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Abstract: Fault-detection and isolation and fault-tolerant control structures are
implemented on a reverse osmosis desalination plant. A detailed mathematical
model of a simple reverse osmosis plant is first developed. A family of control
configurations are identified next, and bounded nonlinear feedback controllers are
developed for each configuration. Stability regions of the closed-loop system under
each controller are explicitly characterized. A fault-detection and isolation filter is
developed for the reverse osmosis system. A supervisory switching law is derived
to guarantee closed-loop stability by determining the activation time of fall-back
control configurations in the presence of faults in the primary control configuration.
The proposed fault-tolerant control scheme is demonstrated in the context of a
reverse osmosis system simulation. Copyright c©2007 IFAC
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1. INTRODUCTION

System automation and reliability are crucial
components of any modern reverse osmosis (RO)
plant. The operational priorities are personnel and
product water safety, while also meeting environ-
mental and economic demands. Automated RO
plants, however, can be vulnerable to faults in
several process components that can effect plant
operation. Examples of faults can include valve
failure, membrane fouling or scaling, sensor data
loss, and pump or variable frequency drive fail-
ure. Because RO plants run at high pressures,
these failures may cause immediate safety risks to
plant personnel. These failures can also lead to a
decline in the product water quality, rendering it
unsafe for public consumption. These safety issues
provide strong motivation for the development
of fault-detection and isolation (FDI) and fault-
tolerant control (FTC) structures that can quickly

1 Corresponding author (e-mail: pdc@seas.ucla.edu)

identify failed actuators and make effective deci-
sions to maintain safe plant operation.

Several contributions have been made in the lit-
erature to process control of RO systems. The
first paper which proposed an effective closed-loop
control strategy for RO utilized multiple SISO
control-loops Alatiqi et al. (1989). Step tests were
used to perform system identification, resulting in
a model that is a linear approximation around
the operating point. The control algorithm of
MPC was applied to the resulting linear model
in Robertson et al. (1996) and Abbas (2006).
Experimental system identification and MPC ap-
plications can also be found in Assef et al. (1997)
and Burden et al. (2001). Liu et al. (2002) and
Herold and Neskakis (2001) implemented mini-
mal feedback control on RO desalination systems,
powered by renewable energy sources, in the form
of digital on/off switching. Some hybrid systems
modeling and control work has been published,
such as in Gambier and Badreddin (2002). The
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goal of this project is to extend the research on RO
control systems to include model-based FDIFTC
structures.

Fault-tolerant control structures are based on an
underlying assumption that there are more con-
trol configurations available than required for the
given process Siljak (1980) and Yang et al. (1998).
The use of the minimum number of control inputs
is desirable to minimize unnecessary control ac-
tion. Fault-tolerant control, in this case, can be
achieved through reconfiguration of the control-
loops. To implement fault-tolerant control struc-
tures on an RO system, first it is necessary to
detect and isolate failure events. The results from
Mhaskar et al. (2006b) can be directly applied in
order to implement FDI on an RO system. Other
FTC results relevant to this project can be found
in Mhaskar et al. (2006a) and Gani et al. (2006).

This work focuses on FTC of an RO process.
First, a detailed mathematical model that ade-
quately describes the process evolution is derived.
A family of candidate control configurations are
identified, and Lyapunov-based feedback control
laws are constructed for each configuration such
that closed-loop stability is guaranteed within
an associated constrained stability region. Subse-
quently, an FDI filter that observes the deviation
of the process states from the expected closed-
loop behavior is developed to detect and isolate
actuator failures. A supervisory switching logic
is then derived, on the basis of stability regions
and FDI filter information, to orchestrate switch-
ing between the available control configurations
in a way that guarantees closed-loop stability in
the event of actuator faults. The effectiveness of
the proposed FDIFTC structure is demonstrated
through simulation.

2. PROCESS DESCRIPTION AND
MODELING

Fig.1 shows a schematic of an elementary RO
desalination process. This is a single-unit RO
system with no pre-treatment or post-treatment
units. Feed brackish or seawater enter the sys-
tem through the high pressure pump. This high-
pressure water then flows across an RO mem-
brane, and low salinity product water perme-
ates. Concentrated brine then continues through a
throttling valve and is discharged at atmospheric
pressure. The RO plant consists of a high pressure
pump, the three automated valves, membrane
unit, and required plumbing and tanks. The valve
settings can be manipulated in real time based on
measurement information which includes the flow
velocities.

The first principles model of this system is based
on a macroscopic kinetic energy balance. This

Fig. 1. Single membrane unit reverse osmosis
desalination process.

model assumes an incompressible fluid and con-
stant internal volume and mass. Skin friction
through piping and the membrane system are neg-
ligible relative to hydraulic losses in the throttling
valves and across the membrane. Three ordinary
differential equations that can describe such a
system are derived and they have the following
form:
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where v1, feed velocity, is a nonlinear function of
v2, v3, and v4. v2, v3, and v4 are the velocities of
bypass discharge one, brine discharge, and bypass
discharge two respectively. ρ is the fluid density, V
is the internal volume, Wp is the power delivered
by the pump, Ap is the pipe cross sectional area.
ev1, ev2, and ev3 are the frictional valve constants.
Am is the membrane area, Km is a membrane
mass transfer coefficient, and Δπ is the osmotic
pressure. The potential manipulated inputs of
the model are the valve constants (ev1, ev2, and
ev3) which can be manipulated in practice by an
automated electric motor that partially opens or
closes the valves. The measured outputs are the
velocities of the fluid in the bypass lines, and brine
velocity (v2, v3, and v4). Internal pressure, P can
be related to feed velocity by P = Wp

v1Ap
. The

product velocity, v5, can be related to the system
pressure by v5 = AmKm

ρAp
(P − Δπ). Table 1 shows

the parameter values used for this example.
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Table 1. Process parameters and
steady–state values

ρ = 1000 kg/m3

V = 10 L
Wp = 104.4 Watts
Ap = 0.25 in2

Am = 5 m2

Km = 9.218 × 10−9 s/m
Δπ = 200 psi
es1
v1 = 100

es1
v2 = 230

es1
v3 = 10−8

vs1
2 = 1.0547 m/s

vs1
3 = 0.4625 m/s

vs1
4 = 1.07 × 10−6 m/s

P s1 = 243.7 psi

es2
v1 = 150

es2
v2 = 230

es2
v3 = 300

vs2
2 = 0.7092 m/s

vs2
3 = 0.4625 m/s

vs2
4 = 0.3546 m/s

P s2 = 243.7 psi

The control objective is to stabilize the process
at the desired steady-state. There are at least two
unique configurations that will give simultaneous
independent control of transmembrane pressure
and brine flow-rate. Configuration one, u1, uses
the back valve and the first bypass valve (ev1, ev2)
as manipulated inputs. The valves are subjected
to input constraints of the form 0 < ev1 < 200
and 130 < ev2 < 330. Configuration two, u2,
uses the back valve with the second bypass valve
(ev2, ev3) as manipulated inputs. These valves
are subjected to input constraints of the form
130 < ev2 < 330 and 200 < ev3 < 400. The
first control configuration, u1, will be considered
as the primary configuration. However, in the
event of a failure the plant supervisor may need
to implement the fall-back configuration, u2, to
maintain closed-loop stability. By observing the
evolution of the plant the FDI filters can detect
and isolate an actuator fault. If there is a fall-
back control configuration available that is able
to stabilize the RO plant, then the supervisor
will initiate a mode transition to the fall-back
configuration. These issues are addressed in detail
in the next section.

3. FAULT-DETECTION AND ISOLATION
AND FAULT-TOLERANT CONTROL

Given the properties of the dynamic model, Eq.1,
it can be shown that both configurations, u1 and
u2, satisfy the requirements of achieving fault-
detection and isolation of actuator faults (see
Mhaskar et al. (2006b) for details). This section
discusses the four steps to implement FDIFTC
on the RO process. The first step is to synthesize

stabilizing feed-back controllers for each configu-
ration. The second step is to explicitly character-
ize the constrained stability region associated with
each configuration. The third step is to design FDI
filters for each manipulated input. The final step
is to design the switching law that orchestrates
the reconfiguration of the control system in a way
that guarantees closed-loop stability in the event
of faults in the active control configuration.

To present results in a convenient form, the model
of Eq.1 is written in deviation variable form
around the desired steady state. This is defined
as x = [x1 x2 x3]T where x1 = v2 − v2s

, x2 = v2 −
v2s , and x3 = v4 − v4s . The plant can then be
described by the following nonlinear continuous-
time system:

ẋ(t) = fk(t)(x(t)) + gk(t)(x(t))uk(t)

|uk(t),i| ≤ umax
k,i

k(t) ∈ K = {1, 2}
(2)

where x(t) ∈ �3 denotes the vector of process
state variables and uk(t) is a vector of inputs
where uk,i(t) ∈ [−umax

k,i , uk
max] ⊂ �3 denotes the

ith constrained manipulated input associated with
the kth control configuration. k(t), which takes
values in the finite set K, represents a discrete
state that indexes the vector fields fk(·), gk(·) and
the manipulated inputs uk(·). The explicit form
of the vector fields can be obtained by comparing
Eqs.1 and 2 and is omitted for brevity. For each
value that k assumes in K, the process is con-
trolled via a different set of manipulated inputs
which define a given control configuration. Switch-
ing between the two available configurations is
handled by the high-level supervisor. The control
objective is to stabilize the process in the presence
of actuator constraints and possible faults. The
state feedback problem where measurements of
all process states are available for all times is
considered to simplify presentation of the results.

3.1 Constrained feedback controller synthesis

In this step we synthesize for each control con-
figuration a feedback controller that enforces as-
ymptotic closed-loop stability in the presence of
actuator constraints. To accomplish this task first
a quadratic Lyapunov function of the form Vk =
xT Pkx is defined, where Pk is a positive-definite
symmetric matrix that satisfies the Riccati in-
equality. This Lyapunov function is used to syn-
thesize a bounded nonlinear feedback control law
for each control-loop (see Lin and Sontag (1991)
and El-Farra and Christofides (2003)) of the form:

uk = −r(x, umax
k )Lḡk

Vk (3)

where
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√
(L∗̄

fk
Vk)2 + (umax

k |Lḡk
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and L∗̄
fk

Vk = Lf̄k
Vk+αVk, α > 0. The scalar func-

tion r(·) in Eqs.3 and 4 can be considered as a non-
linear controller gain. It can be shown that each
control configuration asymptotically stabilizes the
states in each mode. This controller gain, which
depends on both the size of actuator constraints,
umax

k , and the particular configuration used is
shaped in a way that guarantees constraint sat-
isfaction and asymptotic stability within a well-
characterized region in the state space. The char-
acterization of this region is discussed in the next
step.

3.2 Characterization of stability regions

Actuator constraints place fundamental limita-
tions on the initial conditions from which the
closed-loop system is asymptotically stable. It is
important for the control system designer to ex-
plicitly characterize these limitations by identify-
ing, for each control configuration, the set of initial
conditions for which the constrained closed-loop
system is asymptotically stable. This is necessary
for the design of an appropriate switching policy
that ensures the fault-tolerance of the closed-loop
system. The feedback controller of Eq.3 that is
synthesized for each configuration provides such
a characterization. Specifically, using a Lyapunov
argument, one can show that the set

Θ(umax
k ) = {x ∈ �3 : L∗̄

fk
Vk ≤ umax

k |Lḡk
Vk|} (5)

describes a region in the state-space where the
control action satisfies the constraints and the
time-derivative of the corresponding Lyapunov
function is negative-definite along the trajecto-
ries of the closed-loop system (see Christofides
and El-Farra (2004)). Note that the size of the
set depends on the magnitude of the constraints.
The set becomes smaller as the constraints be-
come tighter (smaller umax

k,i ). For a given control
configuration, the above inequality can be used
to estimate the associated stability region. This
can be done by constructing the largest invariant
subset of Θ, which is denoted by Ω(umax

k ). Initial
conditions within the set Ω(umax

k ) ensure that
the closed-loop trajectory stays within the region
defined by Θ(umax

k ), and thereby Vk continues to
decay monotonically, for all times that the kth

control configuration is active (see El-Farra and
Christofides (2001) for further discussion on this
issue). An estimate of Ω(umax

k ) is obtained by
defining a composite Lyapunov function of the
form VCk

= xT PCx, where PC is a positive defi-
nite matrix, and choosing a level set of VCk

, ΩCk
,

for which V̇Ck
< 0 for all x in ΩCk

. The value cmax
k

represents a level set on VCk
where V̇Ck

< 0.

3.3 Fault-detection and isolation filter design

The third step in implementing FDIFTC is that of
designing appropriate fault-detection filters. The
filters should detect and isolate the occurrence of
a fault in an actuator by observing the behavior of
the closed-loop process. The FDI filter design for
the primary control configuration takes the form:

dṽ2

dt
=

1
ρV

(
Wp

v1(ṽ2, v3, v4)
− 1

2
ev1(ṽ2, v3, v4)ṽ2)

dṽ3

dt
=

1
ρV

(
Wp

v1(v2, ṽ3, v4)
− 1

2
ev2(v2, ṽ3, v4)ṽ3)

r1,1 = |v2 − ṽ2|
r1,2 = |v3 − ṽ3|

(6)

Where ṽ2 and ṽ3 are the filter states for valve one
and two respectively. rk,i is the residual associated
with the ith input of the kth configuration. The
filter states are initialized at the same value as the
process states (x̃(0) = x(0)) and essentially pre-
dict the evolution of the process in the absence of
actuator faults (This assumption can be relaxed,
see Mhaskar et al. (2006b)). The residual asso-
ciated with each manipulated input captures the
difference between the predicted evolution of the
states in the absence of a fault on that actuator
and the evolution of the measured process state.
If a given residual becomes non-zero, a fault is
declared on the associated input. For a detailed
analysis of the FDI properties of the filter, see
Mhaskar et al. (2006b).

3.4 Fault-tolerant supervisory switching logic

The final step is to design a switching logic that
the plant supervisor will use to decide what fall-
back control configuration to implement given an
actuator failure. The supervisor should only im-
plement those configurations that will guarantee
closed-loop stability and do not utilize a failed
actuator. This requires that the supervisor only
activates fall-back control configurations for which
the state is within the associated stability region
at the time of fault-detection. Let the initial actu-
ator configuration be k(0) = 1, Tfault be the time
of an actuator failure, and Tdetect be the earliest
time at which the value of r1,i(t) > δr1,i > 0
(for the ith input where δr1,i

is the ith detection
threshold). The switching rule given by

k(t ≥ Tdetect) = 2 if x(Tdetect) ∈ ΩC2(u
max
2 ) (7)

guarantees asymptotic closed-loop stability if u2

does not include any faulty actuators. The switch-
ing law requires monitoring of FDI filters and
process state location with respect to fall-back
stability regions.
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4. SIMULATION RESULTS

A simulation has been performed to demonstrate
the implementation of the proposed FDIFTC
strategy on the RO plant of Fig.1. The states in
the mathematical model given in Eq.1 may not be
the system parameters of interest for the operator
because bypass flows (v2 and v4) do not inter-
act with the membrane unit. Pressure and brine
flow, P and v3, are useful parameters to regulate
because they directly effect the membrane unit.
Hence, two steady-states have been considered,
each one of them has the same system pressure
and brine flow rate (v3), but different bypass flows
(v2 and v4). The first steady-state corresponds to
bypass valve two being closed. The parameters
and steady-state values can be seen in Table 1.
Under these operating conditions the open-loop
system behaves in a stable fashion at each steady-
state.

First, nonlinear feedback control under the pri-
mary configuration, u1, was considered. The
bounded nonlinear controller was synthesized us-
ing Eqs.3 and 4, with α = 0.1. The stability region
for the primary configuration was estimated using
the Lyapunov function, V1 = xT P1x, yielding a
cmax
1 = 1 (note: this value of cmax

1 represents
a sufficiently large region of the state space for
this simulation, in general much higher values can
be considered). Fig.2 shows the evolution of the
closed-loop state profiles starting from the initial
condition v2 = v3 = 0.1m

s and v4 = 0.001m
s for

which V1(x(0)) = 0.0263. Evolution of the system
pressure is shown in Fig.3. Since the initial state
was within the stability region of the primary con-
trol configuration, V1(x(0)) = 0.0263 ≤ cmax

1 = 1,
the primary control configuration was able to sta-
bilize the system at the desired steady-state.

Next, a fault in the primary configuration (in ev1

specifically) at a time Tfault = 10 s was con-
sidered. In this case the fall-back configuration,
u2, was available with valve three, ev3, as one of
the manipulated inputs. The quadratic Lyapunov
function V2 = xT P2x and α = 0.1 was used to
design the controller. The stability region was also
estimated using V2 yielding a cmax

2 = 1.

To demonstrate the advantage of operating under
the FDIFTC structure consider the case where no
control system reconfiguration takes place after
Tfault. The system is initialized at v2 = v3 =
0.1m

s and v4 = 0.001m
s , and the primary control

configuration operates normally until the time
Tfault = 10 s. At this time valve one stops
operating and is partially closed, ev1 = 150. As
shown by the solid lines in Figs.2 and 3 the states
move away from the desired values, and settle at
a new, undesired, steady-state.
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Fig. 2. Evolution of the closed-loop state profiles
under fault-tolerant control (dashed line) and
without fault tolerant-control (solid line).
FTC recovers the desired brine flow, v3.

However, by implementing the FDIFTC structure
the fault can be mitigated. The residual value
associated with valve one, r1,1, becomes non-zero
and reaches the detection threshold, δr1,1 = 0.01,
at Tdetect = 10.004 s when the fault is declared.
The residual value associated with valve two, r1,2

remains at zero, indicating that the fault is effect-
ing only valve one. At time Tdetect the value of the
fall-back Lyapunov function is checked against the
fall-back stability region to see if switching would
guarantee stability. The value of V2(x(Tdetect)) =
0.0119 < cmax

2 = 1, so reconfiguration to the fall-
back controller, k = 2, does guarantee closed-loop
stability. The evolution of the system states and
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Fig. 3. Evolution of the closed-loop pressure pro-
file under fault tolerant control (dashed line)
and without fault tolerant control (solid line).
FTC recovers the desired operating pressure.

pressure under the proposed FDIFTC structure
can be seen in Figs.2 and 3 (solid lines). This au-
tomated reconfiguration allowed the closed-loop
system to maintain pressure and brine flow at the
desired values.

5. CONCLUSIONS

The focus of this work was to apply recently-
developed FDIFTC structures to an RO desalina-
tion process model. First, a mathematical model
that describes the process evolution was devel-
oped. A family of candidate control configurations
was then identified, and Lyapunov-based feedback
control laws were constructed for each configu-
ration such that closed-loop stability was guar-
anteed within an associated constrained stability
region. An FDI filter that observes the deviation
of the process states from the expected closed-loop
behavior was developed to detect and isolate ac-
tuator failures. A supervisory switching logic was
then derived, on the basis of stability regions and
FDI filter information, to orchestrate switching
between the available control configurations in a
way that guarantees closed-loop stability in the
event of actuator faults. These ideas were then
demonstrated in the context of an RO system
simulation. The proposed FDIFTC methodology
was able to maintain closed-loop operation at the
desired steady-state in the presence of actuator
failures.
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