
8th   International   IFAC   Symposium   on
Dynamics and Control of Process Systems

STABILITY OF SUPERVISED ADAPTIVE
CONTROL

Eduardo J. Dozal-Mejorada and B. Erik Ydstie

Chemical Engineering Department
Carnegie Mellon University
Pittsburgh, PA USA 15213

{edozal,ydstie}@andrew.cmu.edu

Abstract: This paper analyzes a new dual model supervised adaptive control
algorithm for stability and robustness. The algorithm addresses infinite drift
and parameter bursting by using one model as a supervisor and one as the
controller. The main contribution of this paper is the demonstration that the
dual model supervised adaptive control algorithm is robust with respect to small
model/plant mismatch and bounded disturbances. The theoretical results are
based on the Switching Lemma, Lyapunov stability, variance estimation and data
normalization. Copyright c©2007 IFAC.
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1. INTRODUCTION

Un-modeled dynamics along with unmeasured
disturbances typically cause two main types of
instabilities in adaptive control. In the first case,
the estimated parameters de-stabilize the closed-
loop system dynamics. This de-stabilization re-
sults in excitation in the input and output signals
in the form of bursting. The observed excitation
improves the signal-to-noise ratio which leads to
a readjustment of the parameter estimates. The
closed-loop stability is regained after the read-
justment. However, once the closed loop has been
stabilized the drifting resumes and the unstable
cycle restarts as can be seen in Figure (1). In the
second case, the estimated parameters drift with-
out foreseeable convergence. Unfortunately, this
phenomenon does not completely de-stabilize the
system signals. The end result is that the signals
are not excited and thus no estimated parameter
improvement occurs. Different approaches have
been proposed to address infinite drift and burst-
ing. References (Åström and Wittenmark, 1995),
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Fig. 1. Typical bursting behavior of a simple
system.

(Ioannou and Sun, 1996), (Mareels and Polder-
man, 1996) and (Middleton et al., 1988) present
some of the proposed approaches focusing on their
respective strengths and weaknesses. We briefly
review three of the more common methods.

Parameter projection onto a convex set was in-
troduced in (Egardt, 1979) to address infinite
parameter drift. One strength of this approach is
that it requires very limited a-priori system in-
formation. However, parameter estimation never
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stops, therefore bursting may persist. Parameter
leakage was introduced to drive the estimates to-
wards a specific family of reference values. Utiliz-
ing strong leakage leads to successful parameter
drift elimination, however the parameters become
biased towards the chosen references (Ioannou and
Kokotovic, 1983). Furthermore, adequate refer-
ence values must be chosen to accurately describe
the observed input-output plant behavior (Hovd
and Bitmead, 2006). Therefore leakage typically
degrades performance. The deadzone approach
works by stopping the parameter estimation once
the prediction error gets below a certain threshold
(Peterson and Narendra, 1982) and (Hill and Yd-
stie, 2004). The main advantage of this method
is that the parameters are forced to converge
thereby eliminating infinite drift. However, the
performance of this technique depends on cor-
rectly choosing the deadzone which may not be
easy or intuitive in practical applications.

In this paper we present stability and robust-
ness results of a proposed new approach (Dozal-
Mejorada et al., 2006). The method uses a dual
model approach to determine when to update the
control model parameters. In this respect the new
approach is related to the deadzone in that it
only allows estimation when new valuable data
becomes available.

The rest of the paper is organized as follows. In
Section 2 we present the problem statement. The
supervised adaptive control algorithm with dual
models is reviewed in Section 3. We present stabil-
ity and robustness results in Section 4. Lastly, the
Appendix contains detailed proofs of the technical
results.

2. PROBLEM DEFINITION

Consider the self tuning of the single-input single-
output (SISO) discrete-time system given by

A(q−1)y(t) = B(q−1)u(t) + γ(t) (1)

The measured output and manipulated input are
given by the signals {y(t), u(t)} respectively. The
effects of un-modeled dynamics and unknown dis-
turbances are captured in the signal γ(t). A(q−1)
and B(q−1) are polynomials in the backward shift
operator q−1

A(q−1) = 1 + a1q
−1 + · · · + anq−n (2)

B(q−1) = b0 + b1q
−1 + · · · + bmq−m (3)

Parameters of the A(q−1) and B(q−1) polynomials
are aligned into the parameter vector

θ� = (a1, . . . , an, b0, . . . , bm)T (4)

In certainty equivalence adaptive control the un-
known parameters of system (1) are replaced with
estimates
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Fig. 2. Block diagram showing the supervised
dual-model algorithm approach.

θ̂(t) = (â1(t), . . . , ân(t), b̂0(t), . . . , b̂m(t))T (5)

The estimated parameters are then used to design
a stabilizing feedback control law as if they were
the true ones. The main challenge consists of de-
signing parameter estimation and control laws so
that the closed loop adaptive system is stable and
its performance over time approaches that of the
controller based on the true system parameters. In
this paper we address the stability problem and
outline very briefly how we will address perfor-
mance related issues.

3. SUPERVISED ADAPTIVE CONTROL

A new method for supervised adaptive control has
been proposed (Dozal-Mejorada et al., 2006). The
algorithm is based on the idea of supervising the
closed-up behavior of the estimated control model.
Figure 2 shows the dual-model architecture under
consideration. The first model is used by the con-
troller to achieve the control objectives while the
second model is used to supervise the performance
of the control model and decide when to update
the control model estimates.

In order to present the supervisory approach and
its properties, consider the recursive least squares
(RLS) algorithm with variable forgetting factor
applied to the control and supervisor models
(Goodwin and Sin, 1984)

θ̂i(t) = FΘ�

{
θ̂i(t − 1)

}

+FΘ�

{
P (t − 1)iϕ(t − 1)ei(t)

λi(t)ri(t) + ϕ(t − 1)T Pi(t − 1)ϕ(t − 1)

}

(6)

Pi(t) = Ci(t) + Pi(t − 1)λi(t)−1

−
{

Pi(t − 1)ϕ(t − 1)ϕ(t − 1)T Pi(t − 1)
λi(t)ri(t) + ϕ(t − 1)T Pi(t − 1)ϕ(t − 1)

}
λi(t)−1

(7)

where i ∈ [C, S] represent the Control model and
Supervisor model respectively. λ(t) is the forget-
ting factor. FΘ� is an operator which projects the
estimates onto the convex set Θ�. We assume that
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θ� ∈ Θ� (Ydstie, 1989). Ci(t) are matrices chosen
to bound the covariance matrices so that

Pi,min ≤ Pi(t) ≤ Pi,max (8)

This approach is called condition number moni-
toring. Lastly, the regression vector ϕ(t) is com-
posed of past output and input signals

ϕ(t)T = [−y(t), . . . ,−y(t − n + 1),

u(t), . . . , u(t − m + 1)] (9)

The prediction errors for each model are given by

ei(t) = y(t) − ϕ(t − 1)T θ̂i(t − 1) (10)

Define the signals ri(t) to be estimates of the
variance of the disturbance sequences

ri(t) = σ2ri(t − 1) + (1 − σ2)ei(t)2 (11)

The time constant for the variance estimate is

σ = 1 − M−1
0 (12)

with M0 > 1 being the estimation memory length.
The normalization sequences are

ni(t) = λi(t)ri(t)+ϕ(t−1)T Pi(t−1)ϕ(t−1) (13)

The switch condition is the last component of the
algorithm. The switch determines when to update
the control model. Model performance evaluation
is based on the magnitudes of the corresponding
model prediction errors.

Switch =
{

1(ON) if ||eC(t)||2 ≥ ε||eS(t)||2
0(OFF ) else

(14)
The parameter ε > 0 determines when the control
model is updated. Typically the tolerance is set
so that ε ∈ [2, 5]. The smaller number leads to
more frequent updates. The performance of the
algorithm is adjusted by the parameter ε and
with leakage. Bursting can be avoided by choosing
ε ≥ 2 and choosing some appropriate leakage. Al-
gorithm performance degrades with increasing ε.
The Supervised Adaptive Control algorithm,
some performance related issues and the leakage is
further discussed in the companion paper (Dozal-
Mejorada et al., 2006).

4. STABILITY AND TECHNICAL RESULTS

In this section we present stability and robustness
results for the dual model supervised adaptive
control algorithm. First we characterize the class
of model mismatch and control design laws that
are handled by the approach. We demonstrate
convergence and boundedness of all signals by
constructing a comparison signal x(t) which mea-
sures all signals in the adaptive control problem.
Let x(t) be a comparison signal defined in the
following way

Time, t

R

t-N t t+N

a(t-N)

a(t+N)

a(t)

R

Signal
a(t)

Fig. 3. Nonnegative comparison signal a(t).

x(t) = σ2x(t − 1) + (1 − σ2)eC(t)2 (15)

with x(0) < ∞. Concerning the control design
and un-modeled dynamics we make the following
assumptions.

Assumption A1: Constants Kγ , Kϕ, kγ , and kϕ

exist so that

||ϕ(t − 1)||2 ≤ Kϕx(t − 1) + kϕ (16)

γ(t)2 ≤ Kγx(t − 1) + kγ (17)

The first inequality is satisfied provided we use a
controller which stabilizes the estimated model at
each sampling time. The second inequality states
that the external perturbations are bounded and
the un-modeled dynamics have bounded H∞
norm. The number Kγ can be related to this norm
(Kelly and Ydstie, 1997) and (Ydstie, 1992).

Main Result:

The supervised adaptive control algorithm intro-
duced above is stable in the sense that lim sup y(t)2

and lim supu(t)2 are bounded provided the the
parameter Kγ is sufficiently small.

Proof: The proof consists of four independent
steps. In the first step we introduce and review
Ydstie’s Switching Lemma (Ydstie, 1992). In the
second step we relate the comparison and normal-
ization sequences x(t) and rC(t) to each other.
The last two steps involve presenting Lyapunov
stability results for the single model and dual
model adaptive control cases.

4.1 The Switching Lemma

Introduce the indicator function A(t) ∈ [0, 1] and
consider the nonnegative signal a(t) updated so
that

a(t + 1) = A(t)[g1a(t) + K1]

+[1 − A(t)][g2a(t) + K2] (18)

where

0 < g2 < 1 < g1 < ∞ and K1, K2 ≥ 0 (19)

Figure 4 shows the signal architecture and Figure
3 depicts typical signal behavior for the given
architecture. Define the auxiliary variables
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Fig. 4. Signal architecture for the comparison
sequence.

u1 = ln
{
g1 + K1R

−1
}

u2 = − ln
{
g2 + K2R

−1
} (20)

Assume constants R and N exist so that

a(t − i) ≥ R ∀i = 0, 1, . . . , N (21)

implies that

1
N

t∑
i=t−N

A(i) = U <
u2

u1 + u2
(22)

Therefore, Lemma 1:

(1) a(t+1) ≤ max
{
R, e−δ(N+t)a(0)

}
g−N
2 where

δ > 0
(2) k2

1−g2
lim inf a(t) ≤ R and lim sup a(t) ≤

g−N
2 R

Proof: Given in (Ydstie, 1992).

4.2 Relationship of the Comparison Signals

Here we present two results. The first one relates
the normalization sequence rC(t) to x(t). The sec-
ond one relates the comparison sequence x(t) and
the normalization sequence nC(t) to the model
prediction error eC(t) and the Switching Lemma.

Lemma 2:

Krxc,min ≤ rC(t)
x(t)

≤ Krxc,max (23)

Proof: From the algorithm we recall expression
(11). Expand the definition of the normalization
sequence rC in time

rC(t) = σ2trC(0) + (1 − σ2)
t∑

i=1

{
σ2(t−i)eC(i)2

}

(24)
Examining (24) and (15) we see that

x(t) = σ2tx(0) + (1 − σ2)
t∑

i=1

{
σ2(t−i)eC(i)2

}

(25)
Then

rC(t)
x(t)

≤ 1 +
rC(0)
x(0)

(26)

Q.E.D.

Let A(t) be an indicator function so that

A(t) = 1 if x(t) ≥ σx(t − 1)

and A(t) = 0 zero otherwise.

Lemma 3:
1

1 + σ
A(t) ≤ eC(t)2

nC(t)
nC(t)
x(t)

(27)

Proof: Multiplying the A(t) indicator function
through expression (15)

A(t)
{
x(t) = σ2x(t − 1) + (1 − σ2)eC(t)2

}
(28)

Rearranging and multiplying top and bottom of
the RHS by nC(t)

A(t)
[
1 − σ2x(t − 1)

x(t)

]
= A(t)(1−σ2)

eC(t)2

nC(t)
nC(t)
x(t)
(29)

A(t) was defined so that x(t) ≥ σx(t − 1) if
A(t) = 1 we therefore get

(1 − σ)
(1 − σ)(1 + σ)

A(t) ≤ eC(t)2

nC(t)
nC(t)
x(t)

Q.E.D.

4.3 Single Model Lyapunov Stability

We now review some results for the single model
case. Define the parameter error

θ̃C(t) = θ�
C − θ̂C(t) (30)

and propose the Lyapunov candidate function

VC(t) = θ̃C(t)T PC(t)−1θ̃C(t) (31)

Then, Lemma 4:

VC(t) ≤ λC(0)VC(0)+
t∑

i=1

λC(i)
{

γ(i)2

rC(t)
− eC(t)2

nC(t)

}

(32)

Proof: See Appendix.

Lemma 5: There exist constants so that the
Switching Lemma applies to the supervisory
adaptive control approach and

1
1 + σ

t∑
t−N

A(i) ≤ U (33)

bounding x(t) and effectively bounding all system
signals.

Proof: See Appendix.

4.4 Dual Model Supervised Lyapunov Stability

The last step in the proof is to extend the single
model results to the dual model approach of
(Dozal-Mejorada et al., 2006).
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Lemma 6: Following Lemma 5, an extension for
the dual model states that there exist some con-
stants so that the Switching Lemma bounds x(t).

1
1 + σ

t∑
t−N

A(i) ≤ Udual (34)

Hence, effectively bounding all system signals.

Proof: See Appendix.

5. CONCLUSIONS

Un-modeled dynamics and unmeasured distur-
bances may cause adaptive controllers to experi-
ence instabilities such as infinite drift or bursting.
In this paper we prove stability of an algorithm
which has been shown to address these instabil-
ities using estimator supervision. The supervisor
decides when to update the controller by examin-
ing the model prediction errors. An update is per-
formed when there is new, valuable information
present. In this paper we have shown that the al-
gorithm tolerates small model/plant mismatches
and bounded disturbances. In a companion paper
we have presented simulation and experimental
results that show that bursting and drift is effec-
tively prevented.

6. APPENDIX

6.1 Proof of Lemma 4

Rewrite the parameter update law using the pa-
rameter error definition

θ̃C(t) = θ̃C(t−1)−PC(t−1)ϕ(t−1)eC(t)nC(t)−1

The Matrix Inversion Lemma (MIL) is given by

PC(t)−1 = λC(t)PC(t−1)−1+ϕ(t−1)ϕ(t−1)T rC(t)−1

Applying the MIL to the covariance matrix up-
date and combining with the parameter update
law

θ̃C(t) = θ̃C(t − 1) − PC(t)ϕ(t − 1)eC(t)rC(t)−1

We now substitute this expression twice onto the
proposed Lyapunov function

VC(t) =
[
θ̃C(t − 1) − PC(t)ϕ(t − 1)eC(t)rC(t)−1

]T

·PC(t)−1
[
θ̃C(t − 1) − PC(t)ϕ(t − 1)eC(t)rC(t)−1

]

Expanding

VC(t) = λC(t)VC(t − 1) + (θ̃C(t − 1)T ϕ(t − 1))2

−2ϕ(t − 1)T θ̃C(t − 1)eC(t)rC(t)−1

+ϕ(t − 1)T PC(t)ϕ(t − 1)eC(t)2rC(t)−2

Add and subtract eC(t)2rC(t)−1 and combine like
terms

VC(t) = λC(t)VC(t − 1) + (θ̃C(t − 1)T ϕ(t − 1)

−eC(t))2rC(t)−1

−
[
1 − ϕ(t − 1)T PC(t)ϕ(t − 1)

nC(t)

]
eC(t)2

rC(t)

Then

VC(t) ≤ λC(0)VC(0)+
t∑

i=1

λC(i)
{

γ(i)2

rC(t)
− eC(t)2

nC(t)

}

valid for λC,min ≤ λC(t) ≤ 1. Furthermore, since
the covariance matrix update is really given by
PC(t) + CC(t) as long as CC(t) ≥ 0 the result
holds. �

6.2 Proof of Lemma 5

Recall the relationship between the Switching
Lemma, eC(t) and x(t)

1
1 + σ

A(t) ≤ eC(t)2

nC(t)
nC(t)
x(t)

Examine the last term of the expression and
substitute the definition of nC(t)

nC(t)
x(t)

= λC(t)
rC(t)
x(t)

+
ϕ(t − 1)T PC(t − 1)ϕ(t − 1)

x(t)

Using Lemma 2, Assumption A1, and the facts
that λC,min ≤ λC(t) ≤ 1 and PC,min ≤ PC(t) ≤
PC,max

nC(t)
x(t)

≤ Krxc,max + Kϕσ−1PC,max +
kϕPC,max

x(t)

Since we assume ∃(N, R) so that x(t) ≥ R∀t ∈ [t−
N, t] then

nC(t)
x(t)

≤ C1

with

C1 = Krxc,max + Kϕσ−1PC,max + kϕPC,maxR−1

The Switching condition becomes

1
1 + σ

A(t) ≤ C1
eC(t)2

nC(t)

Multiplying top and bottom by λC(t)

1
1 + σ

A(t) ≤ C1

λC,min
λC(t)

eC(t)2

nC(t)

Substituting the result of Lemma 4

1
1 + σ

A(t) ≤ C1

λC,min

[
λC(t)VC(t − 1) − VC(t) +

γ(t)2

rC(t)

]

Using Assumption A2 the last term can be rewrit-
ten so that

γ(t)2

rC(t)
≤ Kγx(t − 1) + kγ

rC(t)
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Using Lemma 2 and x(t) ≥ R

γ(t)2

rC(t)
≤ Krxc,minKγ + kγ(Krxc,minR)−1

Then the overall expression becomes

1
1 + σ

A(t) ≤ C1

λC,min
[ λC(t)VC(t − 1) − VC(t)

+Krxc,minKγ + kγ(Krxc,minR)−1 ]

Summing from t − N to t

1
1 + σ

t∑
i=t−N

A(i) ≤ C1

λC,min
[VC(t − N)

+Krxc,minKγ + kγ(Krxc,minR)−1 ]

We arrive at our final result

1

1 + σ

t∑
i=t−N

A(i) ≤ U

where

U =
C1

λC,min
[ VC(t − N) + Krxc,minKγ

+kγ(Krxc,minR)−1 ]

which bounds the comparison signal x(t) as long
as Assumption A1 is satisfied. �

6.3 Proof of Lemma 6

The stability proof follows that of the single
model case with some very specific additions. Here
we introduce these modifications and provide an
outline for the proof. First define a new [0, 1]
indicator function so that

Δ(t) =

{
1 eC(t)2 ≥ εeS(t)2

0 eC(t)2 < εeS(t)2

The next step is to define a new comparison signal
which incorporates both prediction errors. Add
and subtract Δ(t)eC(t)2 to the original compari-
son signal

x(t) = σ2x(t − 1) + (1 − σ2)[Δ(t)eC(t)2

+(1 − Δ(t))eC(t)2]

Since Δ(t) = 1 only if eC(t)2 ≥ εeS(t)2 then
x(t) = σ2x(t − 1) + (1 − σ2)[Δ(t)eC(t)2 + (1 −
Δ(t))eC(t)2]

x(t) ≤ σ2x(t − 1) + (1 − σ2)[Δ(t)eC(t)2

+(1 − Δ(t))εeS(t)2]

The next step is to modify the Lyapunov candi-
date function to reflect the sporadic nature of the
update. Let

VC(t) = [1 − Δ(t)]VC(t − 1) + Δ(t) [λC(t)VC(t − 1)

−λC(t)
eC(t)2

nC(t)
+

γ(t)2

rC(t)
]

The rest of the proof follows exactly the single
model with the implementation of the appropri-
ate aforementioned definitions and invoking the
Switching Lemma

1

1 + σ

t∑
i=t−N

A(i) ≤ Δ(t)
eC(t)2

x(t)
+ (1 − Δ(t))ε

eS(t)2

x(t)

�

REFERENCES

Dozal-Mejorada, E.J., P. Thakker and B.E. Yd-
stie (2006). Supervised adaptive predictive
control using dual models. DYCOPS 2006-
Submitted.

Egardt, B. (1979). Stability of Adaptive Con-
trollers. Springer-Verlag. New York.

Goodwin, G.C. and K.S. Sin (1984). Adaptive
Filtering, Prediction and Control. Prentice
Hall. Englewood Cliffs, New Jersey.

Hill, J.H. and B.E. Ydstie (2004). Adaptive con-
trol with selective memory. Int. J. Adapt.
Control Signal Process. 18, 571–587.

Hovd, M. and R.R. Bitmead (2006). Directional
leakage and parameter drift. Int. J. Adapt.
Control Signal Process. 20, 27–39.

Ioannou, P.A. and J. Sun (1996). Robust Adaptive
Control. Prentice Hall.

Ioannou, P.A. and P.V. Kokotovic (1983). Adap-
tive Systems with Reduced Models. Springer.
Berlin, Germany.

Kelly, J.H. and B.E. Ydstie (1997). Adaptive
h∞ control with application to systems with
structural flexibility. IEEE Transactions on
Automatic Control 42(10), 1358–1369.

Mareels, I. and J.W. Polderman (1996). Adap-
tive Systems, An Introduction. Birkhauser.
Boston.
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