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Abstract: The objective of this paper is to evaluate several control algorithms for nitrogen 

removal using a simulation benchmark of a pre-denitrifying activated sludge process. 

Various PI and feedforward controllers are evaluated and compared with advanced 

multivariable and nonlinear model predictive control, which uses a perfect process model, 

perfect measurements and perfect knowledge of the disturbances. The simulation results 

indicate that PI nitrate and feedforward-PI ammonia control closely imitates the optimal 

operation strategy as the operating costs are only slightly higher compared to the case 

when model predictive control is applied. It appears that the improvement is thus more 

related to control structure, i.e. where the sensors and the actuators are located, than to the 

control algorithms. Copyright © 2007 IFAC 
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1. INTRODUCTION 
 

Water pollution is a well known environmental 

problem worldwide due to the discharge of nutrients 

into receiving waters. Hence, stricter standards have 

been imposed by the authorities, which means that 

the need for better process control has been 

increasing. In particular, stricter standards for 

nitrogen discharge have challenged the research 

community to design and implement control 

strategies in such a way that effluent standards are 

maintained, while the total plant costs are minimized. 

As a result, both nitrification and denitrification 

processes, i.e. ammonia and nitrate removal, have to 

be operated economically.  
 

To meet these demands, different control algorithms 

have been introduced over the years. For instance, a 

sufficient nitrification can be maintained by control 

of the dissolved oxygen (DO) concentration at a pre-

selected set-point or by using a variable DO set-point 

based on ammonia concentration in the last aerated 

reactor of the plant (Ingildsen, 2002; Vrečko et al., 

2003). On the other hand, the denitrification process 

is usually controlled by manipulating the external 

carbon flow rate or internal recirculation flow rate 

based on nitrate concentration in the last anoxic 

reactor or in the last aerobic reactor (Lindberg, 1997; 

Yuan et al., 2002). Different control algorithms have 

been proposed, from simple ON/OFF and PI control 

(Ayesa et al., 2006) to complex model predictive 

(Steffens and Lant, 2002) control (MPC). 

Unfortunately, various plant configurations, influent 

characteristics and evaluation criteria have been used 

for evaluation of control algorithms. Consequently, it 

is difficult to say which control algorithm is the most 

appropriate with respect to minimal operating costs 

(OC) and best effluent quality, and whether the 

implementation of complex control algorithms is 

really necessary. 
 

This paper presents several control strategies for 

nitrogen removal that were designed and tested by a 

benchmark simulation model of an activated sludge 

process (ASP). Control strategies differ in the 

information used about the process (i.e. the number 

of sensors and sensor locations) and in the 

complexity of the control algorithms. Various simple 

PI and feedforward (FF) controllers were tested, as 

well as an advanced MPC controller, which was used 

as a reference for the other control strategies. In this 

way, the control strategy that produces optimal 

performance regarding OC and gives satisfactory 

removal of nutrients can be found.  
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The paper is organized as follows: In the following 

section a benchmark simulation model is presented. 

Then the applied control strategies are described. 

Next, the presented control strategies are assessed 

and compared in terms of OC. Finally, the most 

important conclusions are drawn. 
 

 

2. THE BENCHMARK 
 

The cooperation of the IWA Task Group and COST 

Actions 624 and 682 resulted in the development of a 

benchmark simulation model of an ASP. The 

benchmark (Copp, 2002) represents a pre-

denitrification plant with two anoxic and three 

aerated compartments. In our case one anoxic and 

four aerobic reactors (Fig. 1) were used in order to 

achieve lower effluent ammonia concentrations. The 

activated sludge model no. 1 (ASM1) is used to 

describe the biological processes in the reactors 

(Henze et al., 2000). The secondary settler is 

modelled as a non-reactive, ten-layer process with a 

double exponential settling velocity model proposed 

by Takács et al. (1991).  
 

 
 

Fig. 1. Plant layout. 

 

The benchmark defines three different weather 

situations, i.e. dry, rain and storm. All investigations 

of this paper are based on dry weather influent 

situation, given over a 14 day period. To calculate 

benchmark performance the plant is first run to the 

steady-state by simulating the plant with the defined 

constant influent file. Then, the plant simulation 

continues by twice (28 days) applying the dynamic 

dry influent file. The performance of the benchmark 

is then evaluated for the last seven days of dynamic 

data. 
 

Various criteria have been defined in the benchmark 

to assess the performance of the plant (Copp, 2002). 

In this work, operating costs that include aeration 

costs, carbon dosage costs , sludge disposal costs and 

effluent fines (EF) were used to evaluate control 

strategies, while additional investment costs for the 

implementation of the control strategy (sensors, 

actuators) were not taken into account. Within the 

benchmark also pumping costs are defined, but were 

in our case not considered as all the pumping flow 

rates were kept constant.  
 

EF are usually paid in proportion to the discharge of 

pollution into receiving waters. The cost function for 

EF which was used in our case is shown in Fig. 2 

(Carstensen, 1994; Vanrolleghem et al., 1996). 
 

 
 

Fig. 2. Cost function for effluent fines. 

 

Here, ∆α and ∆β are costs per kilogram of discharge 

below and above effluent limit concentration Climit, 

while β0 is the cost for exceeding the effluent limit. 

In our study only effluent ammonia (SNHeff) and total 

nitrogen (TNeff) were considered in the calculation of 

effluent fines. The values of cost function parameters 

are shown in Table 1. Discharge limits for ammonia 

(SNHlimit) and total nitrogen (TNlimit) were set to 4 mg/l 

and 12 mg/l, respectively.  
 

Table 1 Cost function parameters 

  

Parameter Value 

∆αNH 4 €/kg 

∆βNH 12 €/kg 

β0,NH 2.7 €/1000m3 

∆αTN 2.7 €/kg 

∆βTN 8.1 €/kg 

β0,TN 1.4 €/1000m3
 

 

 

3. CONTROL ALGORITHMS 
 

In this paper, the following manipulated variables 

were used in the control strategies: external carbon 

flow rate (Qcar), dissolved oxygen set-point (Soset) 

and oxygen transfer rate (KLa), which is related to the 

airflow rate. Other manipulated variables, such as 

internal recycle flow rate (Qa), external recycle flow 

rate (Qr) and waste sludge flow rate (Qw) were set to 

the constant values of 55338 m3/d, 18446 m3/d and 

300 m3/d, respectively. It should be mentioned that 

the default benchmark value of Qw was reduced from 

385 m3/d to 300 m3/d in order to maintain sufficient 

nitrification capacity. 
 

Boundaries of the manipulated variables were the 

same as in the benchmark. The maximum external 

carbon flow rate was limited to 5 m3/d, with a COD 

concentration of 400000 mg/l, while the oxygen 

transfer rate (KLa) values were limited between 0–

360 d-1. The upper bound of the oxygen set-point was 

limited to 3 mg/l in order to reduce unnecessary 

aeration of the aerobic reactors. Because of the 

constraints of the manipulated variables, anti-windup 

protection, similar to that used in the benchmark, was 

applied in the PI controllers. To simplify evaluation 

of the control strategies, ideal sensors (without delay 

or noise) were used.  
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3.1.  Oxygen PI control 
 

One of the most basic control strategy that can be 

applied in WWTP is to use oxygen PI control. 

Oxygen PI control uses four PI controllers that 

control DO concentrations in the aerobic reactors to 

a desired set-point by manipulating the KLa values. 

This control strategy needs four DO sensors, which 

are the most commonly used in practice for online 

control or monitoring. The control scheme of oxygen 

PI control is shown in Fig. 3. As can be seen from 

Fig. 3 a constant external carbon dosage was applied 

in our case. 

 
 

Fig. 3. Control scheme of oxygen PI control. 
 

  

3.2.  Nitrate PI and ammonia PI control 
 

In this control strategy (Fig. 4), nitrate concentration 

in the last aerobic reactor (SNO5) is controlled with a 

PI controller that manipulates external carbon flow 

(Qcar), while ammonia concentration in the last 

aerobic reactor (SNH5) is controlled with a cascade 

controller. The outer PI controller in the cascade 

control adjusts the DO set-point value (Soset) based 

on desired and actual SNH values, and the inner 

controllers manipulate KLa values based on desired 

and actual DO values. To apply this control strategy 

in practice, additional sensors for ammonia and 

nitrate concentrations are needed. 
 

 
 

Fig. 4. Control scheme of nitrate PI and ammonia PI 

control. 
 

 

3.3.  Nitrate PI and ammonia FF-PI control 
 

The idea of feedforward (FF) control is to act on the 

process when disturbances appear and before they 

cause changes in the effluent (Vrečko et al., 2003). 

In the proposed strategy, the ammonia cascade PI 

controller was upgraded with an FF control that uses 

influent flow rate (Qin) and influent ammonia 

concentration (SNHin) as measurable disturbances. 

The control scheme of nitrate PI and ammonia 

feedforward-PI control is shown in Fig. 5. 
 

 
 

Fig. 5. Control scheme of nitrate PI and ammonia 

FF-PI control. 
 

The DO set-point is calculated as the sum of PI and 

FF control: 

 

FFPIset SoSoSo +=  (1) 

 

where SoPI is the output of the ammonia PI controller 

and SoFF is the output of the FF controller. The 

response of the FF controller is proportional to the 

product of SNHin and Qin and is chosen to be non-zero 

only during high influent loads: 

 



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(2) 

 

High influent flow rates reduce hydraulic retention 

times and therefore it is important to increase DO 

concentrations fast enough to counteract the influent 

disturbances. During low influent loads the PI 

controller is sufficient to reject small influent 

disturbances, and hence the FF part can be switched 

off. The proportional factor k in (2) was set to a value 

of 2·10-2. 
 

 

3.4.  Model predictive control 
 

The idea of MPC is to calculate a control sequence 

by minimizing a certain cost function. A control 

sequence is calculated based on set-points, an 

internal model, measured disturbances and outputs 

(Maciejowski, 2002). In our case the whole 

benchmark model was used as the internal model of 

the predictive controller and all influent disturbances 

were assumed to be known in advance (i.e. over the 

future prediction horizon). This “ideal” control 

algorithm was used as a reference for the other 

control algorithms presented above. Ammonia and 

the sum of ammonia and nitrate concentrations in the 

last aerobic reactor were used as controlled variables, 

while the manipulated variables were the same as 

above. The control scheme of the MPC is shown in 

Fig. 6. 
 

 
 

Fig. 6. Control scheme of MPC. 
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Various cost functions can be used in the MPC 

algorithm. In our cost function the deviation of the 

SNH5 concentration from the desired set-point was 

included, and the soft constraint on SNH5 was used to 

additionally penalize concentrations above the 

effluent limit. A soft constraint for SNH5 was 

implemented by using a so-called “slack variable”, 

which is defined in such a way that it is non-zero 

only when the constraint is violated, i.e. when SNH5 

values exceed 4 mg/l. The other controlled variable, 

the sum of ammonia and nitrate concentration in the 

last aerobic reactor (SNH5+SNO5), was considered in 

the cost function only with the soft constraint. The 

slack variable is in this case activated when the 

SNH5+SNO5 exceeds 10 mg/l. In the cost function the 

values of the carbon flow rate were also included in 

order to penalize unnecessary external carbon 

dosing. The changes of the manipulated variables 

were penalized as well. This has the effect of 

reducing the oscillations of control signals. The 

complete mathematical expression of the cost 

function is the following: 
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(3) 

 

where zk+i|k is a vector of the predicted controlled 

outputs, rk+i|k is a vector of the future set-point 

values, ∆uk+i|k is a vector of the input future changes, 

uk+i|k is an input vector, εk+i|k is the slack variable, Hp 

is a prediction horizon, Hu is a control horizon, Q is a 

weighting matrix to penalize the error between the 

predicted process output and the set-point, R∆u is a 

weighting matrix to penalize changes in the control 

signal, Ru is a weighting matrix to penalize 

deviations of the input vector from the desired 

steady-state value (u0), while ρ is a weight to 

penalize soft constraint violations. The norm terms in 

the cost function are defined as follows: 
 

Qxxx
T

Q
=

2
 (4) 

 

 

4. TUNING OF CONTROLLERS 
 

 

4.1.  PI controllers 
 

Parameters of PI controllers were tuned from the step 

response experiments using the internal model 

control (IMC) tuning rules (Olsson and Newel, 

1999). The values of the parameters of PI controllers 

are shown in Table 2. 
 

Table 2 Parameters of PI controllers 

 

 Oxygen 

controller 

Ammonia 

controller 

Nitrate 

controller 

Kp 100 -1 -1 

Ti 0.01 d 0.2 d 0.1 d 

4.2.  MPC controller 
 

Parameters of the prediction and control horizon, the 

weights and the reference trajectory of the MPC 

affect the closed-loop behaviour of the plant. The 

weights in the cost function may be set according to 

the economic objectives of the plant, but usually they 

are adjusted in such a way that satisfactory control 

performance is achieved (Maciejowski, 2002). In our 

case, parameters were tuned based on experience 

gained from the simulations and from the tuning 

rules presented in Maciejowski (2002). Since the 

dynamics of nutrient removal processes are on a time 

scale of hours, the prediction horizon was set to 1.5 

h, which is 6 time steps (each time step was 15 min). 

In order to simplify the calculation of the input 

sequences, only one control move ∆u was optimized 

at each sampling instant (Hu=1), i.e. the control 

signal was constant during the prediction horizon. 

The parameters of the MPC can be summarized as 

follows: 
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5. RESULS AND DISCUSSION 
 

The performance of the plant strongly depends on the 

selected controller set-points. In order to determine 

optimal operating points with respect to the OC, a 

number of dynamic simulations with different set-

point values were performed for each control 

strategy. SOset, Qcar, SNH5set and SNO5set were changed 

in a range of 0.3-3 mg/l, 0-5 m3/d, 0.5-7 mg/l and 5-

16 mg/l, respectively. Set-point values that give the 

smallest OC are given in Table 3.  
 

Table 3 Optimal set-point values 

 

 Optimal values of set-

points 

Oxygen PI control Soset =0.53 mg/l 

Qcar=1.6 m3/d 

Nitrate and ammonia PI 

control 

SNH5set=2.05 mg/l 

SNO5set=8.8 mg/l 

Nitrate PI and ammonia 

FF-PI control 

SNH5set=1.9 mg/l 

SNO5set=8.8 mg/l 

MPC SNH5set=2.0 mg/l 
 

Each control strategy was simulated using the 

optimal operating set-point values (Table 3). The 

results of simulations from the 8th to the 10th days of 

influent data are shown in Figs. 7-10. Considerably 

better removal of ammonia was achieved by using 

control strategies where ammonia concentrations are 

controlled (Fig. 7). In these cases, DO concentrations 

are increased during high load periods (see Fig. 9) to 

enhance nitrification and to remove ammonia peaks 

more successfully. Ammonia peaks were lowered to 

approximately 4.5 mg/l and 3.5 mg/l with the PI and 

FF-PI ammonia controller, respectively. With 

ammonia FF-PI control, better reduction of ammonia 
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peaks was achieved because the DO concentrations 

were increased approximately one hour earlier. 

Similar DO responses were also obtained with MPC, 

and therefore only a minor improvement in ammonia 

removal was achieved.  
 

Even though the upper limit for the DO 

concentration was 3 mg/l, none of the controllers 

could manage to remove the effluent ammonia peaks 

completely. The problem is that the aeration volumes 

of the benchmark are too small and should be 

increased in order to achieve complete ammonia 

removal. An improvement in ammonia removal 

could be also achieved by increasing the sludge age 

(i.e. reducing the waste sludge flow rate); however, 

in this case sludge wash-out from the plant may 

occur during stormy weather.  
 

Comparison of carbon addition flow rates in Fig. 10 

shows that with oxygen PI control that uses a 

constant carbon flow rate too much external carbon 

is added during low influent loads, while too little 

carbon is added during high influent loads. External 

carbon can be dosed more efficiently with a PI 

controller that adds external carbon only when the 

nitrate concentration in the fifth reactor is high. The 

MPC controller starts to change external carbon 

dosing much earlier than the nitrate PI controller, and 

therefore a better reduction of effluent total nitrogen 

peaks is achieved (Fig. 8). Fig. 8 shows that during 

high influent loads the removal of TNeff peaks is 

better with oxygen PI control than with nitrate PI 

control. Namely, in the first case, low DO 

concentrations during high influent loads enable 

simultaneous denitrification in aerobic reactors, 

leading to lower TNeff. However, during low influent 

loads the TNeff concentrations are much higher in the 

case of oxygen PI control because of higher DO 

concentrations (Fig. 9). 
 

Control strategies were also evaluated with the 

criteria described in section 2. The obtained values of 

the evaluation criteria are given in Table 4. The 

largest OC and EF are obtained when only oxygen PI 

control is applied. The OC are about 5% (or 145 € 

per day) lower when nitrate and ammonia PI control 

was applied, which in addition also gives 

considerably better ammonia removal. With nitrate 

PI control and ammonia FF-PI control, the operating 

costs were reduced only slightly. However, the 

maximum values of effluent ammonia peaks were 

lowered even further. It should be mentioned that in 

reality even greater improvement can be achieved 

with FF control because of the delays of sensors and 

actuators. With MPC, almost the same operating 

costs were achieved as with simple FF control. The 

difference would be even smaller considering that an 

MPC with a perfect model, perfect measurements 

and perfect knowledge of the disturbances was used 

in the study. It appears that the additional 

information about the plant, along with the advanced 

multivariable and nonlinear control algorithm, would 

not improve the operation of the plant to such an 

extent that the investment in buying additional 

sensors and implementing more complex control 

algorithms would pay off. 
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Fig. 7. Comparison of effluent ammonia 

concentrations. 
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Fig. 8. Comparison of effluent total nitrogen 

concentrations. 
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Fig. 9. Comparison of oxygen concentrations in the 

fifth reactor. 
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Fig. 10. Comparison of external carbon flow rates. 

 

It should be also mentioned that the actual 

implementation of advanced control strategies 
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strongly depends on the effluent fines imposed by 

legislation. For example, if softer effluent fines are 

applied even smaller improvements can be obtained 

with advanced control algorithms. On the other hand, 

even heavier effluent fines would favour advanced 

control algorithms. 
 

 

Table 4 Evaluation criteria for different control 

strategies 

 

 Oxygen 

PI 

control  

SNO 

and 

SNH PI 

control  

SNO and 

SNH FF-

PI 

control 

MPC 

Aeration 

costs (€/d) 

512 

 

552 

 

552 

 

538 

 

Sludge costs 

(€/d) 

1227 

 

1206 

 

1199 

 

1220 

 

Carbon 

costs (€/d) 

192 

 

134 

 

121 

 

152 

 

Effluent 

fines (€/d) 

940 834 830 777 

Operating 

costs (€/d) 

2871 2726 2702 2687 

 

 

6. CONCLUSIONS 
 

In this paper, several control strategies for nitrogen 

removal in an ASP were evaluated using a 

benchmark simulation model (BSM1). The aim of 

the study was to investigate the differences between 

the controllers in terms of operating costs. In the 

study, various simple PI and FF controllers, as well 

as a more advanced MPC controller, were evaluated. 

Controllers differ in the information that is used 

about the process and in the complexity of the 

control algorithms. 

 

It was shown that with nitrate PI and ammonia FF-PI 

control almost the same optimal operating costs can 

be achieved as with more advanced MPC algorithm. 

It is expected that in reality the differences between 

advanced MPC algorithms and relatively simple PI 

and FF control algorithms would be even smaller 

considering that an MPC with a perfect model, 

perfect measurements and perfect knowledge of the 

disturbances was used in the study. Hence, the 

improvement is thus more related to control 

structure, i.e. where the sensors and the actuators are 

located, than to the control algorithms.  
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