
8th   International   IFAC   Symposium   on
Dynamics and Control of Process Systems

 

ADAPTIVE MODEL PREDICTIVE CONTROL
OF DISSOLVED OXYGEN IN A BIOREACTOR

R. Palpandi Raja, Abhijit S. Badwe
Sachin C. Patwardhan, Santosh B. Noronha*

Department of Chemical Engineering,
Indian Institute of Technology, Bombay,

Powai, Mumbai, 400076, India.
*Email: noronha@che.iitb.ac.in

Abstract: Dissolved oxygen variation in a bioreactor is representative of a non-
linear time varying system. In this work we propose a novel algorithm for Adaptive
Model Predictive Control (AMPC) of dissolved oxygen in a bioreactor. The model
is comprised of deterministic and stochastic components and is updated on-line by
Recursive Least Squares method. The deterministic and stochastic components are
then combined to form a state space model to formulate AMPC at each sampling
instant. The proposed AMPC scheme is shown to achieve tight control of dissolved
oxygen in Escherichia coli cultivation in the presence of disturbances.
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1. INTRODUCTION

Model predictive control (MPC) has emerged as
a powerful tool for dynamic optimization and
control. A key feature contributing to the success
of MPC is that various process constraints can be
incorporated directly into the on-line optimization
performed at each time step (Lee and Ricker,
1994). Industrial advantages of using MPC for
explicit handling of inequality constraints have
been discussed by Richalet et al (1978).

Variation of dissolved oxygen (DO) concentration
in a fermentation typically presents as a non lin-
ear time varying system. Precise control of DO
permits e¤ective experiment designs for the study
of metabolic changes and the improvement of pro-
ductivity in aerobic fermentations. DO is also an
excellent tool for fault diagnosis and supervision
of biotechnical processes. The time varying nature
of DO in fermentation processes often leads to in-

stability of conventional controllers with constant
coe¢ cients. Nonlinear adaptive control has been
shown to improve control of DO (Goodwin et al.,
1982). Lee et al (1991) have reported adaptive
control of DO, through a sophisticated model of
DO electrode dynamics, incorporating the probe
response lag. Hsiao et al (1992) have shown that
simultaneous manipulation of agitation and aer-
ation leads to reduction in non-linearity of the
process, eliminating abrupt changes in process
dynamics. Youssef and Dahhou (1996) have de-
veloped a complete control structure employing a
nonlinear process model coupled with an adaptive
estimator for on-line tracking of unavailable state
and time-varying parameters. Diaz et al (1995)
have reported an algorithm for the adaptive con-
trol of DO concentration in a bioreactor using a
generalized predictive control strategy. The use of
error modeling with auto-regressive moving av-
erage (ARMA) has been shown to improve the
control performance and to reduce the control
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input variability of DO control in Bacillus subtilis
fermentations for the production of recombinant
�-galactosidase (Sargantanis and Karim, 1997).

Olivera et al., (2004) proposed a DO controller
based on a model of oxygen mass balance, which
was more susceptible to errors in the oxygen trans-
fer rate (OTR). An integral feedback controller
with adaptive gain has been reported for DO con-
trol in yeast cultivations based on adaptive feeding
of glycerol at oxygen limiting conditions (Olivera
et al., 2005). Adaptive feeding may present large
transients when the organism exhibits diauxic
growth characteristics. This could be a serious
problem when the culture exhibits diauxic growth
characteristics. E.coli utilizes glucose rapidly and
then consumes acetate when glucose is limiting
under aerobic conditions. The change in oxygen
demand poses as a transient, which a conventional
PID controller often fails to cope with. Such sit-
uations may not be desirable in practice where
the controller may need frequent tuning and could
lead to erratic behaviour of the process in the
absence of operator intervention. Under such cir-
cumstances DO control based on adjusting phys-
ical variables such as stirrer speed and air �ow
rate should be favoured. The use of an adaptive
controller manipulating these variables would be
expected to nullify such transients.

In this work, we present a novel AMPC formula-
tion based on a two-tier modelling scheme. The
deterministic component of the model is para-
meterized using the output error (OE) structure.
The parameters of the OE model are estimated
online using the recursive OE (ROE) method.
The stochastic component is identi�ed by mod-
elling the residuals generated by the ROE esti-
mator as auto-regressive moving average (ARMA)
processes. The deterministic and stochastic com-
ponents are then combined to obtain a state-
space model which is further used to formulate
the AMPC problem at each sampling instant.

The paper is organized in six sections. In Sec-
tion 2, we discuss the development of the model
for AMPC. We present the AMPC formulation
based on this model in Section 3. The results of
the experimental implementation of AMPC on a
bioreactor are presented in Section 5. Finally, we
present the conclusions in Section 6.

2. MPC RELEVANT MODEL
DEVELOPMENT

The primary concern in any MPC formulation is
the quality of model prediction generated by the
internal model. The quality of model predictions
depends on (a) �delity of the deterministic compo-
nent of the model and (b) strategy used to model

unmeasured disturbances and predict their e¤ects
on the future plant behavior. The quality of model
predictions is linked with the model structure em-
ployed while identifying the MPC relevant model.

2.1 Models for the Deterministic and Stochastic
Components

The most widely used �nite impulse response
(FIR) model in MPC formulations has output er-
ror (OE) structure. Since OE models are functions
of past manipulated inputs alone, these models
are ideally suited for long term predictions. The
FIR model, however, is non-parsimonious in pa-
rameters and, therefore, not suitable for on-line
parameter estimation. A better choice for on-line
parameter estimation is the parameterized form of
the OE model, which can be represented as follows

�by(t) = B(q�1)
A(q�1)

q�td�u(t) (1)

�y(t) = �by(t) + v(t) (2)

where A(q�1) and B(q�1) are polynomials in the
shift operator q�1 and td represents time delay.
In the context of a continuously operated system,
�y(t) , �by(t) and �u(t) represent perturbation
variables de�ned with respect to some steady
state. In the context of time varying semi-batch
systems, we can modify the OE model (1-2) by
introducing perturbations in the neighborhood of
time varying trajectories fys(t); us(t)g as follows

by(t)� ys(t) = B(q�1; t)
A(q�1; t)

q�d [u(t)� us(t)] (3)

y(t) = by(t) + v(t) (4)

This model can be rearranged as

by(t) = B(q�1; t)
A(q�1; t)

q�du(t) +
1

A(q�1; t)
�(t) (5)

y(t) = by(t) + v(t) (6)

where

�(t) =
�
A(q�1; t)ys(t)�B(q�1; t)q�dus(t)

�
(7)

represents an unknown time varying bias term.
Note that argument (t) has been added to each
polynomial in (q�1) to emphasize the fact that
their coe¢ cients are changing as a function of
time. For the purpose of parameter estimation,
the above model can be rearranged as follows

y(t) =
�
1�A(q�1; t)

� by(t)+B(q�1; t)u(t)+�(t)+v(t)
(8)

The time varying bias term f�(t)g in the OE
model given by equation (5) can also be viewed as
a slowly drifting or non-stationary component of
the unmeasured disturbance a¤ecting the output.
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To develop a model for the residual signal, fv(t)g ;
de�ned as

v(t) = y(t)�
�
1�A(q�1; t)

� by(t)�B(q�1; t)u(t)��(t)
(9)

we assume that

� The parameterization of deterministic com-
ponent is such that there is no correlation
between the residual sequence fbv(t)g and the
manipulated inputs sequence fu(t)g and

� The non-stationary component of the un-
measured disturbances is captured through
fb�(t)g, and therefore sequence fbv(t)g repre-
sents a stationary stochastic process

Under these assumptions, we can model the vari-
ation of fbv(t)g as an ARMA process as follows

bv(t) = C(q�1)

D(q�1)
e(t) (10)

where fe(t)g is a white noise sequence and C(q�1)
and D(q�1) are monic polynomials.

Thus, the �nal form of the proposed model for
time varying processes can be expressed as follows

y(t) =
B(q�1; t)

A(q�1; t)
u(t) +

1

A(q�1; t)
�(t) + v(t)

v(t) =
C(q�1; t)

D(q�1; t)
e(t) (11)

where y(t) and u(t) represent absolute values of
the measurement and manipulated input. Also,
when d > 0; the �rst d coe¢ cients of B(q�1; t)
will be zero.

Model parameters of OE model are estimated
on-line using a recursive pseudo-linear regres-
sion (RPLS) method called recursive output er-
ror (ROE) as follows (Ljung, 1999; Astrom and
Wittenmark, 2001),

b�d(t+ 1) = b�d(t) +Kd(t)"(k + 1) (12)

"(k + 1) = y(t+ 1)�'d(t+ 1)T b�d(t) (13)
'd(t) = [�by(t� 1)::� by(t� na)

u(t� 1)::u(t� nb) 1]T (14)

�d(t) = [a1(t) :: ana(t) b1(t) :: bnb(t) �(t)](15)

where gain Kd(t) is computed as follows

Kd(t) =
Pd(t� 1)'(t+ 1)

�d(t� 1) +'d(t+ 1)TPd(t� 1)'d(t+ 1)
(16)

Pd(t) =

�
Pd(t� 1)�Kd(t)'d(t+ 1)

TPd(t� 1)
�

�d(t� 1)
(17)

Here Pd(t � 1) represents the covariance matrix
of model parameters and �d(t� 1) is an exponen-
tial forgetting factor. To avoid loss of sensitivity

and parameter blow up in a region where the
covariance of the parameters becomes very small,
the forgetting factor can be updated as suggested
by Fortescue et al.(1981). The parameters of the
ARMA model can be estimated using an extended
recursive least square (ELS) algorithm, which also
belongs to the family of recursive pseudo-linear
regression (RPLR) methods (Astrom and Wit-
tenmark, 2001). Convergence results for RPLS
scheme for models with OE and ARMA structure
have been discussed by Ljung(1999).

Since the deterministic component of the model
has output error structure, the above formulation
can be extended to an r�m multivariable system
by developing r MISO models of the form (for
i = 1; :::; r),

A(i)(q�1; t)byi(t) = mX
j=1

B(ij)(q�1; t)uj(t)

+�i(t) (18)

yi(t) = byi(t) + vi(t) (19)

where y 2 Rr represents the controlled variable
vector, u 2 Rm represents the manipulated vari-
able vector, v 2 Rr represents the residual vector
for OE model, � 2 Rr represents the bias vec-
tor. Here, A(i)(q�1; t) and B(ij)(q�1; t) represents
polynomial functions of (q�1) operating on ith

output and jth input, respectively. The dynam-
ics of the residual signals can be captured either
through SISO models of the form

D(i)(q�1; t)vi(t) = C
(i)(q�1; t)ei(t) (20)

or through MISO models

D(i)(q�1; t)vi(t) =
rX
j=1

C(ij)(q�1; t)ej(t) (21)

where e 2 Rr represents the vector of innovations.
The resulting MIMO model can be expressed in
the following generic form

A(q�1; t)by(t) =B(q�1; t)u(t) + �(t) (22)

y(t) = by(t) + v(t) (23)

D(q�1; t)v(t) =C(q�1; t)e(t) (24)

where

A(q�1; t) = I+A
1
(t)q�1 + ::+Ana(t)q

�na(25)

B(q�1; t) =B1(t)q
�1 + ::+Bnb(t)q

�nb (26)

C(q�1; t) = I+C
1
(t)q�1 + ::+Cnc(t)q

�nc(27)

D(q�1; t) = I+D
1
(t)q�1 + ::+Dnd(t)q

�nd(28)

Here, Ai ;Bi ;Ci and Di represent matrices of
dimension (r � r) ; (r �m) ; (r � r) and (r � r)
respectively.
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3. ADAPTIVE PREDICTIVE CONTROL
FORMULATION

3.1 MPC Relevant State Space Model

While developing an MPC scheme based on the
above model, it is convenient to work with a
state realization of the identi�ed model (22-24).
De�ning state vector xd(t) at time instant t as,

xd(t) = [by(t)T ::by(t� na + 1)T
u(t� 1)T ::u(t� nb + 1)T ]T (29)

the deterministic process model in discrete state
space form can be given by

xd(t) =�d(t)xd(t� 1) + �d(t)u(t� 1)
+	�b�(t) (30)by(t) =Hdxd(t) (31)

where matrices �d(t);�d(t)u(t � 1);	� and Hd

are constructed as described in Camacho and
Bourdons (1999). Similarly, de�ning the state
vector xs(t) as

xs(t) = [v(t)T ::v(t� nd + 1)T

e(t)T ::e(t� nc + 1)T ]T (32)

a state realization for the stochastic model can be
expressed as follows,

xs(t) =�s(t)xs(t� 1) + �s(t)w(t� 1) (33)
v(t) =Hsxs(t) (34)

where w(t � 1) = e(t). Note that the system
matrices (�;�) appearing in the state realizations
constructed above di¤er due to structural di¤er-
ences between the OE and the ARMA models.
De�ning augmented state vector

x(t) =

�
xd(t)
xs(t)

�
a combined state space model can be obtained at
tth sampling instant by augmenting the two state
realizations as follows

x(t) =�(t)x(t� 1) + �(t)u(t� 1) (35)

+	b�(t) +Kw(t� 1) (36)

y(t) =Hx(t) (37)

where

�(t) = diag
�
�d(t) �s(t)

�
H=

�
Hd Hs

�
�(t) =

�
�d(t)
[0]

�
;

	 =

�
	�

[0]

�
;K =

�
[0]
�s

�
(38)

3.2 AMPC Formulation with Time-varying Control
Objective

At each sampling instant, the linear time
varying state space model given by equations (35-
37) is used for predicting future behavior of the
plant over a �nite future time horizon of length p
(prediction horizon) starting from current instant
t. In order to carry out predictions based on the
above model, it becomes necessary to introduce
a model for the behavior of the bias term. Since
�(t) is expected to capture slowly varying dis-
turbances, we assume that the bias term remains
constant over the prediction horizon, i.e.,

b�(t+ j + 1jt) = b�(t+ jjt) (39)b�(tjt) = b�(t) (40)

for j = 0; 1; ::::p � 1: It is further assumed that
only q (control horizon) future manipulated input
moves can be chosen freely with following input
blocking constraints

u(t+ jjt) = u(tjt) j = 0; 1; ::c1 � 1 (41)

:::::::: (42)

u(t+ jjt) = u(t+ cq�1jt) j = cq�1; ::p� 1(43)

where cj are selected such that 0 < c1 < c2 <
:::: < cq�1:

The adaptive MPC problem at the sampling in-
stant t is formulated as a constrained optimization
problem as follows,

min
Uf (t)

8<:
p�1X
j=1

Jef +

cq�1X
j=1

J�u

9=; (44)

Jef = ef (t+ jjt)TWEef (t+ jjt)
J�u =�u(t+ jjt)T W�U �u(t+ jjt)

subject to the following constraints,

ef (t+ jjt) = yr(t+ jjt)� by(t+ jjt)bx(t+ jjt) =�(t)bx(t+ j � 1jt) + �(t)u(t+ j � 1jt)
+	b�(t)by(t+ jjt) =Hbx(t+ jjt)

�u(t+ ljt) = u(t+ ljt)� u(t+ j � 1jt)
uL � u(t+ jjt) � uH

�uL ��uf (t+ jjt) ��uH

j = 1; 1; 2; ::::p

together with the input blocking constraints given
by equations (41-43). Here WE and WdU rep-
resent error weighting matrix and input move
weighting matrix, respectively.
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Fig. 1. Schematic of the experimental setup

4. MATERIALS AND METHODS

4.1 Control system hardware

The experiments were performed in a 10 litre
stainless steel stirred tank bioreactor with a work-
ing volume of 7.5 litres. The pH of the fermenta-
tion medium was measured using an autoclavable
gel-�lled glass electrode (Phoenix Electrodes Inc.,
USA). Temperature was measured with a Pt-100
type 3-wired RTD. Both pH, and temperature
were regulated by using stand alone on-o¤ con-
trollers. The air �ow was regulated through a
thermal mass �ow controller (Sierra Instruments
Inc, Monterey, CA, USA). Agitation rate was
varied through a variable fequency drive (Model:
Altivar 11, Schneider Electric Co., India). The
air �ow was distributed at the bottom of the
bioreactor through a J tube sparger. Dissolved
oxygen was monitored using an sterilizable po-
larographic electrode (Broadley James Corpora-
tion, USA). ADAM 5000 series data acqusition
cards were used for interfacing the reactor to the
PC. The Graphical User Interface to the ADAM
5000 series data acquisition modules was cre-
ated through LabVIEW (National Instruments,
Bangalore, USA).The control algorithm was de-
veloped in MATLAB and was invoked through
the graphical programming environment of Lab-
VIEW. A schematic of the setup is shown in
Figure 1.

4.2 Microorganism and cultivation media

The experimental study was carried out with Es-
cherichia coli strain BL21. The cultivation me-
dia was Luria-Bertani (LB) broth supplemented
with 1.5% glucose at the start of fermentation.
The fed-batch study was performed with 25%
solution of glucose fed at a constant rate of 25
ml litre�1hr�1after glucose was completely con-
sumed.

4.3 Analytical methods

The biomass concentration in the broth was es-
timated by measuring the absorbance at 600 nm
in a spectrophotometer (Jasco, Japan). The cell
weight was calculated using a standard equation,

Cell dry weight (gl�1) = A600 � 0.42

The glucose concentration in the broth was esti-
mated by o-toluidine colorimetric method.

5. EXPERIMENTAL RESULTS

The control objective for AMPC was to maintain
dissolved oxygen at 40% of saturation with air
throughout the operation of the bio-reactor. The
various parameters of the AMPC were taken as,

Prediction Horizon 30
Control Horizon 2
WE 2
Weight on agitator speed 5
Weight on aeration rate 1
Constraints on agitator speed 150 to 1000 rpm
Constraints on aeration rate 2:75 to 10 lpm

Initially, the bioreactor was started in manual op-
eration mode. The dissolved oxygen concentration
in E.coli fermentation declined from the initial
saturation levels as the cells accumulated. The
oxygen demand of the culture went up as the
cells entered the exponential growth phase. When
the DO reached the value of 40% (around 72 min
from the start), the agitation speed and air �ow
rate were perturbed using pseudo random binary
sequence (PRBS) signals (switching time = 7 min)
so as to provide su¢ cient excitation for initial
model development. The agitation speed was per-
turbed between 330 and 370 rpm and aeration rate
was perturbed between 2.75 and 4.75 lpm. This
input perturbation was carried out for about 23
minutes (i.e. upto 95 min from the start). Model
adaptation (recursive identi�cation) was also ini-
tiated at the beginning of the perturbation period
with AMPC in manual mode. A MISO model for
DO concentration with agitator speed and aer-
ation rate as inputs was recursively identi�ed at
every sampling instant using the scheme described
in Section 2. The sampling time was chosen to be
30 seconds. The controller was started at the end
of this perturbation period.

From Figure 2 it is evident that the DO was
successfully controlled at the 40% set point for the
complete batch. Glucose feed (25% w/v) addition
at the rate of 25 ml litre�1hr�1 was started during
the 4th hour (vertical dashed line in Figure 2)
when glucose in the broth was exhausted. The
addition of glucose modi�es E.coli metabolism
patterns and acts as a disturbance to the system.
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