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Abstract: Intracellular calcium Ca2+ is a ubiquitous second messenger used
to activate various cellular processes, including muscle contraction, fertilization
and development of deuterostome eggs, cell growth, neuromodulation, synaptic
plasticity and sensory perception. In this work we propose a feedback control
scheme for both control and synchronization of intracelullar calcium dynamics. The
control scheme is based on a high-order robust sliding control approach. Numerical
simulations shows the e ectivity of the feedback control laws to synchronize two
calcium oscillators and for regulation and tracking of a single calicum oscillator.
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1. INTRODUCTION

Ca2+ oscillations trigger di erent cellular func-
tions, including muscle contraction, heart beat,
cell death, brain processing and store information
(Berridge et al., 1998). To do all of this, Ca2+ acts
as an intracellular messenger, relaying information
within cells to regulate their activity (Goldbeter,
1996). To coordinate all of these functions, Ca2+

signals need to be flexible yet precisely regulated,
thus control actions are neccesary. In this paper
we introduce a feedback control law for coordi-
nation and control of intracellular calcium func-
tions. In particualr, we introduce a versatile non-
linear feedback control scheme that can be used in

the synchronization, suppression/regulation and
tracking of the nonlinear behavior displayed by a
intracellular Ca2+ model. By manipulation of an
external input with a feedback control scheme, we
can (i) suppress intracellular calcium oscillations,
and (ii) can enforce two calcium oscillators to
chaotic synchronization, via simple and complex
oscillations of influx of Ca+2.

For control and synchronization of simple to com-
plex oscillations there are several control ap-
proaches that can be used in biological systems
(Fradkov and Pogromosky, 1998). However, in
this paper we introduce the application of a new
sliding type control approach that has three nice
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features for biological applications: (i) robustness
against model uncertainties, (ii) simplicity in the
design, and (iii) switched type responses.

The sliding-mode control schemes, have shown
several advantages like allowing the presence of
matched model uncertainties and convergence
speed over others existing techniques as Lyapunov-
based techniques, feedback linearization and ex-
tended linearization (Aguilar-Lopez and Alvarez-
Ramirez, 2002). On the other hand, standard
sliding-mode controllers has the main drawback
that the closed-loop trajectory, of the designed
solution, is not robust even with respect to the
matched disturbances on a time interval preceding
the sliding motion. Indeed, the classical sliding-
mode controllers are robust in the case of matched
disturbances only, so that the designed controller
ensures the optimality only after the entrance
point into the sliding mode. To try to avoid the
above disadvantage the high-order sliding-mode
technique has been proposed (Sira-Ramirez, 2000;
Scarry et al., 2000; Levant, 2001). This control
scheme consider a fractional power of the ab-
solute value of the tracking error, coupled with
the sign function, this structure provides several
advantages as simplification of the control law,
higher accuracy and chattering prevention (Lev-
ant, 2001). In this paper, a second order sliding-
mode controller coupled with an integral action
is applied for the control and synchronization of
intracellular calcium dynamics.

2. INTRACELLULAR CALCIUM MODEL

The mechanisms underlying the spatial and tem-
poral patterns of the global Ca2+ response have
been investigated extensively in recent years (see,
for example, Goldbeter, 1996 and references there
in). The mechanism of Ca2+ oscillations and that
of associated waves rests on the regulation of Ca2+

levels within the cell.

A variety of models for Ca2+ oscillations and
waves have been proposed (Schuster et al., 2002
and references therein). Di ering by the degree
of detail with which the dynamics and control
of the InsP3 receptor are treated, most of these
models are based on CICR as the main instability-
generating mechanism. We consider the model of
Houart et al. (1999), which exhibits a diversity
of calcium responses, notably steady states, spik-
ing and bursting oscillations, multirhythmic and
chaotic regimes. The model contains three vari-
ables, namely the concentrations of free Ca2+ in
the cytosol ( 1) and in the internal pool ( 2), and
the IP3 concentration ( 3).

Table 1. Parameter values correspond-
ing to the various types of simpe and
complex oscillatory behavior of Fig. 1
(Taken from Houart et al., 1999)

( ) ( ) ( ) ( ) ( ) ( )

0.6 0.46 0.65 0.1 1 13
2 0.1 0.1 0.1 4 2 4
5 1 1 0.3194 2 4 2

3 0.2 0.1 0.1 2 1 1
0.4 0.6 1 0 2 2 2

2 0.2 0.2 0.3 1 2 2 2

1 0.5 0.3 0.6 2 6 6 6
10 10 10 3 20 20 30
1 1 1 4 2 2.5 3

5 1 1 1

1
= 2 + 3 + 2 1 (1)

2
= 2 3 2 (2)

3
= 4 5 3 (3)
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0 refers to a constant input of Ca2+ from the ex-
tracellular medium and 1 is the maximum rate of
stimulus-induced influx of Ca2+ from the extracel-
lular medium. Parameter reflects the degree of
stimulation of the cell by an agonist and thus only
varies between 0 and 1. The rates 2 and 3 refer,
respectively, to pumping of cytosolic Ca2+ into
the internal stores and to the release of Ca2+ from
these stores into the cytosol in a process activated
by cytosolic calcium (CICR), 2 and 3 denote
the maximum values of these rates. Parameters
2, 2 , 1 and 3 are threshold constants

for pumping, release, and activation of release by
Ca2+ and by IP3, is a rate constant measuring
the passive, linear leak of 2 into 1 relates
to the assumed linear transport of cytosolic Ca2+

into the extracellular medium, 4 is the maximum
rate of stimulus-induced synthesis of InsP3. 5 is
the rate of phosphorylation of IP3 by the 3-kinase,
it is characterized by a maximum value 5 and a
half-saturation constant 5 (Houart et al., 1999).

2.1 Open-loop behavior

Figure 1(a) shows typical Ca2+ oscillations gener-
ated by the model. Although simple Ca2+ oscil-
lations resembling those shown in Fig. 1 are usu-
ally observed in response to external stimulation,
complex oscillations have also been reported in ex-
periments performed with hepatocytes responding
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Fig. 1. Simple and complex intracellular Ca2+ os-
cillations. (a) Simple oscillations, (b) bursting
oscillations and (c) chaos. Parameter values
are given in Table 1.

to a variety of agonists (Houart et al., 1999 and
references there in). With appropriate parameter
values the model can display complex Ca2+ oscil-
lations, including bursting, chaos and quasiperiod-
icity. Two sets of parameter values corresponding
to these modes of complex oscillatory behavior are
listed in Table 1. The di erent types of oscillations
are illustrated in Fig. 1.

2.2 Equilibrium points and zero-dynamics

In this section, first the equilibria points of the
Ca2+ model are provided and the local stability is
analyzed and secondly, the stability of the zero
dynamic is established. The system parameters
used to perform these analyzes are given in Table
1 (c).

The equilibrium points of autonomous systems
satisfy the condition

•
= ( ) = 0. It is important

to realize that since the states in the Ca2+ model
should not necessarily be zero for any realistic
condition, since it involves an oscillatory behavior,
the local stability of the set of equilibrium points
is of interest rather than the equilibrium points
itself. The equilibrium points for Ca2+ model are

= [0 33 0 7812 0 1365]

The Jacobian matrix in which is a 3×3 matrix
is given by

=
9.13 2.55 30.89
-19.13 -2.55 -30.89
-2.10 0 -13.9

Eigenvalues for the above matrix are 1 6332 ±
5 5528 10 5838. Thus, the eigenvector is locally
unstable at .

Zero dynamics of a system are defined as the min-
imal order dynamics of its inverse. For nonlinear
systems, such as the Ca2+model, the realization
of this inverse could be very complicated. How-
ever for a ne control systems that are partially
controlled, it is possible to asses the stability prop-
erties of the zero dynamics following the dynam-
ics of the uncontrolled states (Maya-Yescas and
Aguilar-Lopez, 2003). Following the methodol-
ogy proposed in (Maya-Yescas and Aguilar-Lopez,
2003), zero dynamics stability of the Ca2+ model
was investigated and we have found that the zero
dynamics is stable.

3. NONLINEAR FEEDBACK CONTROL
DESIGN

In this section we develop a nonlinear feedback
control scheme for control and synchronization of
intracellular calcium oscillations. A di culty in
the models of calcium signaling is the uncertainty
about the values of the rate constants, kinetic
values and di usion coe cient. For control design
we chose the free calcium (Ca2+) concentration as
the measurable dynamic variable (Schuster et al.,
2002), because this is the quantity most frequently
measured (for instance, Ca2+ can be measured
using fluorescent dyes). On the other hand, in the
following, we consider an external influx of Ca2+

as the control input. Influx of Ca2+ from outside
the cell is know to a ect the frequency of Ca2+

oscillations and waves (Smith et al., 2002).

Control objectives are (i) the regulation or track-
ing of Ca2+ dynamics to a steady state or a desired
periodic or chaotic behavior, (ii) the synchroniza-
tion of the output of a single Ca2+ oscillator to
an array of Ca2+ oscillators by manipulation of
the influx of Ca2+ = from the extracellular
medium. Then,

1
= 2 + 3 + 2 1 (5)

= ( ) = 1 (6)

The control input is a plausible manipulated
variable since it is more readily amenable to
experimental manipulation (Marhl and Schuster,
2003; Goldbeter, 1996). The above equation can
be written as,

1
= ( ) + ( ) (7)

( ) = 3 2 + 2 1

The function ( ) contains model uncertainties
related to kinetic parameters. In this case ( ) =
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1 In the worst case, the function ( ) is assumed
to be unknown. The output systems dynamics can
be obtained from (5) and (6) as:

= ( ( ) + ( ) ) (8)

Let = 1 be a desired trajectory and
•

be the time-derivative of the desired trajec-
tory signal. A desired sliding trajectory is pro-
posed as

•
= 1( ) + 2

Z
0

½
( )

| |1
¾

(9)
where 1 and 2 are control design parameters.

Defining = as the trajectory error,
we have that the error dynamics is governed by

•
= ( ( ) + ( ) ) 1( ) (10)

2

Z
0

n
( ) | |1

o

then, a ideal control law is given by

=

μ
( )

¶ 1μ
( ) +

¶
(11)

= 1( )

2

Z
0

n
( ) | |1

o

The above control leads to 0 as
i.e., The synthesis of the ideal control
law requires accurate knowledge of the term ( )
to be realizable, which, however is uncertain. By
exploiting the properties of the sliding part of
the sliding-mode type controllers to compensates
uncertain nonlinear terms, the knowledge of the
nonlinear term ( ) can be avoided. Thus, the
following practical controller can be introduced as,

=

μ
( )

¶ 1

( ) (12)

= 1( ) 2

Z
0

½
( )

| |1
¾

Summarizing, our feedback control scheme (12)
is composed by a proportional action, which has
stabilizing e ects on the control performance, and
a high order sliding superfice, which compensates
the uncertain nonlinear terms to provide robust-
ness to the closed-loop system. This behavior is
exhibited because, once on the sliding surface,
system trajectories remain on that surface, so the
sliding condition is taken and make the surface
and invariant set. This implies that some distur-
bances or dynamic uncertainties can be compen-
sated while still keeping the surface an invariant
set.
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Fig. 2. Regulation of intracellular Ca2+ oscilla-
tions to reference Ca2+ = 0 35

Fig. 3. Influx of Ca2+ for the regulation of in-
tracellular Ca2+ oscillations to a constant
reference.

4. NUMERICAL SIMULATIONS

We have taken the following three cases in order
to illustrate the control performance: (i) regula-
tion or suppression of periodic Ca2+ oscillations
to a constant reference value, (ii) enforcing of
periodic behavior to a di erent periodic Ca2+

oscillations, and (iii) synchronization of two cal-
cium oscillators In all cases the control action is
activated at = 10 0 and = 2

4.1 Regulation of Intracellular Ca2+

Let the desired controlled behavior be a constant
reference value, i.e., Ca2+ = 0 35 In this case
we have set the control design parameters 1 and
2 as 2.5 and 0.25 respectively. The simulation
results are shown in Figures 2 and 3. Note that
the proposed controller maintains the Ca2+ con-
centration around a small neighborhood of the
reference value via the complex oscillations of the
influx of Ca2+ shown in Figure 3. By increasing
of control parameters, we can successfully perform
the complete suppression of the intracellular Ca2+

nonlinear dynamics with larger amplitude oscil-
lations of the influx of Ca2+. It should be noted
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Fig. 4. Enforcing of intracellular Ca2+ to a peri-
odic reference Ca2+ = 0 35 + sin(0 5 )

Fig. 5. Corresponding control input (influx of
Ca2+) for Figure 4.

that interestingly, complex oscillations of influx of
Ca2+ signal leads to a a stationary output of the
intracellular Ca2+ concentration.

4.2 Enforcing of Intracellular Ca2+

Let the desired controlled behavior be a constant
reference value, i.e., Ca2+ = 0 35 a sinusoidal
signal Ca2+ = 0 35+sin(0 5 ). Control design pa-
rameters are given as 1 = 7 5 and 2 = 0 35. The
simulation results are shown in Figures 4 and 5. It
can be seen from Figure 4 that the control inputs
is periodic influx of Ca2+. Such results indicate
that oscillatory Ca2+ signals evoked by external
stimuli require the periodic variation of the in-
flux of Ca2+ This conclusion can be related to
the observation made in numerous experimental
and theoretical studies that forcing an oscillatory
system by a periodic input can readily produce
simple and complex periodic behavior (Marhl and
Schuster, 2003).

Numerical results for regulation and enforcing
tasks via the manipulation of the external influx
of Ca2+, i.e., the sum 0 + 1 , via our feedback
control scheme, are in accordance with experimen-
tal and theoretical studies. Indeed, it can be seen
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Fig. 6. Synchornization of two intracellular Ca2+

models.

Fig. 7. Corresponding influx of Ca2+ for Figure 6.

that oscillations can be triggered by an increase
in due to stimulation by an external signal, or
simply by an increase in 0 originating from an
increase in extracellular Ca2+ On the other hand,
bringing the value of 0 down to zero eventually
suppresses the oscillations and the hypothesis of
a constant input 1 from the IP3-sensitive Ca2+

store also ceases to hold in these conditions, as
this store can no more be replenished (Marhl and
Schuster, 2003; Goldbeter, 1996).

4.3 Synchronization of two intracellular Ca2+

models

Let us consider the chaotic synchronization of two
models of intracellular Ca2+. Synchronization of
intracellular Ca+2 is known to occur in a large
number of cells, which is often associated with
waves spreading within the intracellular environ-
ment (Perc and Marhl, 2004). In the standard
terminology of chaos synchronization, the first os-
cillator is considered as the master subsystem, and
the second oscillator is considered as the slave sub-
system. The synchronization objective is that the
slave oscillator follows the dynamics displayed by
the master oscillator. Control design parameters
are given as 1 = 6 0 and 2 = 0 01. Simulation
results are shown in Figures 6 and 7. Synchro-
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nization is obtained with forcing oscillatory influx
of Ca2+ that is very similar to the basic Ca2+

oscillation. The forcing signal could be seen as a
signal from an adjacent cell, which stimulates the
synchronized oscillations, stimulates the cell
to oscillate with the same temporal pattern as its
neighbors (Marhl and Schuster, 2003).

5. CONCLUSIONS

In this work, we have presented a nonlinear feed-
back control approach for control and synchro-
nization of the intracellular calcium nonlinear dy-
namic. The significance of Ca2+ oscillations stem
from the crucial importance of this ion in the
control and coordination of many key cellular
processes. In both cases, i.e., control and syn-
chronization, the free Ca2+ is manipulated as a
function of external influx of Ca2+ Our control
approach is composed by an proportional stabi-
lizing action and an high order sliding-mode con-
tribution. The key feature of this control approach
is that a simple design with good robustness and
performance capabilities is obtained, which ex-
ploits the robustness properties of the high order
sliding-mode contribution to deal with model un-
certainties. We have shown via numerical simula-
tions the satisfactory performance of the proposed
control scheme for both control and synchroniza-
tion tasks. In spite that our results have been
obtained for a simple intracellular Ca2+ model,
we expect that the control approach presented
here could be used in more detailed models of
intracellular Ca2+ models where an external input
can be manipulated, since the proposed high-order
sliding mode approach is robust against uncertain,
unknown or poorly known parameters.
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