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Abstract: The problem of controlling exothermic continuous chemical reactors with
non-monotonic reaction rate and temperature measurement is addressed within a
dissipativity-passivity theoretical framework, yielding an output-feedback dynamic
controller made of a nonlinear passive state-feedback controller combined with a
nonlinear dissipative observer. The proposed approach is put in perspective with
previous nonlinear controllers and is illustrated with a representative example
through simulations. Copyright c©2007 IFAC
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1. INTRODUCTION

Continuous reactors with non-monotonic kinetic
rate play an important role in process engineer-
ing (Lapidus (1977); Elnashaie, et al. (1990)).
These reactors may exhibit strongly nonlinear
behavior, like steady-state multiplicity, limit cy-
cling and parametric sensitivity. Due to the non-
monotonicity of the reaction rate, the reactor
lacks global observability. The operation at a
steady-state with maximum reaction rate signifies
that the concentration is not locally observable
from a temperature measurement. From a local
control design viewpoint, this lack of observability
rises a problem: in spite of being able to control
the temperature, it is not possible to know if
the reactor concentration is in the isotonic or
antitonic branch of the reaction rate. This phe-
nomenon, known as indistinguishability, is well-
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known in nonlinear estimation theory (Hermann
and Krener (1977)). The reactor problem has
been tackled by choosing a nominal concentration
sufficiently below the one of the maximum rate
(Smets, et al. (2002)), so that the problem can
be locally treated. Nevertheless, it can be shown
that the system is detectable and so the system
state can be detected after some time from the
temperature measurement. This fact motivates
the question addressed in the present work, on
whether it is possible to non-locally (globally)
control a continuous reactor with non-monotonic
reaction rate about a prescribed open-loop unsta-
ble steady-state of maximum reaction rate. On
the other hand, in a recent control study for
an exothermic polymer reactor with monotonic
reaction rates, the combination of feedforward,
passivity and observability ideas yields an output
feedback cascade controller (Gonzalez and Alvarez
(2005)), but the monomer concentration was es-
timated with an open loop observer, resulting in
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an unduly slow convergence rate. This approach
was applied to the present reactor control prob-
lem, with one difference: a reduced order-EKF
was used to speed up the concentration recon-
struction rate (Diaz (2006)). However, the study
did not have a formal stability assessment, and,
above all, lacked a theoretical back-up in terms of
controllability and detectability properties. This
considerations motivate the present study.

In this paper, the problem of designing a mea-
surement driven control scheme that non-locally
(globally) stabilizes the non-monotonic rate re-
actor about a (open-loop unstable and locally
not observable) steady state of maximum reaction
rate is addressed. The resulting controller has
two parts that resemble industrial conventional
control components: (i) a proportional passive
controller that guarantees nominal stability, and
(ii) a dissipativity-based state observer with a
data assimilation mechanism based on a suitable
compromise between reconstruction rate and ro-
bustness. The closed loop stability is established
by verifying the fulfillment of a condition that
enables the application of a nonlinear separation
result. The proposed approach is tested with a
representative case example through numerical
simulations.

The paper is organized as follows. The problem
is formulated in Section 2, the related nonlinear
state-feedback (SF) is constructed in Section 3.
Section 4 presents the design of the observer
in open-loop as well as a discussion of some
observability aspects. In Section 5 it is shown, that
the combination of observer and control yields an
assurance of (non-local) stability using a nonlinear
separation principle. The control performance is
illustrated in a simulation study. Finally the paper
ends up with the Conclusions.

2. CONTROL PROBLEM

Consider a continuous chemical reactor with an
exothermic non-monotonic reaction. The volume
is kept constant with a level controller. Heat ex-
change is enabled via a cooling jacket, by manipu-
lating the rate of heat exchange between the jacket
and the surroundings. Since the secondary loop
can be designed with existing techniques (Alvarez-
Ramirez, et al. (2002); Gonzalez and Alvarez
(2005)), here we will circumscribe ourselves to the
primary temperature control component, in coor-
dination with a composition controller. From stan-
dard conservation arguments the reactor model is
given by (Lapidus (1977)):

Ṫ =βρ(c, T, p) + Θ(Te − T )− υ(T − Tj)
ċ =− ρ(c, T, p) + Θ(ce − c) (1)
y =T, zc = c, zT = T, dT = Te, dc = ce

Ω =
{

(c, T ) | ∂ρ(c, T, p)
∂c

, ρc(c, T, p) = 0
}

(2)

where c is the reactant dimensionless concentra-
tion, T is the reactor temperature, Tj is the jacket
temperature, Θ is the dilution rate, υ is the heat
transfer coefficient, and β is the adiabatic tem-
perature rise. The states are the concentration c
and the temperature T . The control inputs are
the dilution rate Θ and the jacket temperature
Tj . The regulated outputs (zc and zT ) are the
concentration c and the temperature T . The mea-
sured output (y) is the temperature T , meaning
that only one of the two regulated outputs is
known. The exogenous load disturbance inputs
(dT and dc) are the measured feed temperature
Te and the unmeasured feed concentration ce. The
strictly positive scalar function ρ(c, T, p) denotes
the dependency of the non-monotonic kinetic rate
on c, T and p (a parameter vector) and has a
maximum in the curve Ω (2) signifying that, at a
prescribed temperature T̄ , the pair (T̄ , p) uniquely
determines a concentration value c∗ where the
reaction rate is maximum.
The reactor must operate about a (possibly open
loop unstable) steady-state x̄ = (c̄, T̄ )T , according
to the algebraic equation pair

0 = βρ(c̄, T̄ , p) + Θ(T̄e − T̄ )− υ(T̄ − T̄j)

0 =−ρ(c̄, T̄ , p) + Θ(c̄e − c̄), ρc(c̄, T̄ , p) = 0 (3)

In vector notation, reactor (1) is written as follows

ẋ =f(x, d, u, p), y = cyx, cy = [1, 0], z = x,

x =[T, c]T , d = [Te, ce]T , u = [Θ, Tj ]

From standard arguments, it follows that: (i) at
x̄ the linear reactor approximation is controllable
but not locally observable, (ii) when x 6= x̄ the lo-
cal approximation is controllable and observable,
and (iii) except in the maximum argument, the re-
actor is nowhere globally instantaneously observ-
able (Alvarez (2000)) because, given (T, Ṫ , Tj , Te),
the equation ρ(c, T, p) = [Ṫ −Θ(Te − T )− υ(T −
Tj)]/β admits two concentration solutions (except
in its only injective point: the maximum), and this
in turn implies the existence of indistinguishable
motions. This central point and its implications
will be discussed in Section 4.

Technically speaking, our problem is: given a
prescribed (possibly open-loop unstable) steady-
state operation x̄ (3) (with maximum production
rate at T̄ , the prescribed nominal temperature),
design an observer-based feedback controller that,
driven by the measured output (y = T ) and input
(dT ), manipulates the dilution rate (Θ) and the
jacket temperature (Tj) so that the related closed-
loop system is stable.
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3. STATE-FEEDBACK CONTROL

From standard arguments in passive nonlinear
control, it follows that the reactor system (1)
has relative degrees RD = (1, 1) and the trivial
zero-dynamics {x̄}. Accordingly, the enforcement
of the closed-loop linear noninteractive regulation
error dynamics:

ėT = −κT eT , ėc = −κcec (4)

[et, ec]T , [T − T̄ , c− c̄]T

leads to the the nonlinear state-feedback passive
controller

Tjc =
1
ν

(−κT (T − T̄ )− βρ(c, T, p)+ (5)

+ νT −Θc(Te− T ))

Θc =
1

ce − c
(−κcec + ρ(c, T, p)) . (6)

In a practical situation, ce is sufficiently larger
than c, meaning that the closed-loop dynamics are
Lipschitz, and this in turn implies the nominal
exponential stability of the closed-loop reactor
about the prescribed critical point e = 0 (x = x̄).

4. STATE ESTIMATION

4.1 Globally Convergent Observer

Next, a globally convergent observer for (1)
is designed by imposing a dissipation property
upon the observer error dynamics. For the pur-
pose of hand, let us regard the representative
non-monotonic (catalytic) kinetics adapted from
(Baratti (1993))

ρ(c, T, p) =
cke−γ/T

(1 + σc)2
, ψ(c)Γ(T ), p = {γ, k, σ}.

Rewrite system (1) in the following form (compare
Moreno (2005))

ẋ =Az + Gψ(c)Γ(T ) + ϕ(y, Θ, Te, Tj)
y =Cx c = Hx (7)

where

A ,
[−Θ 0

0 −Θ

]
, G ,

[
β
−1

]
,

ϕ ,
[

ΘTe − ν(T − Tj)
Θce

]
,

C ,
[
1 0

]
, H ,

[
0 1

]
,

recall that a corresponding observer is given by
˙̂z =Aẑ + Gψ(ĉ + NT̃ )Γ(T ) + ϕ(y, Θ, Tj) + LT̃

T̂ =Cẑ, ĉ = Hẑ, T̃ , T̂ − T (8)

x̃ =[T̃ , c̃]T , [T̂ − T, ĉ− c]T ,

where L = [L1, L2]T and N are adjustable gains
and x̃ is the state observation error, and write the
related error dynamics

˙̃x =(A + LC)x̃ + G[ψ(ĉ + NT̃ )− ψ(c)]Γ(T ).

Φ(ζ, c)

− (HN , AL, G)

Fig. 1. Illustration of the structure of the obser-
vation error.

Next, the nonlinear function Φ(ζ, c) , ψ(c)−ψ(c+
ζ) is introduced and ζ , HN x̃ is defined, so that
the observation error dynamics acquires the form

˙̃x =ALx̃ + GΓ(T )ω
ω =− Φ(ζ, c), ζ = HN x̃, (9)

AL =A + LC, HN = H + NC.

This system is diagrammatically depicted in Fig.1:
a feedback connection of the linear subsystem
(HN , AL, G) with the nonlinear negative output-
feedback ω = −Φ(ζ, c). Figure 1 illustrates this
interpretation in a block diagram. From an ab-
stract energetic perspective, the linear part is sup-
plied by the nonlinear function through the input
ω = −Φ(ζ, c). On the other hand the nonlinear
part Φ(ζ, c) itself is supplied by the linear part
through the output ζ. Thus, if the nonlinear part
satisfies a dissipativity property and it can be
assured that the linear part mets a dissipativity
property that is compatible with it, in a suitable
sense, then it can be concluded that the stored
energy is dissipated until a point of minimal en-
ergy is reached. If this further holds uniformly
and globally, then the global uniform asymptotic
stability of x̃ = 0 is ensured (see Willems (1972)).
The enforcement of this coordinated dissipation
feature upon the error system (9) (choosing the
observer gains L1, L2 and N), determines a data
assimilation scheme with a suitable tradeoff be-
tween robustness and reconstruction rate. It has
to be mentioned, that this can be achieved, in
principle, following various approaches. The ap-
proach presented here permits a direct energetic
interpretation and thus offers a natural connection
with classical dissipativity theory. The approach
can be studied in more detail in (Moreno (2005)).
Next, the global stability issue is addressed within
the above mentioned dissipativity framework. For
the purpose of hand, the time-strethcing coordi-
nate transformation

dτ = Γ(T )dt

is introduced. This yields, that (9) is taken into
the form

d x̃

dτ
=ÃLx̃ + Gω

ω(ζ, c) =− Φ(ζ, c), ζ = HN x̃, (10)
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with

ÃL =
[

L̃1 0
L̃2 −Θ̃

]
,

where L̃1 , Γ(T )−1(L1−Θ), L̃2 , Γ(T )−1L2 and
Θ̃ , Γ(T )−1Θ. The nonlinearity ω(ζ, c) happens
to be included in the sector [K1, K2] = [−1, 1

27 ]
and thus satisfies a dissipativity property. This
is known as (Q,S,R)-dissipativity ((Q,S, R)-D),
with (Q,S, R) = (−1, 1

2 (K1 + K2),−K1K2) =
(−1,− 13

27 , 1
27 ). Note that this property can be

expressed in the form of the quadratic supply rate
(see Moreno (2005))

S(ζ, Φ) = [ζ Φ]
[

Q S

ST R

] [
ζ
Φ

]
≥ 0. (11)

An adequate property for the linear part is e.g.
the (−R, S,−Q)-strictly state dissipativity (SSD)
(see Moreno (2005)). The advantages of satisfying
these properties lead to the fulfillment of the
following

Proposition 1. Regard the observation error dy-
namics (10), where Φ is (Q,S, R)-D. There exist
a positive definite symmetric matrix P = PT > 0
and numbers ε > 0, N as well as L = [L1, L2]

T ,
so that the nonlinear matrix inequality
[

AT
LP + PAL + εP + HT

NRHN PG−HT
NS

GT P − SHN Q

]
≤ 0

(12)

is satisfied, or equivalently, the linear subsystem
(HN , AL, G) in (10) is (−R, S,−Q)-SSD for all
Θ ≥ δ > 0 and the error x̃ converges to x̃ = 0
in a global sense.

A proof of this proposition is given in (Moreno
(2005)), ensuring the existence of the storage func-
tion V(x̃) = x̃T Px̃, and its decrease along all pos-
sible motions due to the presence of the correction
terms with N and L. This enables us to identify
the storage function with a Lyapunov function,
and consequently the application of Lyapunov’s
second method to draw the stability result con-
sidering V̇ ≤ −εV.

Without going into the derivation details a pos-
sible solution to (12) is presented. For example,
consider

p2 =
αR

δ
, p1 =

(p2 + S)2

p2
, p3 =

p2 + S

β

ensuring the existence of ε = 2Θe−γ/T /k −R > 0
and P = PT > 0 given by

P =
[

p1 p3

p3 p2

]
, (13)

and the observer gains

N =
βp1 − p3

S

L1 =Θ− εp1 + 2L2k
−1eγ/T p3 −RN2 − q

2p1
ke−γ/T

L2 =e−γ/T

{
p3p1

2p1(p2p1 − p3)
(
εp1 −RN2 − q

)−

− p1

p2p1 − p3
(RN + (ε−Θ)p3)

}
.

This solution guarantees the global stability of
x̃ = 0 for all Θ ≥ δ > 0, which is a practically
reasonable restriction for the control input (the
dilution rate is sufficiently above a reasonably
small value). Moreover, saturation bounds can be
introduced to ensure the strict positivness of the
calculated input signal Θ̃.

4.2 Comments on motion indistinguishability

Given that the notion of nonlinear observability
is behind what can be achieved by a globally con-
vergent observer, some words on the observability
of the regarded process are in order.
Two trajectories x1(·), x2(·) of (1) are said to be
indistinguishable if they produce the same out-
put measurements, i.e. T1(·)(n) ≡ T2(·)(n) for all
n ∈ N representing the n-th derivative (Hermann
and Krener (1977)). The analysis of this condi-
tion for n = 1 directly yields that all motions
are pairwise indistinguishable with identical re-
action rates ρ(c1, T1, p) ≡ ρ(c2, T2, p). From the
enfacement of the above equivalence condition one
can analytically construct the so-called bad Input
functions that produce indistinguishable motions,
enabling the characterization of the reactor de-
tectability property (Ibarra Rojas et al. (2004)).
Such an analysis yields that: all indistinguishable
motions are detectable (at least for a nominal load
disturbance d). This rises the question on whether
the existence of indistinguishable motions can ef-
fect the performance of the control scheme. The
answer to this question is that it can, at least in an
open-loop application, in the sense of wrong esti-
mates (in the wrong reaction rate branch). On the
other hand, it is assured, that after a certain time,
determined by the plant’s dynamics, the estimate
converges near the actual concentration. Moreover
the existence of indistinguishable motions does
not allow the (at least formal) assignment of an
arbitrary convergence rate of the observer. Thus it
becomes clear, that – independently of the design
method – using an output injection in the ob-
server dynamics, there are a priori bounds for the
convergence rate. For the closed loop application
so far, by simulations in ”realistic” situations no
indistinguishable motions have been detected. Al-
though, we do not have a formal assessment yet, a
conjecture can be formulated here: the bad inputs
will be hardly present, especially if the interlaced
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Ax + ϕ

−
+

Aẑ + ϕ + LT̃

ρ(c, T, p)

ρ(ĉ, T, p)

x

ẑ → x

Fig. 2. Structure of the open-loop observer.

observer-controller design and implementation are
appropriately performed.

4.3 Concluding remarks

The main features of the observer (8) are

1. The observer is of low dynamical order (two-
states without augmented ones)

2. Structural features: Two measurement injec-
tion points (see Figure 2):
a) The standard one (EKF or Luenberger)
that corrects the rate of state prediction
change.
b) An additional one, that corrects the con-
centration argument of the reaction rate.

3. Global uniform convergence for all Θ ≥ δ > 0.

5. OUTPUT-FEEDBACK CONTROL

5.1 Nonlinear Separation Principle

In general, the separation principle for linear sys-
tems does not hold for the nonlinear case. Nev-
ertheless, results of different character have been
recently reported (Angeli (2004); Moreno (2006)).
According to these works a separation principle
holds if the controller exponentially stabilizes the
plant, yields a Lipschitz plant’s dynamics, and the
trajectories of the state estimation are assured to
converge asymptotically and uniformly (i.e. for all
admissible inputs). Notice that the first two condi-
tions assure the Input-to-State-Stability (ISS) of
the controlled plant with respect to the observa-
tion error (see e.g. Khalil (2002)). To show, that
these conditions are satisfied, it suffices to put
together the features associated with the different
parts of the state-feedback observer-based control
strategy:

(i) The observer error ε converges globally to
ε = 0, for all Θ ≥ δ > 0.

(ii) The controlled plant is Lipschitz (at least for
a range of estimation errors sufficiently wide
for the practical application).

(iii) The designed controller stabilizes the control
error exponentially.

From these properties the practical, uniform,
asymptotic stability of the nominal closed-loop
steady-state follows (Angeli (2004); Moreno (2006)).

The combination of the passive controller (5), (6)
with the dissipative observer (8) yields the pro-
posed robust dynamic output-feedback that glob-
ally stabilizes the chemical reactor at its locally
unobservable prescribed steady-state with max-
imum reaction rate. Basically, this robustness-
oriented observer-control design exploits the re-
actor nonlinear global structure (relative degrees
and detectability) and, according to the cele-
brated Popov’s solution to Lur’e’s problem, can
be interpreted as follows: the feedback correction
and innovation mechanisms are tailored so that
the model and estimation errors are efficiently
lumped into conic nonlinearities over the first-
third quadrant pair.

5.2 Controller Behavior

To test the nominal and global stabilizing control
properties, the closed loop reactor was subjected
to considerable initial state deviations, that are by
far larger than the ones encountered in practical
situations. The nominal behavior, without model-
ing error, is presented in Figure 3 (with gains κT =
κc = 3 so that V̇ ≤ −εV , ε ≥ 0), showing that,
indeed, the closed loop motions converge to the
prescribed steady-state. The behaviors with feed
concentration, feed temperature, and feed concen-
tration and temperature are presented in Figure 4,
showing that: (i) in all cases the controller stabi-
lizes the reactor with the same overall behavior of
the nominal case (Figure 3), and (ii) as expected,
the concentration is regulated with some (rather
small) offsets, because of the proportional nature
of the passive nonlinear controller. In principle,
integral action can be added to improve behav-
ior and reduce the concentration offset. It can
be pointed out that the proposed observer has
certain a priori robustness, due to the choice of
the Lyapunov-function. The observer gains are
determined in such a way, that it is assured that
V̇ ≤ −εV . Thus, for additive disturbances, at
least ultimate and uniform boundedness of the
solutions is assured.

6. CONCLUSIONS

A non locally stabilizing output-feedback con-
troller for continuous chemical reactors with non-
monotonic kinetics and temperature measure-
ments has been presented. The reactor lacked
local observability about its nominal steady-
state with maximum reaction rate. An interlaced
observer-control design was developed within a
passivity-dissipativity framework, yielding a closed
loop stability assessment. The theoretical findings
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