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Abstract: In this paper, an approach to control design for large process system
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1. INTRODUCTION

Control problems with dynamics distributed in
space and time can often be modeled using net-
works of interconnected, simpler processes. Ex-
amples include bio-chemical processes (Hatzi-
manikatis et al. (1996)), reaction networks (Fishtik
et al. (2004)) and plant-wide control (Kumar and
Daoutidis (2002)). In each of these examples the
integrated system consists of sub-processes which
interact through information and material flow
and the dynamics the total process exhibits can
be far more complex than that of the individual
sub-components.

Network descriptions have several advantages
(Oster et al. (1971); Gilles (1998)). Networks
provide a graphical representation which makes
it easy to visualize interconnections and build
models. The topology often defines the charac-
ter of the network and graphical representations
can often provide physical insights that are dif-
ficult to extract from algebraic representations.

One drawback is that the size and complexity of
control design increases rapidly as the size of the
network increases. There is therefore a need to
develop scalable approaches for stability analysis
and control system design.

In this paper, based on Jillson and Ydstie (2005)
we develop an approach to control system design
of networks which addresses scalability by using
ideas from the passivity theory of nonlinear con-
trol. Passivity, like Lyapunov stability theory, uses
a storage function which can be interpreted as the
energy within the system. However, unlike Lya-
punov theory, it provides a direct way to analyze
input-output stability of interconnected systems
and methods for decomposition and decentraliza-
tion. Passivity was originally developed to study
stability of complex electrical circuits (Desoer and
Kuh (1969)), and has recently been extended to
modeling and control of chemical processes and
networks, e.g., Ydstie (2002); Bao (1998); Jillson
and Ydstie (2005); Hangos et al. (1999).
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The main contribution of the current paper is
that we develop a systematic method to design
passivity based controllers for large scale process
networks. A process network is a collection of
processes which obey the laws of thermodynamics
and have dynamics constrained by balance equa-
tions for mass, energy, charge and components.
The flows amongst the different processes in the
network depend on potential differences. We show
the sufficient conditions under which a process
network is passive and stable so that it can be
controlled by passive controllers. The application
of the theory is illustrated in a simulation of a
network of reaction diffusion equations.

2. PROCESS NETWORKS

In this paper, we consider the network of process
systems. The topology of the network is repre-
sented by the graph G = (P, F, T ). The set of
np vertices or nodes (P ) specifies the locations
of the elementary processes. The set of nf edges
(F ) specifies connections amongst the vertices.
And the set of nt terminals (T ) specifies how
the network is connected with the environment
or other independent networks.

At each node, the state, z is described by a
set of extensive variables. For example, for a
thermodynamic system with nc components, the
state consists of the internal energy, volume, and
component masses:

z = [U, V, M1, . . . , Mnc
]T (1)

There is also a corresponding potential at each
node, which is related to the state and a scalar en-
tropy function, S by the following partial deriva-
tive:

∂S

∂z
= wT (2)

For the states given in (1), the corresponding po-
tentials are related to the temperature, pressure,
and chemical potential of the node:

w =
[

1
T

,
P

T
,
μ1

T
, . . .

μnc

T

]T

(3)

The potential difference, Xij = wj − wi, between
connected nodes acts as a driving force for flow,
and is continuous around any closed loop.

The states must be conserved at each node, and
the following differential equation holds:

dz

dt
= p + φ (4)

where p is the net production (e.g. due to chemical
reaction) and φ is the net flow of material, energy,
etc. into the node. The production term p is a
function of the states of the node and can be a
complex non-linear expression.

We are concerned with two types of flow: convec-
tive and diffusive flows. Convective flow results
from a bulk flow between nodes, and has the same
composition as the node it exits, i.e. the convective
flow from node i to node j:

f c
ij = ẑiṁij (5)

where ẑi is a vector of state variables per total
mass (specific quantity), and ṁij is the bulk mass
flow rate between node i and node j. Diffusive
flow is the flow of material, energy, etc. due
to gradients in potentials (e.g. heat conduction
between two units with different temperatures)
as given by the following expression for linear
diffusion:

fd
ij = LXij (6)

where L is a constant negative definite matrix.

A process system network can be represented by a
collection of models which describes the dynamics
of each node in the network:

dzi

dt
= p(zi) −

mi∑
j=1

fd
ij −

ni∑
j=1

f c
ij (7)

i = 1, . . . , np, where mi and ni are number
of diffusive and convective flows from node i
respectively. It is assumed a physical outlet flow
is positive and inlet flow is negative.

3. PASSIVITY OF PROCESS SYSTEM
NETWORK

A process system with input u, output y and state
z is said to be strictly state passive if there exists a
positive semi-definite storage function A (z) such
that

A (z (t))−A (z (0)) ≤
∫ t

0

yT uds−
∫ t

0

V (z) ds (8)

for all u in the input space, and z in the state
space, where V (z) is a positive definite function.
A nice property of a strictly state passive system is
that it can be stabilized by any passive controllers,
including the commonly used PID controllers. In
this section, we study under what conditions the
entire network is passive so that a passive control
system can be implemented.

Define the storage function Ai for the i-th node
as in Jillson and Ydstie (2005):

Ai (zi) = w∗T
i zi − Si (zi)

= (w∗
i − wi)

T
zi (9)

where w∗
i is the reference of wi and Si is the

entropy. Due to the concavity of Si, we have
Ai > 0 ∀wi �= w∗

i and Ai = 0 if wi = w∗
i . The

storage function A of the entire process network
is:

A (z) =
np∑
i=1

Ai (zi) (10)
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where z =
[
zT
1 , zT

2 , . . . zT
np

]T

is the vector of all
states of the network. We have,

dA (z)
dt

=
np∑
i=1

dAi (zi)
dt

=
np∑
i=1

[
w∗T

i

dzi

dt
− ∂Si (zi)

∂zi

dzi

dt

]

=
np∑
i=1

[
w∗T

i

dzi

dt
− wT

i

dzi

dt

]
(11)

Define deviation variables w̄i = wi−w∗
i , z̄i = zi−

z∗i , f̄ij = fij − f∗
ij and p̄i(zi) = pi(zi) − pi(z∗i ),

where w∗
i , z∗i and f∗

ij are of the reference point at
steady state. Thus:

dA

dt
=

np∑
i=1

[
−w̄T

i

dz̄i

dt

]

=
np∑
i=1

⎡
⎣−w̄T

i p̄i(zi) + w̄T
i

np∑
j=1,j �=i

f̄d
ij

+w̄T
i

np∑
j=1

f̄c
ij + w̄T

i

nt∑
j=1

f̄ t
ij

⎤
⎦

= −
np∑
i=1

w̄T
i p̄(zi) +

np∑
i=1

w̄T
i

⎛
⎝ np∑

j=1,j �=i

Lij(w̄i − w̄j)

⎞
⎠

+
np∑
i=1

w̄T
i

np∑
j=1

f̄ c
ij +

np∑
i=1

w̄T
i

nt∑
j=1

f̄ t
ij (12)

where f̄ t
ij is the j-th terminal flow from i-th node.

Denote nd
f as the total number of diffusive flows

and the k-th diffusive flow is from node i to j.
Then X̄k = w̄i − w̄j . Define NO as the set of
nodes which a convective flow exits, NI as the
set of nodes which a convective flow enters. We
have:

dA

dt
= −

np∑
i=1

w̄T
i p̄(zi) +

nd
f∑

k=1

X̄T
k LkX̄k

+
∑

i∈NO

∑
j∈NI

(w̄i − w̄j)
T

f̄ c
ij +

nt∑
k=1

w̄T
k f̄ tO

k

−
nt∑

k=1

nt
I,k∑

j=1

w̄T
k f̄ tI

kj

= −
np∑
i=1

w̄T
i p̄(zi) +

nd
f∑

k=1

X̄T
k LkX̄k

+
∑

i∈NO

∑
j∈NI

(w̄i − w̄j)
T

(
zi

Mi
ṁij − z∗i

M∗
i

ṁ∗
ij

)

+
nt∑

k=1

w̄T
k

(
zk

Mk
ṁtO

k − z∗k
M∗

k

ṁ∗tO
k

)

−
nt∑

k=1

nt
I,k∑

j=1

w̄T
k ckjṁ

tI
kj (13)

where nt
I,k denotes the number of inlet flows from

the environment to k-th node, vectors f̄ tO
k and

f̄ tI
kj denote the outlet and inlet component flows of

node k to and from the environment, ṁtO
k denotes

the bulk outlet flow rate including all components
from k-th node to environment (a terminal flow),
ṁtI

kj denotes the j-th inlet (bulk) flow to the k-

th node from the environment, ṁ
tI
kj = ṁtI

kj − ṁtI∗
kj

is the deviation variable, and ckj is a constant
vector of quantity of components per unit mass
or volume in the j-th flow that enters k-th node.
Here we assume that the total inventory of each
node is controlled by manipulating its total outlet
flow. For node i:

ṁi =
∑

j

ṁij = kiMi (14)

where ki > 0 is the constant gain of the propor-
tional only controller applied to i-th node. Denote
αij as the ratio of outlet flow rate from node i to
node j to the total outlet flow rate from node i.
Obviously αij ≥ 0 and

∑
j αij = 1. Therefore the

actual and reference flow rates from node i to node
j under the inventory control are:

ṁij = αijkiMi, ṁ∗
ij = αijkiM

∗
i (15)

Therefore,

dA

dt
=

np∑
i=1

w̄T
i p̄(zi) +

nd
f∑

j=1

X̄T
j LjX̄j+

∑
i∈NO

∑
j∈NI

(w̄i − w̄j)
T

z̄iαijki

+
nt∑

k=1

w̄T
k

(
zk

Mk
ṁtO

k − z∗k
M∗

k

ṁ∗tO
k

)

−
nt∑

k=1

nt
I,k∑

j=1

w̄T
k ckjṁ

tI
kj (16)

Since
∑

j αij = 1, we have,

∑
i∈NO

∑
j∈NI

(w̄i − w̄j)
T

z̄iαijki

=
∑

i∈NO

w̄T
i z̄iki −

∑
i∈NO

∑
j∈NI

w̄T
j z̄iαijki (17)

The relationship between the intensive variable wi

and the extensive variable zi is:

wi = Qizi (18)

where Qi may not be constant, but is always
negative definite:

Qi < 0 (19)

Therefore,
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dA

dt
=

np∑
i=1

w̄T
i p̄i(zi)

︸ ︷︷ ︸
net production

+
nd

f∑
j=1

X̄T
j LjX̄j

︸ ︷︷ ︸
diffusive flows

+
∑
i∈nO

kiz̄
T
i QT

i z̄i −
∑
i∈nO

∑
j∈nI

w̄T
j z̄iαijki

︸ ︷︷ ︸
convective flows

+
nt∑

k=1

w̄T
k

(
zk

Mk
ṁtO

k − z∗k
M∗

k

ṁ∗tO
k

)
︸ ︷︷ ︸

terminal outlet flow

−
nt∑

k=1

nt
I,k∑

j=1

w̄T
k ckjṁ

tI
kj

︸ ︷︷ ︸
terminal inlet flow

(20)

For given manipulated variables u (t) and con-
trolled variables y (t), the strict state passivity
condition requires that the right hand side of the
above equation to be less than yT (t) u (t)−V (z),
where V (z) > 0. Now let us study each term in
the right hand side of the above equation:

• Net production: If

−w̄T
i p̄i(zi) < 0, ∀i = 1, . . . , np (21)

then we can choose

V (z) =
np∑
ι=1

w̄T
i p̄i(zi) > 0 (22)

In this case, the production term is said
to be dissipative. If pi (zi) is linear, e.g.,
pi (zi) = Pizi, where Pi is a constant matrix.
Then we have p̄i(zi) = Piz̄i and

−w̄T
i p̄i(zi) = −z̄T

i QiPiz̄i (23)

As Qi < 0, (21) is equivalent to Re [λ (Pi)] < 0
for all nodes. That is, each matrix Pi is sta-
ble.

• Diffusive flows:
Clearly,

nd
f∑

j=1

X̄T
j LjX̄j < 0 (24)

for any X̄j �= 0.
• Convective flows:

Define z̃ = [z̄T
1 , . . . , z̄T

np
]T

∑
i∈nO

kiz̄
T
i QT

i z̄i −
∑
i∈nO

∑
j∈nI

αij z̄
T
j QT

j z̄iki

= z̃T

⎡
⎢⎢⎢⎣

Q1k1 · · · −Q1αnp,1knp

−Q2α12k1 −Q2αnp,2knp

...
. . .

...
−Qnpα1,npk1 · · · Qnpαnp,npknp

⎤
⎥⎥⎥⎦ z̃

= z̃T ΩΘz̃ (25)

Where

Ω =

⎡
⎢⎣
−Q1k1 0 0

0
. . . 0

0 0 −Qnpknp

⎤
⎥⎦ (26)

and

Θ =

⎡
⎢⎣

−I · · · αnp,1I
...

. . .
...

α1,npI · · · −I

⎤
⎥⎦ (27)

Note that matrix Θ is column conservation
matrix (i.e.,

∑
j,j �=i |αij | ≤ |αii| and αii < 0

and αij > 0 for i �= j) (as in Hangos and
Peni (2003)). Therefore Θ ≤ 0 and all its
eigenvalues are real. It can be proved that

ΩΘ ≤ 0 (28)

for any Qi < 0. Therefore,∑
i∈nO

kiz̄
T
i QT

i z̄i −
∑
i∈nO

∑
j∈nI

αijw̄
T
j z̄iki ≤ 0

(29)
• Terminal outlet flow:

Assume ṁtO
k = αk0Mk, ṁ∗tO

k = α∗
k0M

∗
k ,

where αk0 is the ratio of the outlet flowrate
of k-th node to the environment (often the
product flow) to the total inventory in k-th
node and α∗

k0 is the value of αk0 at a
reference point. αk0 can be understood as a
relative outlet flow rate. We have:

nt∑
k=1

w̄T
k f̄ c

Tk

=
nt∑

k=1

w̄T
k

(
zk

Mk
ṁtO

k − z∗k
M∗

k

ṁ∗tO
k

)

=
nt∑

k=1

w̄T
k (zkαk0 − z∗kα∗

k0)

=
nt∑

k=1

[
w̄T

k ((z̄k + z∗k) (ᾱk0 + α∗
k0) − z∗kα∗

k0)
]

=
nt∑

k=1

[
w̄T

k (z̄kᾱk0 + z̄kα∗
k0 + z∗kᾱk0)

]

=
nt∑

k=1

w̄T
k zkᾱk0 +

nt∑
k=1

w̄T
k z̄kα∗

k0

=
nt∑

k=1

w̄T
k Q−1

k w̄kᾱk0 +
nt∑

k=1

z̄T
k Qkz̄kα∗

k0

(30)

Because α∗
k0 > 0, we have

nt∑
k=1

z̄T
k Qkz̄kα∗

k0 < 0. (31)

From the above results, we can derive the follow-
ing sufficient condition for passivity of the entire
network modeled in (7):

Theorem 1. The process system network as given
in (7) under total inventory control of each node
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is strictly state passive if the controlled variables
are{

w̄T
k Q−1

k w̄k, w̄T
k ckj

}
, k = 1 . . . nt, j = 1 . . . nt

I,k

and the manipulated variables are{
ᾱk0, ṁ

tI
kj

}
, k = 1 . . . nt, j = 1 . . . nt

O,k

and

−
np∑
i=1

w̄T
i p̄i(zi) < 0 (32)

PROOF. This theorem can be proved immedi-
ately from (20), (22), (24), (29), (31) and (8).

4. PASSIVITY BASED CONTROL

In Hangos and Peni (2003), it was shown that
under inventory control of each unit, the entire
network is stable if each node is dissipative. In
this work, we show that the network is also pas-
sive if manipulated variables u (t) and controlled
variables y (t) are properly chosen. According to
the above theorem, if the production of each node
is dissipative, the product flow rates and the feed
flow rates to the nodes linked to terminals (such
as flow rate of reactants) are manipulated and
the intensive potential wk of the terminal nodes
are measured, then a passive controller can be
employed to stabilize the process.

The output of the process from the point of view of
the controller forms a vector containing w̄T

k Q−1
k w̄k

and w̄T
k ckj for different k and j. Both terms can be

calculated from wk and the reference w∗
k. ckj is a

constant vector, denotes the specific quantities of
different components in the feed flow (for example,
concentration of reactants). If one flow carries
more than one component, then what is fed into
the controller is the scalar quantities, rather than
vector w̄k. Therefore, in this case, the number of
terminal flows measured and manipulated should
equal the number of variables to be controlled.
If multi-component flows are involved, separation
units should be used so that some terminal flows
only carry one component, which allows effective
control of quality of one or more components.

The purpose of the proposed method is to control
the potentials wi. Under the feedback control of
a passive controller, the storage function of the
entire process network will approach zero, which
implies wi → w∗

i .

5. ILLUSTRATIVE EXAMPLE

For this example, we only consider the state of
each node as the masses of three components, A,
B, C : z =

[
MA MB MC

]T with corresponding

Diffusive flow

Convective flow

2

1 3 T3T1

T2

Fig. 1. Flowsheet of three node reactor network

potentials w =
[−cA −cB −cC

]T where c• is the
concentration (g/L). This is proportional to the
chemical potential and also to the mass of each
species, assuming fixed volumes.

At each node:
dzi

dt
= p(zi) + fdispersion + fconvective (33)

Reaction is present in each node, let A � B � C,
with linear reaction kinetics (assume no tempera-
ture effects). At each node,

pi(zi) = Pizi =

⎡
⎣−k1f k1r 0

k1f −k1r − k2f k2r

0 k2f −k2r

⎤
⎦ zi

(34)

We assume k1f = 5, k1r = 4, k2f = 3, and
k2r = 2. For the whole system, these matrices can
be combined to form one large block diagonal P
matrix such that

Pz =

⎡
⎣ P1 0 0

0 P2 0
0 0 P3

⎤
⎦

⎡
⎣ z1

z2

z3

⎤
⎦ (35)

where the subscripts refer to the production due to
reaction at each node. Since P is negative definite,
the reaction term in dA

dt is also negative definite.

We assume that diffusion only occurs between
the three nodes, and then convection for five of
the flows (going from terminal 1 to node 1, from
terminal 2 to node 2, from node 1 to node 3, node
2 to node 3, and from node 3 to terminal 3), as
depicted in Figure 1. We have diffusive flows

fd,ij = Lij(wi − wj) (36)

and convective flows

fc,ij = ẑiṁij (37)

where ẑi = zi

MT i
represents the vector of mole

fractions at node i. For the example model,

L12 =

⎡
⎣ 3 0 0

0 3 0
0 0 4.5

⎤
⎦ (38)

and

L13 = L23 =

⎡
⎣ 2 0 0

0 2 0
0 0 3

⎤
⎦ (39)
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Fig. 2. Control action on the mass flow from the
terminal into node 1 (u1) and into node 2 (u2)

We note that we have 5 degrees of freedom, one for
each convective flow in the network. We then in-
troduce controls on the outgoing convective flows
of each node (f c

13, f
c
23, f

tO
3 ) as just proportional

to the total mass in their respective nodes, e.g.:
f c
13 = K1M1. In the example, each Ki term is

equal to 0.25. Assume the feed going into node 1
is pure A and the feed going into node 2 is pure C.
In this example, we would like to produce B, and
we add C in order to limit the 2nd reaction. Then
we can control two variables, the concentrations
of A and C in nodes 1 and 2, respectively, by
manipulating the bulk flows entering the nodes
from their respective terminals. That is,

y1 = ẑT1w̄1 = w̄1,A

y2 = ẑT2w̄2 = w̄2,C

u1 = ṁtI
1

u2 = ṁtI
2 (40)

According to Theorem 1, the process network is
strictly state passive if the above manipulated and
controlled variables are chosen. The process net-
work can be controlled by any passive controllers.
Here we illustrate the passivity condition by show-
ing the simulation results of a PI controller, as
given in Figures 2 and 3, for controller parameters
of Kp1 = −3, Kp2 = −2, τi1 = −4, and τi2 = −3.
From which it can be seen that the potentials w̄1,A

and w̄2,C are effectively controlled. While only a
very simple case study is presented here due to
space limit, it should be noted that the proposed
approach can be used to control very complex
process networks.

6. CONCLUSION

In this paper, an approach to control of process
system networks is developed based on passivity.
By defining an entropy based storage function for
each node and introducing total inventory control
of each process unit, it has been shown that the
process system network is passive for certain con-
trolled and manipulated variables, provided the
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−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5
Deviation from Set Point vs Time

Time

D
ev

ia
tio

n 
fr

om
 C

on
ce

nt
ra

tio
n 

S
et

 P
oi

nt

y1
y2

Fig. 3. Deviation to the set point at node 1 (y1)
and at node 2 (y2)

net production of each process unit is dissipative.
This result is particularly useful in controlling
large process system networks where control de-
sign based on a single complex model for the entire
network is impossible.
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