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Abstract: We address the problem of real-time monitoring of products’ properties
from spectroscopic measurements. Spectra are used as inputs for soft-sensors that
estimate outputs difficult to measure on-line. To overcome the issues associated
to calibrating such models from high-dimensional inputs, we propose to select the
relevant inputs emerging from the topological structure of the data. The approach
is independent on the estimation model to be embedded in the sensor. Being
based on the original spectral features, the models retain the interpretability of
the underlying system. The application of the method is illustrated on two cases
from refining and pharmaceutical industry. Copyright c© 2007 IFAC
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1. INTRODUCTION

Real-time monitoring has become an essential
component of modern process industry for opti-
mizing the production toward high-quality prod-
ucts while reducing operating costs. The tools
of on-line analytical chemistry, and specifically
spectroscopy, fulfill the necessary requirements for
real-time analysis of key chemical and physical
properties in a wide range of materials.

The principle underlying process monitoring by
Near-Infrared (NIR) spectroscopy is the existence
of a relationship between the light’s absorbance
spectrum of a given specimen and the property
of interest. The relationship can be reconstructed
by calibrating specific data-driven models, with-
out an explicit regard to first-principle criteria.
The resulting models are efficiently used as soft-
sensors to estimate the key property from the
measured spectrum (Workman, 1999). However,
the problem of estimating the property (the out-

put variable) is defined from high-dimensional and
inherently redundant inputs (the spectrum). Fur-
thermore, it is not unusual to calibrate models on
a number of samples that is radically smaller than
the number of input candidates. Operating in such
a condition (Donoho, 2000), seldom encountered
in other contexts, may lead to ill-posed estimation
settings.

To address this problem, two approaches are
commonly used. One standard solution is to
rely on full-spectrum methods for dimension re-
duction coupled with regression: Principal Com-
ponents Regression (PCR) and Partial Least-
Squares (PLS) are reference models (Geladi,
2002). The natural refinement of such an approach
is to perform a preliminary selection of relevant
spectral ranges (Nadler and Coifman, 2005). The
alternative solution consists of selecting, among
all spectral variables, only those inputs that truly
contribute to a correct estimation of the output.
The approach is either based on model properties
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(Benoudjit et al., 2004), or on relevance indexes
(Rossi et al., 2006). Thus, variable selection is
the limit extension of range selection where the
interpretability of the system can be maintained.

In this study, variable selection is approached by
exploiting the metric structure of the spectral
data, leading to a method that identifies only
the inputs with a topology that best matches the
output’s. The topology-preserving modeling of the
data is carried out with the Self-Organizing Map
(SOM) where, the relevance of the inputs is mea-
sured from Unified-distance matrices (U-matrix).
Because designed on the original spectral inputs,
the resulting soft-sensors retain a usefull inter-
pretability of the underlying system. Moreover,
the approach is model-independent; in fact, once
the variables are selected any estimation technique
can be used; the Least-Squares Support-Vector
Machine (LS-SVM) is here preferred. The applica-
tion of the method is discussed on two cases from
the refining and pharmaceutical industry.

2. METHOD AND ALGORITHMS

The problem of monitoring product properties
from NIR spectra can be reformulated within
the context of variable selection and associated
function estimation. That is, given observations
{xi, yi}

N
i=1 - where xi = [xi1, . . . , xid]

> and yi

are the inputs (on-line spectrum) and output (off-
line analysis) variables for the i−th observation,
respectively - the task consists of modeling the
underlying functionality y = f(x) that generated
the observations. Because of the high dimension-
ality of x and the small number N of samples,
it is appropriate to operate in a reduced data
space whose dimensionality is circumscribed by
the intrinsic complexity of the observed system.
Formally, being x ∈ R

d the given set of input
variables, it is necessary to select a subset x̌ ∈ R

s,
with s ¿ d, that builds the best model for f
(Guyon and Elisseeff, 2003).

Here, a two-stage method is proposed:

(1) the first stage models the input and out-
put observations onto a Self-Organizing Map
where the topological structure of the data is
preserved;

(2) the second stage investigates how the out-
put’s topology is related to the topology of
the inputs. The inputs that best match the
topology of the output are selected as rele-
vant.

Once the subset x̌ of inputs is selected, any model
of the functionality f can be calibrated and used
to predict the output y.

2.1 Topology-preserving mappings using the SOM

The Self-Organizing Map, SOM (Kohonen, 2001),
is an adaptive algorithm to formulate the vector-
quantization paradigm. In the following, the es-
sential properties of the SOM algorithm are briefly
reported.

The basic SOM consists of a low-dimensional
(typically, 2D) regular array of M nodes where
a parameter vector ml ∈ R

n is associated with
every node l. Each parameter acts as an adaptive
model vector for the observation zi ∈ R

n (in the
addressed context of spectroscopy, zi = [xi; yi]
and n = d + 1). During the computation of the
SOM, the observations are mapped into the array
of nodes and the parameters of the model vectors
adapted according to the rule

ml(t + i) = ml(t) + hl,c(zi)[zi(t) − ml(t)], (1)

where t is the discrete-time coordinate of the
mapping step. The map is computed recursively
for each observation. The scalar multiplier hl,c(zi)

in Equation 1 is a neighborhood kernel that, if
chosen in its Gaussian form, acts as a smoothing
function centered around the Best Matching Unit
(i.e., the model vector mc that best matches with
the observation vector zi, BMU); that is,

hl,c(zi) = α(t) exp
(

−
||rl − rc||2

2σ2(t)

)

, (2)

with σ(t) denoting the monotonically decreasing
width. The learning rate α(t) ∈ (0, 1) also de-
creases monotonically, so that: as hl,c(zi) → 0, the
models ml are adaptively updated toward their
asymptotic limits. The vectors rl and rc (both in
R

2, for the 2D map) represent the geometric loca-
tion of the nodes on the array. After performing a
parallel comparison algorithm, the subscript c (in
Equation 1 and 2) was assigned to the BMU. The
usual criterion for comparison is the Euclidean
metric || · ||; hence, mc(t) followed from

||zi(t) − mc(t)|| ≤ ||zi(t) − ml(t)||, ∀l. (3)

The resulting model vectors {ml}M
l=1 form a non-

linear submanifold in the data space where the
relevant topological and metric properties of the
observations are locally preserved. The SOM is to
be understood as an image of the original high-
dimensional data manifold as modelled onto a
low-dimensional space that displays complex data
structures with simple geometric relationships.

2.2 SOM-based measures of topological relevance

The Self-Organizing Map is employed to get-
ting a visual insight of the data and to starting
a preliminary investigation of potential relation-
ships between the component variables. From the
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SOM, dependencies can be either searched by
looking for similar patterns in identical positions
in component plane representations of the map
(Vesanto, 1999) or estimating the correlation co-
efficients proposed by Vesanto and Ahola (1999).

We propose to identify the relevant inputs by
exploiting the topology preserving properties of
the SOM of the input and output data, and we
suggest a relevance measure derived from the
assumed continuity of the unknown functionality
y = f(x). In this hypothesis, if two points xi and
x
′
i are close in the input space, it is expectable

that f(xi) and f(x′
i) are also close together in

the output space: i.e., f can be reconstructed
pointwise from the locally linear topology of the
neighborhoods. If the neighborhood continuity is
not satisfied, it can be either due to noise or
because the inputs are not relevant to predict the
output. In order to benefit from the noise-filtering
properties of the SOM, this general principle can
be explored from the models {ml}

M
l=1 of the map.

The standard approach to recover the topological
structure of the data from the SOM is to compute
the Unified-distance Matrix, U-matrix (Ultsch,
1993). The U-matrix U is built from distances
between each node and its neighbors. For the
sake of brevity, we only recall that: letting ml

the model associated to node l and N (l) its
neighborhood of K adjacent nodes k (K = 6, for
the usual hexagonal array), the entries of U are
calculated from:

• local pairwise distances, for all k:

d(l, k) = ||ml − mk||, (4)

• locally averaged distances in N (l):

d(l) =
1

K

∑

k∈N (l)

||ml − mk||. (5)

To represent the local topology of the component
variables, the corresponding U-matrices are cal-
culated independently along each direction of the
data space; that is, Uxj

(with j = 1, . . . , d) for the
input variables, and Uy for the output. The rele-
vance of the input xj to the output y is calculated
from the distance between the topologies

D(xj ; y) = ||Uxj
− Uy||F , (6)

where the matrix Frobenius metric ||·||F measures
the closeness between the U-matrices; the closer to
0 is the measure, the more relevant is the input for
reconstructing the output. In order to clearly rep-
resent relevance, the measure D(xj ; y) ∈ [0,+∞)
is preferably inverted and scaled into Ds(xj ; y) ∈
[0, 1]; so that, the higher is the relevance, the
closer to 1 is the measure. In principles, variable
selection is then simply performed by ranking the
inputs according to their relevance to the output,
and selecting a reduced but still representative
subset x̂ ∈ R

s.

However, this basic selection procedure applied to
spectroscopy data is intrinsically limited by the
continuous nature of the light’s wavelengths do-
main, regardless the employed relevance index as
long as it is continuous. In fact, it is intuitive that
absorbances measured at neighboring wavelengths
are characterized by a relevance to the output that
is very similar. Therefore, the selection of an input
xj that is found to be relevant to predicting y is
naturally accompanied by the selection of a broad
range of contiguous inputs also characterized by
high relevance, but redundant because embedding
a near-identical informative content.

In such context, the selection scheme proposed
by Corona and Lendasse (2005) can be easily
adapted to the topological measures of relevance
defined in Equation 6. Here, the modification of
the procedure summarizes as:

(1) calculate the full set of possible pairwise rel-
evances Ds = {Ds(xj ; y)}d

j=1 between each
input and the output;

(2) select the subset of inputs x̌ with a topology
that best matches the output’s:

x̌ = {x̌j∗ ⊂ x : j∗ = argmax
j

Ds(xj ; y)}s
j∗=1.

The procedure identifies only the inputs that are
associated to the local maxima of Ds, thus, rel-
evant to predict the output. In that sense, the
selection is optimal with respect to the problem
of predicting the output: in fact, among similar
inputs, only the maximally relevant ones are re-
tained and the neighboring redundances are dis-
carded. Being relevance to the output the only
supervising criterion for selection, the procedure
is still suboptimal with respect to problem of se-
lecting inputs that are also minimally redundant.
Nevertheless, the selected variables are implicitely
as much as possible dissimilar, because each pro-
totypes different subsets of inputs separated by
the local minima of Ds.

From the set x̌ of selected variables, any model
that estimates the functionality f can be cali-
brated and used to predict the output y. The
technique preferred in our applications is a de
facto standard in nonparametric function esti-
mation: the Least-Squares formulation of the
Support-Vector Machine, LS-SVM (Suykens et
al., 2002). The meta-paramaters of the LS-SVM
model are validated with standard resampling
methods that estimate the prediction accuracy
(Hastie et al., 2001); the Leave-One-Out Cross-
Validation (LOO-CV) is here adopted.

3. APPLICATIONS

The development and the application of the stud-
ied soft-sensors is illustrated with two actual mon-
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itoring tasks from the refining and the pharma-
ceutical industry. The selected applications are
referenced as benchmarks for variable selection
and interpretation, as well as prediction purposes.

3.1 Case Study I

The first application consists of estimating the
octane number in gasoline fuels. Real-time moni-
toring of such property is of fundamental impor-
tance for both the production and the blending
process of finished gasolines. The design of the
soft-sensor is discussed on a dataset provided by
Camo Inc., which is gratefully acknowledged. Al-
though in reduced amount, the data are collected
over a sufficient period of time considered to span
all the important variations in the production.
Being the relationship between the octane and
the spectrum distributed among different inputs,
the application is interesting because variable se-
lection cannot be easily performed through first-
principle interpretation of the spectra.

The absorbance spectra are acquired by means
of a spectrophotometer operating in the 1100 −
1550nm wavelengths’ range, in Figure 1(a). The
absorbance is measured on the basis of the NIR
transmission principle with a 2nm resolution. The
measurements of the octane number (in the 86−92
range) are evaluated in laboratory by reference
motor tests. Therefore, each sample consists of
the 226−channel spectrum of absorbances and the
corresponding octane number; that is, x ∈ R

d

with d = 226, and y ∈ R. The dataset consists
of 24 observations for model calibration and val-
idation and 9 observations for testing the final
model. The data were preprocessed by removing
the outliers and with mean-centering.

According to the method discussed in Section 2,
the 2D SOM of the input and output observations
in the calibration set was computed. The map
consists of a hexagonal array of nodes initialized in
the space spanned by the eigenvectors correspond-
ing to the 2 largest eigenvalues of the covariance
matrix of the data. As usual, the ratio between
these eigenvalues was also used to calculate the
size (5 × 5 nodes) of the SOM. On the map, the
set of topological relevances Ds = Ds(xj ; y)}d

j=1

between each input-output pair was calculated
and the subset x̌ = {x̌j∗}s

j∗=1 of relevant inputs
was selected, s = 6. Being the 6 inputs maximally
relevant, they are identified by the local maxima
of Ds, in Figure1(b).

x̌1 x̌2 x̌3 x̌4 x̌5 x̌6

[nm] 1146 1214 1366 1394 1416 1518

Table 1. Case Study I: the selected in-
puts and associated wavelengths.
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Fig. 1. Case Study I: (a) a selection of input spec-
tra; (b) the topological relevances between
the inputs and the output and the selected
inputs (dashed vertical lines).

The set of selected inputs (Table 1) is in agree-
ment with the chemical model explaining the in-
fluence for the chemical groups on the octane
number (Kelly and Callis, 1990). The analysed
spectra show the typical overlapped absorbance
bands arising from different hydrocarbon func-
tional groups and reflect the samples’ composi-
tion. The major absorbance features in the ex-
perimental region are usually assigned to the 2nd

overtone (1100−1300nm) and to the combination
bands (1300 − 1550nm) of the C-H vibrations. In
details, the aromatic bonds at ∼ 1150nm (x̌1) are
related to an increase in octane number. Con-
versely, the methylene bonds at ∼ 1220nm (x̌2)
indicate the presence of linear hydrocarbons which
are responsible for a reduction in the gasoline
quality. The methyl bonds at ∼ 1200nm indicate a
larger amount of branched hydrocarbon although
the absorbance is also influenced by the amount of
linear paraffin: in fact, its effect on octane is not
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readily explained and the contribution, usually,
varies with the gasoline type. Actually, this occurs
with the present spectra in which, even if the rel-
evance Ds shows an inflection at 1200nm, the ab-
sorbance does not correspond to a local maximum
and, thus, the associated input is not selected.
By the same token, the effect of the combina-
tion bands for methylene (∼ 1395/1416nm), and
methyl (∼ 1360/1345nm) on octane mimics what
observed in the short-wavelength range. With this
respect, the methylene absorbance wavelengths
are correctly identified (x̌4 and x̌5), while x̌3 ac-
counts for the 1st methyl band. As already noticed
above, again the 2nd methyl band is only partially
recovered by an inflection in Ds. As for variable
x̌6, no spectral features are readily assignable and
its selection can be ascribed to baseline effects.

Finally, the LS-SVM was calibrated to model the
functionality y = f(x) from x̌ and its meta-
parameters validated with LOO-CV. The predic-
tion accuracy of the model is evaluated in terms
of Root Mean Squared Error on the independent
set of testing observations (RMSET); in Table 2,
the result is compared to the standard calibration
method used in spectroscopy, the full-spectrum
PLS. The number of latent variables in the PLS
model was also selected with LOO-CV.

Number of Variables RMSET

LS-SVM 6 (Original) 0.2642
PLS 4 (Latent) 0.2760

Table 2. Case Study I: a comparison
between prediction results.

From Table 2, it is possible to notice that the LS-
SVM gives prediction results that are comparable
to the standard PLS model. More importantly,
the method is capable to select only those inputs
carrying important information, thus, leading to
a parsimonious and yet accurate soft-sensor.

3.2 Case Study II

The second application consists of estimating
the active substance content in pharmaceutical
tablets. The problem is discussed in details by
Dyrby et al. (2002), which are gratefully aknowl-
edged for providing the data. The case is interest-
ing because the identification of the inputs associ-
ated to the active substance can be prevented by
the superposition of interfering artifacts.

The spectra are acquired in the 4000−14000cm−1

wavenumbers’ range (700 − 2500nm) with a res-
olution of 16cm−1; however, the absorbances are
available only for the 7400 − 10500cm−1 interval,
in Figure 2(a). The content of active substance (in
the 5.6− 8.0%w/w range) is evaluated by the ref-
erence High Performance Liquid Chromatography
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Fig. 2. Case Study II: (a) a selection of input spec-
tra; (b) the topological relevances between
the inputs and the output and the selected
inputs (dashed vertical lines).

method. Each sample consists of a 404−channel
spectrum (x ∈ R

d, with d = 404) and the content
of active substance (y ∈ R). The dataset contains
120 observations divided in calibration/validation
and testing sets, with 60 samples each.

The calibration samples are mapped onto the
SOM and the relevances Ds between the input-
output pairs are calculated, in Figure2(b); only
6 inputs are identified as relevant to the output
(Table 3).

x̌1 x̌2 x̌3 x̌4 x̌5 x̌6

[cm−1] 7630 8216 8602 8818 9103 10137

Table 3. Case Study II: the selected
inputs and associated wavenumbers.

As reported by Dyrby et al. (2002), the NIR
spectrum of the active substance is highly over-
lapped with the excipients’ in the tablets, leaving
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just a single working region (around 8800cm−1)
relatively free of interference. In this region, the
peak corresponding to the active substance (C-H
aromatic bond at ∼ 8830cm−1), visible as the
shoulder of the broad-band of the primary excip-
ient (∼ 8200cm−1), yields the highest correlation
with the active substance’s concentration. As ex-
pected, the proposed method correctly identifies
the matching input (x̌4) as the global maximum
of Ds. In addition to that, the 5 accompanying
inputs, whose assignment to specific vibrational
bands is beyond the scope of this work, are also
selected in correspondence to the local maxima.
Anyways, it is worthwhile noting that the pro-
posed procedure is able to find a match with spe-
cific features in the active substance’s spectrum
while assigning a reduced relevance to secondary
inputs that are less informative.

In Table 4, the prediction accuracy of the LS-SVM
model used to reconstruct f from the 6 selected
inputs x̌ is reported for comparison with a full-
spectrum PLS. The results refer to the testing
observations.

Number of Variables RMSET

LS-SVM 6 (Original) 0.2373
PLS 4 (Latent) 0.2352

Table 4. Case Study II: a comparison
between prediction results.

Again, the proposed method is not only capable to
select the relevant inputs but shows that the asso-
ciated LS-SVM model gives a prediction accuracy
comparable to the standard PLS model.

4. CONCLUSION

In this paper, a method to address the problem
of variable selection to estimate quality indexes
in products from NIR spectra is proposed. The
selection method is based on input-output topo-
logical relevances. The reduced number of selected
variables leads to simple and robust estimation
models which are reliable and accurate process
analysis and monitoring tools.
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