture” shown by Γ̄ is measure of the “true”
degree of interactions, to be regarded as an intrinsic

process property. While it is correct to claim that the
actual performance depends on both the process and
the controlled used, in general it is not appropriate to
discuss whether a process is interacting or not without
specifying the controller used. Finally, the proposed
retuning procedure is able to improve relevantly the
overall performance of the decentralized controller
(σ = 1.45), although the performance is still far from
that of the multivariable benchmark controller.

5. CONCLUSIONS

In the present paper we proposed a new methodology
for performance evaluation of decentralized multivari-
able PID control systems, to be used at a design stage
or for closed-loop monitoring. The main point is to de-
fine a benchmark controller against which the perfor-
mance of the current controller is compared. This al-
lows us to quantify an optimal performance and a min-
imum degree of interaction that should be regarded as
an intrinsic process property. An overall performance
index, the Controller Suboptimality Index, is proposed
whose computation is based on closed-loop data col-
lected during setpoint changes superimposed on each
loop, separately. Furthermore, a Closed-Loop Interac-
tion Matrix is computed to quantify clearly the inter-
actions among loops. Finally, we proposed a retuning
procedure aimed at finding the tuning parameters that
guarantee the “best” overall performance achievable
with a decentralized PID controller. When the process
model required for the definition of the benchmark
controller is not known, we proposed using a multi-
variable subspace identification procedure, based on
the closed-loop data collected.
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