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Abstract: In this work, the problem of controlling (possibly open-loop unstable) 
continuous free-radical solution polymer reactors with continuous measurements of 
temperature, level and flows, and discrete-delayed measurements of molecular weight 
(MW) is addressed. The point of departure is a previous control scheme with linear-
decentralized PI volume and temperature components, and a material balance conversion 
component. Here, the problem of designing and incorporating a MW component driven 
by discrete-delayed MW measurements is considered within a constructive framework. 
The result is a four-input four-output control scheme that: (i) has linear decentralized PI-
type components with reduced model dependency, and (ii) recovers the behavior of a 
controller driven by continuous measurements. The proposed approach is tested with a 
representative example through simulations. Copyright © 2007 IFAC

Keywords: Polymerization reactor control, decentralized control, discrete measurements, 
discrete estimator, chemical process control. 

1. INTRODUCTION 

A wide class of materials is produced in continuous 
free-radical polymer reactors, which are highly 
nonlinear dynamical systems with complex behavior: 
strong and asymmetric input-output coupling, 
multiplicity of steady-states, and parametric 
sensitivity (Hamer et al. 1981). Industrially, these 
reactors are controlled with volume and temperature 
PI loops, and the conversion and molecular weight 
(MW) are regulated by adjusting the monomer and 
initiator (and/or transfer agent) dosages via 
supervisory control schemes. The production rate, 
stability, safety and quality indicators are met by 
controlling the temperature, volume, conversion, and 
MW. In particular, the control of MW is important to 
met product quality specifications. 

The MW control problem has been the subject of 
theoretical, simulation and experimental studies over 
the past decades. The state-of-the-art can be seen 
elsewhere (Richards and Congalidis, 2006), and here 
it suffices to mention that several control approaches 
have been employed, including linear PI controllers 
(Ellis et al., 1994) as well as nonlinear geometric 
(Adebekun and Schork, 1989; Niemiec et al., 2002), 
model predictive (MPC) (Mutha et al., 1997), and 
calorimetric (Alvarez et al., 2004) control 
techniques, including open-loop (Adebekun and 

Schork, 1989), extended Kalman filter (EKF) (Ellis 
et al., 1994; Mutha et al., 1997), and Luenberger (L) 
(Tatiraju et al., 1999) nonlinear observers. Most of 
the MW control and/or estimation schemes have 
been driven by size exclusion chromatography (SEC) 
(Ellis et al., 1994) and gel permeation 
chromatography (GPC) (Niemiec et al., 2002) 
measurements, which typically involve low sampling 
rates and long delays. This feature and the detailed-
model dependency of the control schemes affect the 
functioning, and imply complexity, reliability, and 
cost drawbacks for industrial applicability. 

Recently, based on inversion and feedforward (FF) - 
feedback (FB) control ideas, González and Alvarez 
(2005) presented a PI-inventory controller that 
combines industrial-like linear and decentralized PI 
volume and temperature components, with material 
balance (MB) monomer and MW controllers. This 
scheme is driven by continuous-instantaneous 
measurements of volume, temperature and flows, 
addresses the complete MIMO control problem 
(volume, temperature, conversion and MW), and 
regulates the MW with an offset that depends on the 
accuracy of the initiator decomposition-chain transfer 
model, and with a speed that is about twice faster 
than the one of the open-loop response. The same 
tasks and results were obtained by a robust control 
scheme (Alvarez and González, 2006) drawn from 
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the application of constructive control ideas 
(Sepulchre et al., 1997). 

In this work, the problem of controlling (possibly 
open-loop unstable) continuous free-radical solution 
polymer reactors with continuous measurements of 
temperature, level and flows, and discrete-delayed 
(DD) MW measurements is addressed within a 
constructive control framework. In particular, we are 
interested in: (i) designing a MW control component 
with linearity, decentralization and reduced model 
dependency features, (ii) the coordination of this 
component with previously designed volume, 
temperature and monomer components (González 
and Alvarez, 2005; Alvarez and González, 2006), 
and (iii) the capability of handling low sampling 
rates and long delays, typically encountered in an 
industrial setting. The proposed approach is 
illustrated and tested with a representative example 
through simulations. 

2. CONTROL PROBLEM 

Consider a CSTR where an exothermic free-radical 
solution homopolymer reaction takes place. 
Monomer, solvent and initiator are fed to the tank, 
and heat exchange is enabled by a cooling jacket. 
Due to the gel effect (Chiu et al, 1983), the reactor 
can present steady-state multiplicity (Hamer et al., 
1981). From standard free-radical polymerization 
kinetics (Hamer et al., 1981), and viscous heat 
exchange considerations (Alvarez et al., 1996), the 
reactor dynamics are given by the following mass 
and energy balances: 

T
.
 ={ hr - U(T - Tj) + ( mqmcm + sqscs) (Te - T)}/C 

  := fT,  yT(t) = T (1a) 

T
.

j = {U(T - Tj) + jqjcj(Tje - Tj)}/CJ
  := fj,  yj(t) = Tj (1b) 

V
.
 = qm + qs - ( m/ m) r - q := fV,  yV(t) = V (1c) 

m.  = - r + mqm - (m/V) q := fm  (1d) 
. = (- r  + r0)/p := f ,  y (tk) = (tk-1) (1e) 

I
.
 = - ri + wi - (I/V) q := fi (1f) 

s.  = sqs - (s/V) q := fs (1g) 

Q
.
 = - (r/p){[2 - (r0/r)/ ]Q - [2(r/r0) + Wm] }:= fQ (1h) 

u = (qj, q, qm, wi)',  z = (zT, zV, zm, z )'  

r = fr(T, V, m, I, s)  (2a) 
U = fU(T, Tj, V, m, s),  = f (V, m, s) (2b) 
C = fC(V, m, s), p = V  - m - s (2c) 
ri = E(T) I := fri(T, I), r0 = f0(T, V, m, I, s) (2d) 

The states (x) are: the reactor (T) and jacket (Tj)
temperatures, the volume (V), the free (i.e., 
unreacted) monomer (m), solvent (s) and initiator (I) 
masses, as well as the (number-average) MW inverse 

(  = Mn-1) and its polydispersity (Q). The measured 
exogenous inputs (d) are: the reactor (Te) and jacket 
(Tje) feed temperatures, and the solvent (qs)
volumetric flowrate. The regulated outputs (z) are: 
the temperature (T), the volume (V), the monomer 
content (m), and the MW inverse ( ). The 
continuous-instantaneous measured outputs (yc) are: 
the temperature (yT), the volume (yV), and the jacket 
temperature (yj). The DD measured output (yd) is the 
MW inverse (y ). The control inputs (u) are: the 
coolant (qj), exit (q) and monomer (qm) volumetric 
flowrates, and the initiator mass feedrate (wi). h is 
the heat of polymerization per unit monomer mass, 
Wm is the monomer molecular weight, m is the 
monomer contraction factor, m (or cm), s (or cs)
and j (or cj) are the monomer, solvent and coolant 
fluid densities (or specific heat capacities), C and CJ
are the reacting mixture and cooling system heat 
capacities, p is the polymer mass; U, , r, ri and r0
are the heat transfer coefficient, the reacting mixture 
density and the rates of polymerization, initiator 
decomposition, and change of the zeroth moment 
(Hamer et al., 1981), and E is the initiation rate 
constant.

Having as point of departure our previous studies on 
the reactor without MW measurements (González 
and Alvarez, 2005; Alvarez and González, 2006), our 
problem consists in: (i) designing the measurement-
driven (MD) MW component with linearity, 
decentralization and reduced-model dependency 
features, (ii) the coordination of the MW component 
with the previously developed volume, temperature 
and conversion components, (iii) the capability of 
handling of low sampling rates and long delays, and 
(iv) drawing easy-to-apply tuning guidelines that 
include the sampling period-time delay. 

3. MW CONTROL WITH CONTINUOUS 
MEASUREMENT 

In this section, the MW control problem with 
continuous MW measurements is addressed. The 
objectives are: (i) the setting of a point of departure 
for the case with DD measurements, and (ii) the 
determination of the behavior recovery target for the 
DD-measurements control design. 

3.1 Nonlinear FF-FB control 

Let us re-write MW inverse ( )-initiator (I) 
subsystem (1e-f) with the following modification: the 
initiator mass state (I) is replaced by the state  that 
represents the rate of change of the MW inverse, this 
is,

 := . = f (V, T, m, , I, s) (3) 

This coordinate change can be performed because f
is I-monotonic ( If  > 0) (Alvarez and González, 
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2006), and physically speaking, the last inequality is 
fulfilled because the free-radical population increases 
with the initiator content (Flory, 1953), which causes 
that the MW decreases. Thus, the MW inverse ( )-
initiator (I) subsystem (1e-f) can be expressed into 
the phase canonical form (4) associated with a 
standard Hamiltonian mechanical formulation 
(Slotine and Li, 1991; Sepulchre et al., 1997)  

. = , y(t) =    (4a) 
.  = - (T, V, m, I, s, q) 
 - (T, Tj, V, m, I, s, qs, Te, q, qm, wi)    
 + (T, V, m, s) wi        
 + (T, Tj, V, m, I, s, qs, Te, q, qm, wi)   (4b) 

 = r + i > 0, r = r/p, i = E + ,  = q/V  
 = r i > 0,   = cd E/p        

 = cd (E/p)
.

I + ( t - )
.
r + . t r + r i t

and t (or cd) is a chain transfer function (or initiation 
constant) (Alvarez and González, 2006). Introduce 
the Lyapunov function (5a) and enforce the negative 
dissipation rate (5b) 

VSF = ( ~2 + 2)/2 > 0, ~ =  - -   (5a) 

V
.

SF = - (  + k ) 2 < 0, k  > 0  (5b) 

to obtain the nonlinear FF-FB passive controller

wi = (1/ )( - -  - k )  (6) 

Observe that the implementation of this controller 
needs the detailed reactor model. 

3.2 Linear output-feedback passive control

As a step to reduce the model dependency, let us re-
write the MW control model (4) as follows 

. = , y(t) =    (7a) 
.  = - c  - c  + a  wi + b    (7b) 
b  = (T, Tj, V, m, , , I, s, qs, Te, q, qm, wi)   (7c) 

c  = r-/p- + E-  + -  = 2 -  + E-

c  = (r-/p-)(E-  + -) = (-)(E-  + -),  a  = cd E- /p-        
 = - (  - c )  - (  - c )  + (  - a ) wi + 

where (.-) denotes the steady-state approximation of 
(.), and b  is regarded as a nonlinear disturbance load 
generated by the nonlinear map . Equation (7a-b) 
[or (7c)] is a linear decentralized dynamic (or 
nonlinear interactive and static) component, and (7) 
is an (exact) representation of the MW model (4). 
Accordingly, the SF control (6) is written as follows 

wi = (1/a )(c - - b  - k ),  b  = (x, d, u)  (8) 

and the substitution of this controller in the MW 
dynamics yields the closed-loop dynamics under SF 
control:

~.. + (c + k ) ~.  + c ~ = 0,   (9) 

Due to the instantaneous observability property of 
system (7), the pair ( , b ) can be reconstructed by 
means of a linear reduced-order observer (10a-b) 
(Stefani et al., 2001). The combination of this 
observer (10a-b) with the passive controller (8) 
yields the linear output-feedback (OF) passive MW 
controller:

.  = - (c  + 1)  + b + [ 2 - 1(c  + 1) - c ] y
 + a wi,    ^ =  + 1 y     (10a) 
.
b = - 2  - 1 2y , b̂  = b + 2 y    (10b) 

wi = (1/a )(c - - b̂  - k ^)  (10c) 

This linear MD dynamic controller recovers, with 
fast estimator convergence rate, the behavior of its 
exact model-based nonlinear passive counterpart (6), 
and constitutes the recovery target for its DD 
counterpart.

4. MW CONTROL WITH DISCRETE-DELAYED 
MEASUREMENT 

 In this section, a linear-decentralized output-
feedback MW controller is constructed on the basis 
of DD MW measurements and a suitable discrete 
model, with reduced model-dependency. 

4.1 Discrete MW model 

Sometimes nonlinear chemical process and polymer 
reactor estimation and control problems are 
addressed on the basis of Euler-type discretization 
(Tatiraju et al., 1999; Niemiec et al., 2002). By doing 
so, the implementation is simplified at the cost of 
limiting the estimation and/or control capability to 
handle DD MW measurements. Given the linear 
form of our MW continuous model (7), the model 
prediction, or equivalently, the capability to handle 
measurement delay can be enhanced by performing 
an analytical integration of the model (7) with the 
enforcement of the step control specification u(t) = 
uk  t  [tk, tk+1]. The result is the following MW 
discrete model:  

k+1 = 11 k + 12 k + 1(uk + bk),  uk=a wi(tk)  (11a) 

k+1 = 21 k + 22 k + 2(uk + bk)  (11b) 

11 = [1 +(- / - )(1-e- E- )]e- -
, 12 = [(1-e- E- )e- -

]/ -

21 = - - [1+(- / - )](1-e- E- )e- -

22 = [e-  E-  + (- / - )(1 - e-  E- )] e- -
    

1 = - [1 - e- (-  + E- ) ]/[ - (-  + - )] + (1 - e- -
)/(- - )   

2 = [(1 - e- E- ) e- -
]/ - ,  = tk+1 - tk
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where  is the sampling period-delay, and the term 
bk is reconstructible from the DD MW 
measurements. In input-output form, the discrete 
model (11) is expressed as: 

k+2 - k+1 + k = 1(uk+1+bk+1) + p(uk+bk)  (12) 
 = 11 + 22,    = 11 22 - 12 21,   p = 12 2 - 22 1

4.2 State-feedback control 

Let us introduce the synthetic input , with 
feedforward ( *k) and feedback (~

k) components: 

1(uk+1+bk+1)+ p(uk+bk):= k, k = *k + ~
k (13) 

Assume that the MW inverse ( ) is at its setpoint 
value ( k+2 = k+1 = k = -), and obtain the FF discrete 
component   

*k = (1 -  + ) -  (14) 

Enforce the following closed-loop output regulation 
error difference equation: 

~
k+2 - (  + k1) ~

k+1 + (  + k2) ~
k = 0,    ~k = k - -|  (15) 

and obtain the discrete FB component (~
k)

~
k = k1

~
k+1 - k2

~
k     (16) 

k1( , c, c) = -  + [ 1( , c, c) + 2( , c, c)] 
k2( , c, c) = -  + [ 1( , c, c) 2( , c, c)]  

n( , c, c) = exp{- c [ c
+
-  ( c

2 -1)1/2]}, n = 1, 2 

c (or c) is the control characteristic frequency (or 
damping factor) associated to the mappings of the 
control design poles from the continuous 
representation in the LHS of the complex plane to the 
unit circle (Hernández and Alvarez, 2003). The 
combination of (13), (14) and (16) yields the discrete
MW SF controller

wi(tk) = - ( p/ 1)wi(tk-1) - [bk + ( p/ 1)bk-1]/a    

 + [(1- + )/ 1]-/a +[k1( k--)-k2( k-1--)]/(a 1)  (17) 

In eq. (17): (i) the first term is an integral-like action 
due to discretization, (ii) the first three terms 
represent feedforward action, on the basis of present 
and past load estimates, and (iii) the last term is a 
feedback correction driven by present ( k) and past 
( k-1) values of the MW inverse.  

4.3 Output-feedback control 

The implementation of the discrete controller (17) 
needs present and past estimates of the MW inverse. 
For the continuous measurements case, the state 
estimation can be adequately performed with a 
reduced order observer (10a-b), but this is not 

convenient for the discrete-measurements case. A 
reduced-order discrete observer yields present 
estimates ( k) from an open-loop (i. e., without 
correction) difference equation (Ogata, 1994), but 
this estimate can degrade the controller performance. 
Thus, the application of the full-order discrete 
observer technique yields the state observer (18a-c), 
and its combination with the discrete controller (17) 
yields the discrete MW OF controller:   

^
k= 11^

k-1+ 12^
k-1+ 1(uk-1+b̂k-1)+ko

1( , o, o)(yk-^
k-1)

^
k= 21^

k-1+ 22^
k-1+ 2(uk-1+b̂k-1)+ko

2( , o, o)(yk-^
k-1)

b̂k = b̂k-1 + ko
3( , o, o)(yk - ^k),   uk=a wi(tk) (18a-c) 

wi(tk) = - ( p/ 1)wi(tk-1) - [b̂k + ( p/ 1)b̂k-1]/a

 + [(1 -  + )/ 1]-/a      

 + [k1(^k - -) - k2(^k-1 - -)]/(a 1)     (18d) 

where the observer gains (ko
1, ko

2, ko
3) are set 

according to a root locus-based pole pattern 
(Hernández and Alvarez, 2003), and o (or o) is the 
observer characteristic frequency (or damping 
factor). The combination of the MW OF controller 
(18) with the volume, temperature and monomer 
controllers presented in a previous study (Alvarez 
and González, 2006) yields the entire OF reactor 
control scheme:  

• Volume and temperature controllers (19a) 
.
V = - V V - V( VyV - q),  b̂V = V + VyV

q = b̂V + kV(yV - V- )
.
T = - T T - T( TyT + aTyj),  b̂T = T + TyT

Tj
* = - [b̂T + kT(yT - T- )]/aT

.
j = - j j - j( jyj + ajqj),  b̂j = j + jyj

. *j  = - *j *j  - *j ( *j T*j ),  b̂*j  = *j  + *j T*j

qj = [b̂*j  - b̂j - kj(yj - Tj
*)]/aj

• Monomer controller (19b) 

m̂
.
 = - r̂ + mqm- (m̂/yV) q, ŝ

.
 = sqs - (ŝ/V̂) q 

 r̂ = [fC(yV,m̂,ŝ)(aTyj+b̂T) + CJb̂j)]/

qm = [- km(m̂ - m- ) + r̂ + (m̂/yV) q]/ m   

• MW controller (19c) 
^

k = 11^
k-1 + 12^

k-1 + 1(uk-1 + b̂k-1) + ko
1(yk - ^k-1)

^
k = 21^

k-1 + 22^
k-1 + 2(uk-1 + b̂k-1) + ko

2(yk - ^k-1)

b̂k = b̂k-1 + ko
3(yk - ^k),        uk-1 = a wi(tk-1)   

wi(tk) = - ( p/ 1)wi(tk-1) - [b̂k + ( p/ 1)b̂k-1]/a

 + [(1- + )/ 1]-/a  + [k1(^k--)-k2(^k-1 - -)]/(a 1)

The MW OF controller (19c) amounts to an 
interlaced estimator-control design, with a second-
order SF controller and a third-order discrete 
observer, and in principle, the analytic solution-based 
discrete model (11) has better prediction capability 
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than Euler's discretization-based counterparts. 
Regarded as an individual loop, the preceding MW 
component, based on a linear input-output model, is 
considerably simpler than nonlinear sampled-data 
full-model based estimator-control systems.  

4.4 Implementation and tuning 

Modeling requirements. The MW controller only 
needs the approximate constants {a , c , c } (7), or 

equivalently, the nominal residence time inverse (-)
and steady-state approximations of the initiation 
constant (E) and polymer mass (fp) functions. The 
modeling requirements of the volume, temperature 
and monomer loops (19a-b) are: two steady-state 
approximated constants (aT, aj) for the temperature 
loop, and calorimetric parameters (densities and heat 
capacities) for the monomer loop. These modeling 
requirements are fewer than the ones of previous 
polymer reactor control studies with MW 
measurements (Adebekun and Schork, 1989; Ellis et
al., 1994; Niemiec et al., 2002). 

Closed-loop dynamics and tuning. The rigorous 
assessment of the robust closed-loop behavior goes 
beyond the scope of the present work, and here it 
suffices to recall previous stability assessments on 
the same kind of reactor with sampled density 
measurements (Hernández and Alvarez, 2003) and 
on the same reactor without MW measurements 
(González and Alvarez, 2005), to say that, in the 
present problem, closed-loop stability can be attained 
by setting the volume, temperature and monomer 
controllers and then: (i) choosing the observer gain 
( o) within an interval ( -

o, +
o), that depends on the 

sampling period-delay ( ), and (ii) setting the control 
parameter ( c) sufficiently smaller than o. The 
associated tuning guidelines are: 

1. Set the MW observer characteristic time ( o = 
1/ o) three times greater than the MW measurement 
delay ( ): o = 3 , and the MW controller 
characteristic time ( c = 1/ c) two times slower than 
the observer characteristic time: c = 2 o.
2. Choose the damping factors greater than one, say 
( o, c)  (1, 3], to preclude the amplification of the 
high-frequency unmodeled dynamics (López and 
Alvarez, 2004). 
3. Decrease the observer characteristic time ( o) up to 
its ultimate value u

o, where the response becomes 
oscillatory, and backoff until a satisfactory response 
is attained, say at o  2 u

o.
4. If necessary, adjust the damping ( o, c) factors 
and/or controller characteristic time ( c). 

In this manner, the MW controller (19c) is set 
according to prescribed root locus-based pole 
patterns (inside the unit circle) determined by the 
damping factors ( o, c), and the characteristic 
frequencies ( o, c) are the main adjustable 
parameters. 

5. APPLICATION EXAMPLE 

To subject the proposed OF controller (19) to a 
severe test, the operation of a reactor about an open-
loop unstable steady-state is considered (via 
numerical simulations), at high-solid fraction with 
the potentially destabilizing gel-effect at play. The 
system is methyl methacrylate (monomer)-ethyl 
acetate (solvent)-AIBN (initiator). The residence 

time is (1/-) = 220 minutes with a nominal volume V-

 2000 L. The operating conditions have been given 
before (González and Alvarez, 2005). The reactor 

has three steady states x- = [T- (K), m- (Kg), M- n
(Kg/Kmol)]': 
x-1 : (373.88, 312.7, 29395.15)' (Stable) 

x-2 : (351.62, 660.1, 110384.75)' (Unstable) 

x-3 : (329.72, 1361.1, 399149.03)' (Stable) 

with the unstable steady-state being the setpoint, and 
the closed-loop reactor-control system was subjected 
to step changes in the reactor and jacket feed 
temperatures step changes shown in Figure 1 (at t = 
100 min: Te from 315 to 320 K, and Tje from 328 to 
330 K). Two sampling periods-delays were tested: (i) 

 = 5 min, to evaluate the recovery target towards 
the continuous MW measurements case (10), and (ii) 

 = 90 min, in accordance to previous polymer 
reactor control studies (Niemiec et al., 2002) where 
the long sampling period-delay is about one half of 
the nominal residence time. Following the tuning 
guidelines of section 4 and the ones from (Alvarez 
and González, 2006), the MW control gains were set 
as follows: 

 = 5 min, o = 3, o = (1/10) min-1

c = 1.5, c = (1/100) min-1

 = 90 min, o = 1, o = (1/90) min-1

c = 0.71, c = (1/140) min-1

In Fig. 1, three closed-loop responses are shown with 
(i) the OF controller (19a-b) with continuous MW 
component (10), (ii) the proposed OF controller (19) 
with DD MW measurements and  = 5 min, and (iii) 
the proposed OF controller (19) with DD MW 
measurements and  = 90 min. As it can be seen in 
the figure: (i) the behavior of the discrete controller 
with small sampling period-delay (  = 5 min) 
approaches the behavior of the controller with 
continuous MW measurements, and (ii) the discrete 
controller with long sampling period-delay (  = 90 
min) regulates the MW in about 380 minutes (1.7 
residence times). In terms of natural residence time 
units, the proposed MW controller with  = 90 min 
(about 1 half of the residence time) regulates the MW 
with similar convergence time than the ones obtained 
with full-model - based and appropriately tuned 
control schemes (Niemiec et al., 2002). In other 
words, the proposed MW control scheme can 
perform the same task with less modeling 
requirements and more robustness with respect to 
model uncertainty.  
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Fig. 1. Reactor behavior with the OF control with 

continuous MW measurements ( __ ), and DD MW 
measurements with  = 5 min (- . - . -) and  = 90 min 
(- - -), and setpoints (....).

On the other hand, the regulation of the volume, 
temperature and monomer is not affected by the MW 
loop, meaning that the control of the last output is 
performed in a coordinated way with linear 
decentralized volume, temperature and conversion 
components. It must be pointed out that controlling 
these four outputs is an indirect way of attenuating 
transient polydispersity excursions, with the 
understanding that its steady-state value is fixed (at 
2) and cannot be changed (Flory, 1953).  

6. CONCLUSIONS 

The control of continuous free-radical solution 
polymer reactors with continuous measurements of 
temperature, level and flows, and discrete-delayed 
measurements of molecular weight (MW) has been 
addressed within a constructive control framework, 
with emphasis in the attainment of applicability-
oriented features (linearity, decentralization, and 
reduced-model dependency). The MW component 
was drawn by combining passivity, discrete model 
realization, and controllability-detectability 
considerations. The proposed control technique has a 
systematic construction and simple tuning guidelines, 
and its implementation in an open-loop unstable 

industrial-size case study showed that the proposed 
controller yields: (i) closed-loop stable dynamics, 
and (ii) an MW response with convergence time that 
is similar to the ones obtained earlier with detailed 
model-based nonlinear controllers. 
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