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Abstract:

Mathematical models of complex biological systems often consist of sets of ordinary
differential equations which depend on several non measurable parameters that
must be estimated by fitting the model to experimental data. However this
fitting can be only accomplished for the cases that practical identifiability may

be guaranteed.

This work proposes an iterative optimal experimental design procedure, consisting
of three main steps (identifiability analysis, ranking of parameters and the design
of optimal dynamic experiments), so as to maximize identifiability, that is the
ratio quantity /quality of information for model calibration. The applicability and
advantages of using such procedure are illustrated by considering an example
related to the modelling of a cell signaling cascade. Copyright (©2007 IFAC
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1. INTRODUCTION

Since the recognition of the role of the malfunc-
tion of cell signaling pathways, particularly those
involving phosphorylation cascades, in the devel-
opment of diseases such as cancer, many efforts
have been devoted to their mathematical model-
ing. The aim is to provide a systematic framework
to generate hypothesis and make predictions “in
silico”, to get a better insight into the disease
process and ultimately to identify potential drug
targets (Ideker et al., 2001; Kitano, 2002).

Most models are based on viewing cellular signal-
ing pathways as networks of biochemical reactions
(Kholodenko, 2006). Such models consist of sets
of non-linear ordinary differential equations that
depend on several parameters (kinetic constants,
initial concentration of some proteins, etc.) which
are not measurable and must therefore be esti-
mated by fitting the model to experimental data.
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The model calibration is performed by minimizing
a cost function which quantifies the differences
between model predictions and measurements.
However the results will be satisfactory only if the
sources of information are of a sufficiently high
quality. Unfortunately, experiments in molecular
biology rarely produce large and accurate data
sets (Kutalik et al., 2004), thus often resulting in
the impossibility of calculating unique values for
the parameters.

Optimal experimental design (OED) of dynamic
experiments consists of the determination of the
scheme of measurements and stimuli profiles that
maximize the amount and quality of information
extracted from the experiemt(s), as measured by
the Fisher Information Matrix, with the aim of
estimating the parameters with the greatest pre-
cision and/or decorrelation (Banga et al., 2002;;
Asprey and Macchietto, 2002).



Although the potential of the design of optimal
dynamic experiments has been exploited in other
scientific areas, this seems not to be the case in
the context of systems biology, where only a few
studies have recently appeared. Faller et al.(2003)
made use of simulations to calculate polynomial
input profiles in order to enhance parameter esti-
mation accuracy for a MAP kinase cascade; Ku-
talik et al. (2004) proposed the calculation of op-
timal sampling times so as to reduce the variation
of the parameter estimates.

This work proposes an iterative experimental de-
sign procedure which involves several steps: iden-
tifiability analysis, ranking of parameters and the
rigorous solution of the optimal experimental de-
sign problem. Particular attention will be paid
to the OED problem which is formulated as a
general dynamic optimization problem (Banga et
al., 2002) and solved using the so called control
vector parameterization approach (CVP). As a
result, a usually multimodal non-linear program-
ming problem (NLP) is obtained therefore the use
of global optimization methods is required.

2. OPTIMAL DYNAMIC EXPERIMENTAL
DESIGN ITERATIVE PROCEDURE

Model development can be regarded as a cycle
comprising a number of phases. Once the model
structure has been established based on a pri-
ort phenomenological knowledge and hypothesis,
experimental data is used to obtain a first es-
timate of the model unknown parameters. This
task is often rather complicated, mainly due to
the following reasons (Rodriguez-Fernandez et al.,
2006):

e large number of parameters

e multimodality (several sub-optimal solutions)

e presence of practical identifiability prob-
lems, that is, the impossibility of calculating
unique values for all parameters.

Global optimization methods, particularly sto-
chastic global methods, have shown excellent
properties in dealing with the multimodality prob-
lem even for the cases when the number of para-
meters is large and/or the order of magnitude is
unknown, as recently illustrated by Rodriguez et
al., (2006) and Egea et al., (2006).

However practical identifiability problems pose
new difficulties which are hardly solvable unless
an appropriate experimental scheme is used. This
work proposes an iterative experimental design
procedure (Figure 1) which involves (i) performing
a ranking of the parameters; (ii) the computation
of the correlation matrix and robust confidence
intervals for the parameters so as to evaluate iden-
tifiability problems and finally, (iii) the solution
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of an optimal experimental design problem via
dynamic optimization.
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Fig. 1. Optimal dynamic experimental design it-
erative procedure

3. RANKING OF PARAMETERS

Let us assume a general dynamic model in ordi-
nary differential equations:

dx
pn =f(x,u,v,0,t) (1)
y(ts,u,v,O) = g(x(u,v,@,tf),@,tf) (2)

where x € X C R" are the state variables,
y € Y C R™?s is the vector of ng discrete time
measurements tj, u € U C R"™ corresponds
to the external factors (inputs or stimuli), v €
V' C R" includes the sampling times, experiment
durations and the initial conditions, and 8 € © C
R™ is the vector of model parameters.

Local parametric sensitivities for a given exper-
iment iz at a given sampling time t¥ are then
defined as follows:

0
Sw(tk) yz ( ) 1=1. nobs;jzl"'né(?))
09;
The relative sensitivities, sw = AA;I-]; %yg , can
i J

then be used to asses the individual local parame-
ter importance, that is to establish a ranking of
parameters. Brun and Reichert (2001) suggested
several importance factors, that may be general-
ized for the case of having several observables and
experiments as follows:
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Ranking the parameters according to these cri-
teria, preferably in decreasing order, results in a
parameter importance ranking. 6" and §"m*s
quantify how sensitive is a model to a given pa-
rameter considering in 6" interactions between
parameters. 6™%® and 6™ indicate the presence
of outliers and provide information about the sign.
o™ee™ provides information about the sign of the
averaged effect a change in a parameter has on the
model output.

4. (PRACTICAL) IDENTIFIABILITY
ANALYSIS

Once an experimental scheme has been estab-
lished it is necessary to numerically investigate its
properties. In this regard, the use of the confidence
regions for the parameter estimates provides in-
formation on practical identifiability (the smaller
and rounder the confidence region, the better the
experimental scheme) and allows for the compar-
ison among alternative experiments.

The most widely used approach to calculate con-
fidence regions is based on the so called Cramér-
Rao inequality (Ljung, 1999) which relates the
Fisher Information Matrix with the inverse of the
parameters correlation matrix. However, and due
to the nonlinear nature of the models under con-
sideration, the use of the Cramér-Rao inequality
may give a wrong estimation of the real confidence
regions.

This work proposes, instead, the use of a more
robust Monte-Carlo based approach (Walter and
Pronzato, 1997). The underlying idea is to gener-
ate different sets of noisy simulated measurements
and to solve the corresponding parameter estima-
tion problem; different experiments will lead to
different identified parameters allowing to obtain
a “cloud” of solutions which represents the con-
fidence region. The results achieved are plotted
by pairs of parameters, revealing identifiability
problems, correlation type between parameters
and degree of precision in the estimation.

5. OPTIMAL EXPERIMENTAL DESIGN
5.1 Fisher Information Matriz
Here we assume the model calibration is per-

formed by minimizing the so called least squares
function:
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(9)

where AY;® = §i* —yi®(0), §i* € Y C R is the
vector of sampling data for the observable i in the
experiment iz, yi* € Y C R"= the corresponding
model predictions and Q¥* € Q C R™*"s is a
nonnegative definite symmetric weighting matrix
related to the experimental error.

Under certain assumptions it may be concluded
that the practical identifiability can be improved
through the maximization of the so called the
Fisher Information Matrix (FIM) (Ljung, 1999):

Texp Nobs

FIM =Y "> [Voy'"]

iz=1 i=1

T (01)QE [Voyi®] (6%)(10)

where [Vjyi*] is the matrix (€ R™:*"¢) of para-
metric sensitivities for the observable ¢ in the
experiment iz as calculated for a given vector of
parameters 0% assumed to be close the “real” one.

5.2 Mathematical formulation of the OED problem

The optimal experimental design (OED) problem
may be formulated as a general dynamic opti-
mization problem as follows: Calculate the time-
varying manipulable variables (stimuli), sampling
times, experiment durations and (possibly) initial
conditions so as to mazimize (or minimize) a
scalar measure of the FIM:

Joep = ¢(FIM) (11)
subject to the system dynamics as summarized in
Eqns. 2 and other algebraic constraints related to
experimental limitations: u”(t) < u(t) < u¥(t)
and vl <v <vU.

The maximization of the FIM may be achieved
through the definition of suitable cost functionals
Joep (Vanrolleghem and Dochain, 1998). The
most popular are:

e D-optimality: max ¢p = det(FIM)
e FE-optimality: max ¢p = \pin(FIM)

e Modified E-optimality: min ¢. = %

The following interpretation can be given to each
of these criteria: D-optimality designs result in the
smallest volume of the confidence region in the pa-
rameter space and indicates the quantity of infor-
mation provided by the experiments. E-optimality
intends to minimize the maximum error on the
parameter estimates. And Modified E-optimality
regards the relationship between the maximum
and minimum error, the closer its value to one,
the more homogeneous the distribution of the in-
formation among the parameters so the maximum



decorrelation among them. Note however that
whereas D- and E-optimality tend to minimize the
size of the confidence hyper-ellipsoid, Modified E-
optimality tends to make it rounder regardless the
size.

Every FIM based criteria may lead to different
experimental designs and without no extra infor-
mation it will be impossible to decide which will
be the most convenient. Here we propose to use
a practical identifiability analysis to compare the
properties of the different designs.

5.8 Numerical techniques

The most widely used approaches to solve dy-
namic optimization problems, as recently re-
viewed by Banga et al. (2005), are based on the
transformation of the original infinite dimension
optimization problem into a nonlinear program-
ming problem (NLP). From the different alterna-
tives, the control vector parameterization (CVP)
approach is selected here as it allows for the design
of a number of simultaneous experiments with sev-
eral inputs and for the general case of large scale
models without solving excessively large nonlinear
optimization problems.

The CVP method proceeds dividing the duration
of the experiments into a number of elements and
approximating the stimuli profiles using low order
polynomials. The linear or constant approxima-
tions are the most convenient since they can be
implemented in practice, meeting experimental
constraints.

As a result, a nonlinear optimization problem
must be solved with an initial value problem
embedded. The decision variables the polynomial
coefficients, the experimental durations, the sam-
pling times and the initial conditions. The evalu-
ation of the FIM dependent cost function requires
the simulation of the system dynamics and the cal-
culation of the parametric sensitivities, computed
here by means of ODESSA (Leis and Kramer,
1988).

Local and global optimization methods

The NLPs arising from the application of the
CVP method are frequently multimodal (present-
ing multiple local optima) (Banga et al., 2003).
Therefore, deterministic (gradient based) local op-
timization techniques may converge to local op-
tima, especially if they are started far away from
the global solution. In order to surmount these
difficulties, global optimization methods must be
used.

In this regard, stochastic GO methods have been
successfully applied to solve nonlinear dynamic
optimization problems (Banga and Seider, 1996;
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Banga et al., 2005), being therefore good can-
didates for solving optimal experimental design
problems. Note that this type of approaches can
not guarantee global optimality, but they may
approach its vicinity (sometimes the best known
solution) with relative efficiency.

This work makes use of a population based
method, Differential Evolution (DE, Storn and
Price, 1997 ) due to its demonstrated robustness
in the solution of a collection of nonlinear opti-
mization problems.

6. ILLUSTRATIVE EXAMPLE: A MAP
KINASE SIGNALING PATHWAY

MAP kinase family members have been found to
regulate diverse biological functions by phospho-
rylation of specific target molecules (such as tran-
scription factors, other kinases, etc.) found in cell
membrane, cytoplasm and nucleus. We consider
here the so called ERK module, that involves the
activation of ERK via MEK.

6.1 Mathematical model

The last step of the signaling cascade is repre-
sented as a biochemical reaction network (as in
Faller et al., 2003). The application of the mass
action law to each of those reactions result in
the following set of non-linear ordinary differential
equations:

f1201*$3—a3*$1*u+b3*$4+
Cq *Tg — Qo * T1 * P+ by * x5
To=C3%X3 —ayg % To* P+ by * g
g3=arxExu— (b +c1)*x3
Za=asg*xxyxu— (bg+ c3)* x4
T5=ags*xx1 * P — (b + c2) *x x5

g =agxxo % P — (by+cq) * x4 (12)
where x; for ¢ = 1...6, stands for the concentra-
tions of FRK*, ERK**, ERK—MFEK*, ERK*—
MEK*, ERK*— P and Erk* — P, respectively.
P regards the phosphatase (P = Pyt — 5 — Zg)
and F the kinase FERK (F = Ejot — 21 — x2) con-
centrations. The parameters a; denote the rates
at which the substrate binds to the enzyme, b;
denote the corresponding breaking rates, and c¢;
denote the rate at which the actual activation
reaction occurs. The initial concentrations x;(to)
of all phosphorylated Erks and complexes of phos-
phorilated Erks with Meks or phosphatases are
zero. The stimulus u corresponds to M EK™**(t)
verifying 2 < wu(t) < 12 (arbitrary units) and
the observables are the activated ERK** and the



total FRK. The nominal values for the parame-
ters and total quantities are: a; = 0.5, b; = 0.6,
c; =09Vi=1,...,4; Erk;,; =50 and P;,; = 20.

6.2 Ranking of parameters

In order to check which are the most relevant
parameters in the model a ranking was performed
using a number of different constant stimulus
experiments over the accepted range for u.

2.5

2

1.5

1

Rank value

0.5

al c3 c¢1 a4 bl a3 ¢4 c2 b3 a2 b2 b4

Fig. 2. Ranking of parameters. Ordered by de-
creasing pmsqr-

The model is specially sensitive to a1, c2, ¢1, a4
and by. If a structural identifiability analysis is
performed it is concluded that from the given
observables it is impossible to simultaneously es-
timate a1 and all the other parameters. Therefore
we will assume a; known and perform the opti-
mal experimental design for the remaining most
important parameters cs, c¢1, a4 and by.

6.3 Practical identifiability analysis for a typical
experiment

In practice the experiments are usually performed
under constant stimulus. What would happen if
we try to estimate cs, c1, aq and by from such an
experiment? The practical identifiability analysis
may help to answer this question. A constant
stimulus of u = 4, 20 equidistant sampling times
and 10% Gaussian noise in the experiments were
used. The corresponding correlation matrix is
shown in Figure 3.

c3 0.8
0.6
0.4

c1 0.2
0

b1 -0.2
-0.4
-0.6

a4 0.8
-1

c3 cl b1 a4

Fig. 3. Correlation matrix for a typical constant
stimulus experiment.
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The parameters are not highly correlated but the
robust confidence ellipsoids reveal errors up to
85% when trying to estimate their values.

6.4 Design of optimal dynamic experiments

Based on conversations with experimental biolo-
gists the following constraints were imposed for
the optimal experimental design problem:

e Two experiments with two steps each.

e The duration of the experiment is free: 30 <
t}z <90 min.

e 20 equidistant or 15 optimal sampling times.

e 10% Gaussian noise.

e As the parameters are not highly correlated,
D-optimality criterion is chosen so as to min-
imize the size of the confidence regions.

In order to check for the multimodality of the op-
timization problem, a multistart of a local method
was used. Results are illustrated in Figure 4.
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Fig. 4. Multistart of a local NLP solver.

From this Figure it becomes apparent the presence
of multiple suboptimal solutions, therefore the use
of a global optimization method is required.

The use of the population based method DE
(Storn and Price, 1997) lead to the optimal ex-
perimental design in Figures 5 and 6.
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Fig. 5. Optimal (dynamic) experiment 1.

The comparison of the confidence regions for the
constant stimulus case (Exp. Scheme (a)) with the
two optimal dynamic experiments with equidis-
tant (Exp. Scheme (b)) and optimally located
sampling times (Exp. Scheme (c)), reveals that,
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Fig. 6. Optimal (dynamic) experiment 2.

even for the worst case, OED may largely improve
results, as shown in Figure 7. Remark that the
maximum predicted errors for the Schemes (b)
and (c) correspond to values of 30% and 16%
respectively.

Exp. scheme 1
Exp. scheme 2
®Exp. scheme 3

0.8

07 08 09 1

Fig. 7. Comparison of confidence intervals for 3
experimental schemes (worst case).

7. CONCLUSIONS

Reliable model calibration in systems biology
largely depends on the quantity and quality of the
experimental data. This work proposes the use of
an iterative procedure based on the computation
of a ranking of parameters, identifiability analysis
and optimal dynamic experimental designs with
the aim of maximizing practical identifiability.

The results obtained for a simple signaling path-
way clearly indicate that dynamic experiments
combined with optimal sampling times yield bet-
ter results than the classical experiments using
constant stimulus and equidistant measurements.
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