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Abstract: Non-square process control systems, with fewer inputs than the controlled 
outputs, are quite common in industrial chemical processes. In these systems, it is 
impossible to control all the outputs at specific set-points and thus, many of them are 
controlled within intervals. The objective of this paper is to extend the non-square 
Operability methodology proposed by Lima and Georgakis (2006) to high-order systems 
to be used in the design of non-square constrained controllers. This is achieved by 
analyzing the general problem with n outputs, m inputs and 1 disturbance. The developed 
methodology is applied to non-square systems obtained from industrial problems.  
Copyright© 2007 IFAC 
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1. INTRODUCTION 
 
In general for multivariable and highly interactive 
chemical processes, MPC controllers aim to control 
non-square systems in which there are more 
controlled outputs than manipulated inputs. Based 
on the input constraints, generally specified a 
priori due to the physical limitations of the process, 
an important task is to define the output ranges, or 
constraints within which one wants to control the 
process. Because the improper selection of these 
constraints can make the controller infeasible, hard 
constraints are either converted to soft constraints 
that can be violated under certain conditions 
(Hovd, 2004; Rawlings, 2000) or the intervals 
between the upper and lower values are widened, 
resulting in less tight control. Looser control of the 
outputs causes the operating point of the process to 
stray further away from the true economic 
optimum, which is often at the boundary of the 
acceptable region of operation.  

The Operability methodology developed by Vinson 
and Georgakis (1998, 2000) serves an important 
role in selecting proper output constraints, so that 
they are as tight as possible and do not render the 
controller infeasible. This enables one to verify the 
achievability of control objectives before 
implementing the MPC controller. This framework 
was introduced as a measure to assess the input-
output open-loop operability of a multivariable 
square chemical process at the steady-state, a 
necessary condition for overall process operability. 
It provides a quantitative result for multivariable 
systems and a graphical representation for systems 
with 3 dimensions or less, permitting modifications 
to the design that may improve process operability 
before the selection of a control structure. This 
methodology takes into account the limited range 
available for the control inputs during the design 
phase. Essentially, the Operability framework can 
quantify the ability of a process to change from one 
steady-state to another and reject expected 
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disturbances, utilizing the finite control action 
available. This concept is important because once 
the design is fixed no control methodology can 
overcome limitations on operability (Vinson, 2000; 
Georgakis et al., 2003). 
 
Based on the non-square Operability concepts 
introduced by Lima and Georgakis (2006), we 
present an iterative algorithm for the extension of 
this framework to high-order non-square systems. 
This is done by addressing the general problem 
with n outputs, m inputs and 1 disturbance.  
 
 
2. OPERABILITY OF MULTIVARIABLE NON-

SQUARE SYSTEMS 
 
In order to quantify the steady-state operability of 
non-square linear systems, the process outputs are 
classified into two categories: set-point controlled: 
variables that are controlled at exact set-point 
values (production rates and product qualities); set-
interval controlled: variables that are controlled 
within specified ranges (pressure, temperature and 
level). In the latter case we refer to the operability 
as interval operability. The set-point and range 
variables are selected according to the process 
control objectives. Moreover, when assessing the 
interval operability of a process one aims to fix 
critical outputs at their set-points, allowing the 
others to vary within their maximum and minimum 
limits. Process outputs must have at least one 
feasible operating point within the desired interval. 
To clarify the idea of the Operability concept, it is 
first necessary to define some useful sets. The 
Available Input Set (AIS) is the set of values that 
the process input variables can take based on the 
design and constraints of the process. For an n x m x 
q (outputs x inputs x disturbances) non-square 
system: 

{ }min max| ; 1= ≤ ≤ ≤ ≤i i iAIS u u u i mu  

Moreover, the Desired Output Set (DOS) is given 
by the ranges of the outputs that are desired to be 
achieved and might be represented by:                                                

{ }min max| ; 1= ≤ ≤ ≤ ≤i i iDOS y y y i ny  

Finally, the Expected Disturbance Set (EDS) 
represents the expected steady-state values of the 
disturbances: 

{ }min max| ; 1= ≤ ≤ ≤ ≤d i i iEDS d d d i q  

We will here limit our attention to a single 
disturbance and thus q = 1. Based on the steady-
state model of the process, expressed by the 
process gain matrix (G) and the disturbance gain 
matrix (Gd), the Achievable Output Set for a 

specific disturbance value (AOS(d)) is defined by 
the ranges of the outputs that can be achieved using 
the inputs inside the AIS: 

{ }( ) | ;= = + ∈d y y Gu G d udAOS AIS  
Thus, the servo AOS(d = 0) is a subset of an m-
dimensional manifold in n\ . Varying the process 
disturbance, which can take values within the EDS 
(1-dimensional region), the AOS(d = 0) is shifted in 
the n\  space along a direction determined by Gd 
and by an amount affected by the maximum and 
minimum disturbance values. The union of all 
shifted locations for all the possible disturbance 
values yields the set AOS: 

n( ), which is a subset of  
∈

= \∪
d EDS

AOS AOS d  

In order to calculate the feasible output ranges, we 
will use the definition of the Achievable Output 
Interval Set (AOIS) given by Lima and Georgakis 
(2006). The AOIS was defined as the smallest 
possible interval constraints for the outputs that can 
be achieved with the available range of the 
manipulated variables when the disturbances 
remain within their expected values. The idea of 
this calculation is to enlarge the sizes of an initial 
estimate of the AOIS, keeping a pre-specified 
aspect ratio between the output variables constant 
until the AOIS grows in size enough to touch or 
intersect the extreme sets associated with the 
minimum and maximum disturbance values of 
AOS. The desired degree of tightness in the control 
of each of the outputs will affect the aspect ratio of 
the corresponding side of the initial estimate of the 
AOIS. For example, an aspect ratio of 1:10 between 
two outputs assures that one will be controlled 10 
times more tightly, approximating set-point control 
for the corresponding variable.  
 
In the previous publication (Lima and Georgakis, 
2006), two simple cases involving sub-systems of 
the Steam Methane Reformer (SMR) hydrogen-
production process from Air Products and 
Chemicals (Vinson, 2000) were presented. This 
process has 4 manipulated variables (MV’s), 1 
disturbance variable (DV) and 9 controlled 
variables (CV’s). The sub-systems considered there 
were 2 x 1 (outputs x inputs) and 3 x 2 examples, 
where all the outputs were controlled within an 
interval using the same relative weight. Here, 
examples are presented where some of the output 
variables are controlled more tightly than others. 
This is followed by an examination of cases where 
some of the outputs are controlled at the set-point 
and the rest within ranges. Finally, examples 
involving systems with dimensionality higher than 
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3-D are shown.  For all cases, the property n ≥ m+1 
is observed. Thus, the AIS, DOS and EDS are 
subsets of m\ , n\  and 1\  respectively. 
 
 

3.  MOTIVATING SIMPLE CASES 
 
The concepts and definitions of Interval 
Operability (Lima and Georgakis, 2006) are 
presented in this section using a 2 x 1 system 
obtained from the SMR process model. In this 
example we assume the same weight for all the 
outputs and the origin as the nominal steady-state 
point (y0). Consider the following system: 
 
    1 11 1

1 1 1 1
2 21 2

   
     

= + ⇒ = +     
     

d

y a c
y G u G d u d

y a c
   (1) 

 
Where: 

{ }1 1| 1 1AIS u u= − ≤ ≤ , { }2 | 1
∞

= ∈ℜ ≤DOS y y and 

{ }1 1| 1 1= − ≤ ≤EDS d d .  
Rearranging equation (1) we can calculate the 
interrelationship between y1 and y2 for different 
disturbance values: 
 

       1 1 1
2 21 2 1

11

          (2)−
= +

y c dy a c d
a

 

 
Consider the steady-state gain matrices: 

[ ] [ ] 1.41, 0.66 ; 0.6,  0.4 ;= = −T T
dG G  

These matrices were modified from the originals 
for demonstration purposes. Thus, the base case 
servo AOS (d1 = 0) is given by a straight line       
(y2 = a21y1/a11). Changes in the disturbance value          
(-1 ≤ d1 ≤ 1) shift AOS (d1 = 0) along the Gd 
direction generating the AOS. This is seen in Figure 
1, where we have also sketched the DOS, or 
desired set of output constraints, and the AOIS 
calculated for this case.  
 
If the two outputs are controlled within some 
desired constraints that are wider than or equal to 
the AOIS sizes, the process will be interval 
operable within the available input ranges and in 
the presence of the expected disturbances (Lima 
and Georgakis, 2006). In other words, the system 
will be interval operable if DOS covers AOIS 
completely. Therefore, the Interval Operability 
Index (IOI) is defined as: 
 

( )
( )

µ
µ

∩
=

DOS AOISIOI
AOIS

                  (3) 

 

Here µ represents a measure of the size of the set, 
e.g. area for 2-D and volume for 3-D examples, 
and hyper-volume for sets with higher 
dimensionality. This index quantifies how much of 
the region of the operable range of the outputs can 
be achieved using the desired set of output 
constraints. This index has a value between 0 and 
1. A process is considered interval operable if the 
index is equal to 1. In this calculation, 
mathematical operations involving intersections of 
polytopes have to be performed to evaluate 
intersections likeDOS AOIS∩ . This is done by 
using the Geometric Bounding Toolbox (GBT) in 
MATLAB (MathworksTM, Inc) developed by Veres 
et al. (1996). 
 

 
 
Figure 1: AOS, DOS and AOIS  
 
Because the DOS is large enough to cover the 
AOIS, this system is interval operable. In fact, the 
DOS could still be significantly reduced to achieve 
tighter control of the outputs, as long as the AOIS 
remains a subset of the DOS. 
 
Changing the relative output variable weights 
influences the aspect ratio of AOIS because the 
weights represent the tightness within which each 
output will be controlled around its operating point. 
The following relationship between the two 
parameters is observed for two output variables: 
 

1 2
12

2 1
     (4)

y w
r

y w
∆

= =
∆

 

 
Where wi and ∆yi are the weight and the AOIS 
range, respectively, associated with output i. 
Moreover, rij is the AOIS aspect ratio associated 
with the ranges between outputs i and j. Figure 2 
shows an example where r12 = 1:10 for the system 
above.  
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As the relative weight between the outputs 
increases, the problem approaches a set-point 
control problem for the variable with the greatest 
weight.  This occurs because a set-point control 
problem is equivalent to a very tight interval 
control problem. Figure 3 illustrates this fact where 
the aspect ratio considered is 1000:1. The 
calculation of the output constraints for the interval 
controlled variable can then be performed based on 
the set-point value of the set-point controlled 
variable. 
 

 
 
Figure 2: AOIS calculated using r12= 1:10  
 

 
 
Figure 3: AOIS calculated using r12= 1000:1 
 
Now, if one wants to control the process around a 
steady state different from the origin using the 
same input window available and at the same 
expected disturbance range, the AOS will remain 
the same but the coordinates of the AOIS will be 
shifted, characterizing an asymmetric problem. 
Figure 4 shows an example of the nominal steady-
state of the process (y0) being shifted from the 
origin (0, 0) to (0.5, 0.5) considering r12 = 4:1. 
Observe that the AOIS is the smallest rectangle that 
touches the lines associated with the minimum and 

maximum disturbance values of AOS for the 
specified aspect ratio. Notice that the AOIS does 
not need to be completely bounded within the AOS 
because we are addressing (y1, y2) interval 
operability.   
 

 
 
Figure 4: AOIS calculated for y0 = (0.5, 0.5) and 

r12= 4:1  
 
 

4. ITERATIVE METHODOLOGY FOR  
HIGH-ORDER SYSTEMS 

 
 
For problems with dimensionality higher than 3-D 
we are unable to geometrically represent the sets; 
consequently, the problem is addressed by 
algebraic calculations. This is performed using 
computational geometry tools (GBT), such as the 
calculation of convex hulls and intersections. 
 
The transformation of the AIS and EDS necessary 
to calculate the corresponding AOS is easily done 
in any dimension using the linear process model at 
the disposal of the MPC controller. This is a direct 
mapping task. Concerning the AOIS calculation, 
the iterative approach is: 
 
1) Define the relative weights w1, w2, ... wn that 
quantify the tightness with which each output will 
be controlled; 
 
2) Specify small enough values for two scalar 
parameters α0 and ∆α0. Initially, let n = 0, αn = α0 
and ∆αn = ∆α0. The initial approximation of the 
AOIS is a high dimensional parallelepiped around 
the steady-state value of the outputs (y0) and is 
defined as a function of the scalar α representing its 
size by the following set of inequalities (5): 
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Where , ,   and  are column vectors in . 
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" "

" "

\

 

  
3) Test whether there is an intersection between the 
AOIS(αn) and the AOS associated with one of the 
extreme disturbance values, say d1 = 1. If not, 
increase αn by ∆αn and test for the intersection 
again. Keep increasing αn until one of the AOIS(αn) 
vertices touches AOS (d1 = 1); 
 
4) Denote the respective value of αn with α+1. 
Retain the coordinates of the AOIS(α+1) vertex 
obtained and denote it with v+1; 
 
5) Repeat the procedure for the other extreme 
disturbance value (say d1 = -1). Denote the 
obtained value of αn with α-1. Retain the AOIS(α-1) 
vertex obtained as well and denote it with v-1; 
 
6) The final AOIS will be the smallest orthogonal 
parallelepiped that has v+1 and v-1 in one of its 
diagonals (AOIS = OP(v+1, v-1)). This will result in 
the minimum calculated set of output constraints 
that makes the process operable for all the 
disturbance values inside the EDS;   
 
In order to find where the AOIS(α), a subset of n\ , 
touches one of the AOS(d1 = ± 1), the intersection 
of these two sets is calculated during each program 
iteration using the subroutine intersct from 
GBT (Veres et al., 1996). However, this sub-
routine requires both sets to be full dimensional. As 
explained previously, the two sets AOS(d1 = ±1), 
for the two limiting values of the disturbance, are 
m-dimensional objects in n\ . To increase the 
dimensionality of AOS(d1 = ± 1) from m to n we 
translate all the points of AOS(d1 = ± 1) by 

1 2, ,... and δ δ δe e en . Here e1, e2, … en are the usual 
basis in n\ and δ is chosen to be small enough 
(δ≈10-4) to not substantially change the 
characteristics of the respective AOS(d1). The 
convex hull of all points (original and translated) 
calculated for each set by using the subroutine 
convh define two polytopes in n\ . The resulting 
polytopes can be used in the calculation of the 
intersections. 
 

If two sequential values of α do not yield an 
intersection set, the increment ∆α is doubled. Then 
the intersection measure (e.g. hyper-volume) is 
calculated and the value of α is reduced using the 
Secant Method (Rice and Do, 1994) until the 
intersection measure is reasonably small, yielding a 
satisfactory approximation of the intersection 
vertex (v). 
 
Finally, it is worth mentioning that the calculations 
using convh and intersct for high 
dimensional objects can be computationally 
expensive and unstable, especially as the problem 
dimensionality increases. The iterative algorithm 
itself can be expensive as well. Alternative 
solutions to deal with these problems are under 
development, aiming at faster and more stable 
approaches for online implementation. 
 
 
4.1. High-Order Examples 
 
Steam Methane Reformer: In order to demonstrate 
the effectiveness of the proposed methodology, a 
higher-order system from the SMR process is 
addressed: 

 
1

1
2

2 1
3

3
4

 14.07   - 0.04     2.66   2.96
- 3.92         0    - 1.96 - 2.18

   (6) 
- 7.74      6.03        0     0
  6.60    - 3.90     4.89   5.44

     
      
      = +                      

y
u

y
u d

y
u

y

{ } { }
{ }

4 3

1 1

  

| 1 ,  | 1 ,

| 1 1
∞ ∞

= ∈ℜ ≤ = ∈ℜ ≤

= − ≤ ≤

DOS AIS

EDS d d

y y u u

 

 
A set of calculated AOIS dimensions (low and high 
limits) considering y0 = (0.1, 0, -0.15, 0) and 
output weights (w) = (1, 1, 1, 1) is shown in Table 
1. The average computational time of 10 repeated 
simulations was 17.52 seconds (Dell PC with a 3.0-
GHz Intel Pentium 4 processor). 
 

Table 1: Results for SMR example 
 

CV Designed Low Limit Designed High Limit 
y1 -0.2516 0.3285 
y2 -0.2285 0.3516 
y3 -0.3785 0.2016 
y4 -0.2285 0.3516 

 
Dryer Control Problem: Consider now a 4-D 
system from the Dryer Control Problem provided 
by DuPont, described by the system of equations 
and sets: 
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1

2 1
1

3 2

4

4 2

   5.85     0.22   0.25
   1.52        0     0

           (7) 
- 40.86    1.56 - 0.63
      0         0 - 0.17

| 1 , | 1
∞ ∞

     
           = +                     

= ∈ℜ ≤ = ∈ℜ ≤

y
y u

d
y u
y

DOS AIS

EDS

y y u u

{ }1 1| 1 1= − ≤ ≤d d

 

 
In this application, n > m + 1, y0 = (0, 0, 0, 0) and 
w = (2, 2, 1, 1). The set of designed output 
constraints is presented in Table 2. Notice that the 
y1 and y2 bounds are twice as tight as the others. 
The average computational time in this case was 
13.00 seconds.  
 

Table 2: Drier Control Problem results 
 

CV Designed Low Limit Designed High Limit 
y1 -0.0857 0.0857 
y2 -0.0857 0.0857 
y3 -0.1714 0.1714 
y4 -0.1714 0.1714 

 
 
5. CONCLUSIONS  
 
We have presented here an extension of the non-
square Operability framework to high-order 
systems. A 2-D example has been used to 
demonstrate how different weights on the tightness 
of the desired control of each output can be 
accommodated. This includes the case where some 
of the outputs need to be controlled at set-points. 
These calculations can also be done for the case 
where the steady-state of the process is different 
from the origin.  
 
Concerning the extension to high-order systems, 
we have employed computational geometry tools 
to calculate the tightest possible operable set of 
output constraints (AOIS) in n\ , where n is the 
number of outputs, using the Geometric Bounding 
Toolbox (GBT) in MATLAB (Veres et al., 1996). 
This is achieved by starting with a small enough 
estimate of the AOIS and enlarging it until a non-
zero intersection is obtained with the AOS sets 
associated with the extreme cases of the 
disturbance value. Our conceptual approach is not 
limited to the dimensionality of the input (u) or the 
output (y) vector, but only considers the case of a 
single disturbance variable.    
 
Finally, we have successfully handled two 
industrial examples provided by Air Products and 
Chemicals and DuPont where the output-input 
dimensionality is 4 x 3 and 4 x 2 respectively. For 

higher-order problems, the proposed algorithm can 
be computationally expensive due to the 
calculation of convex hulls and intersections. 
Subsequent work of our group has resolved the 
computational limitations imposed by the 
algorithm presented here and larger size process 
examples have been thoroughly investigated.  
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