
10th  International IFAC Symposium  on
Computer Applications in Biotechnology

 
 
 
 
 
 
 
 
 
 

A GENERAL KINETIC MODEL STRUCTURE  
SIMULATION AND EXPERIMENTAL VALIDATION 

 
 

Aline Grosfilsa, Alain Vande Wouwerb and Philippe Bogaertsa 

 
 
 

aService de Chimie générale et Biosystèmes, Université Libre de Bruxelles, Belgium, 
bService d’Automatique, Faculté Polytechnique de Mons, Belgium 

 
 

 

Abstract: In this study, a general kinetic model structure is proposed, which can describe 
various effects such as activation, inhibition and saturation. Its main advantage lies in an 
associated identification procedure allowing identifiability problems to be (at least partly) 
alleviated. The usefulness of the proposed model is tested with simulated as well as with 
experimental data. Copyright © 2007 IFAC 
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1. INTRODUCTION 

 
Macroscopic models of bioprocesses consist of a 
system of mass balances for macroscopic species 
(biomass, main substrates and products of interest) 
involved in a reaction scheme describing the main 
phenomena occurring in the cell culture (Bastin and 
Dochain, 1990). 
 
The derivation of a biologically sound model implies 
the a priori selection of a reaction scheme and a 
kinetic model structure. In recent years, several 
methods for the determination of macroscopic 
reaction schemes have been proposed. A first 
category of methods is based on model reduction 
procedures and start from a detailed metabolic 
network of intracellular reaction pathways (Haag et 
al, 2005; Provost and Bastin, 2004). If no 
information about metabolic pathways is available, a 
second category of methods attempt to directly 
determine a macroscopic reaction scheme linking the 
(external) substrates to the products of the reactions 
(Hulhoven et al., 2005; Bernard and Bastin, 2005). 
 
Regarding the kinetic model structure, its choice is 
made particularly difficult by the lack of detailed 
knowledge about the cell culture under consideration 
and the profusion of kinetic laws, which can be of 
various types, ranging from biologically-inspired to 
purely black-box models. 
 
The most widespread black-box models are the 
artificial neural networks (Oliveira, 2004). These 

models are often preferred when bioprocess 
knowledge is missing. However, the selection of the 
appropriate type of neural networks and the choice of 
the network size are difficult tasks. 
 
There is a vast array of biologically-inspired kinetic 
laws, among which it is not always easy to 
discriminate the appropriate model structure for the 
problem under consideration. These laws are 
nonlinear and, in most of cases, non linearizable 
(with respect to the parameters), so that time-
consuming optimization and local optima are 
common problems. 
 
In order to keep the physical interpretation of the 
parameters while avoiding the classical problems 
associated with biologically-inspired laws, (Bogaerts 
et al., 1999) have proposed a kinetic model structure 
allowing the description of activation and /or 
inhibition effects of macroscopic species in the 
culture. This structure is linearizable with respect to 
the parameters, a property which allows the 
determination of unique estimates through the 
solution of a least-squares problem. 
The objectives of this study are to further generalize 
this model structure to include saturation effects 
(besides activation and inhibition), and to carefully 
test the generalized model structure with simulated 
and real-life experimental data. Especially, attention 
is focused on a systematic identification procedure, 
alleviating identifiability problems. 
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2. BIOPROCESS MODELING 
 
A general approach to describe the dynamics of a 
bioprocess has been proposed in (Bastin and 
Dochain, 1990). It consists of the system of mass 
balances for the macroscopic species involved in a 
reaction scheme. The expression of such a reaction 
scheme is the following: 

[ ]Mk
k

k

k Pj
jkj

Ri
iki ,1)( ,, ∈− �→�

∈∈

�� νν
ϕ

 (1) 

where M is the number of reactions, kϕ  the kth 
reaction rate, iξ  the ith component, ,i kν  the 

corresponding pseudo-stoichiometric (or yield) 
coefficients (positive when associated to a 
component which is produced, negative when it is 
consumed), kR  the kth set of reactants and catalysts 
indices and kP  the kth set of products indices. 
 
The system of mass balances for each of the N 
components i�  can be written in the following 
matrix form: 

)()()()(),(
)(

ttttDt
dt

td QF��K� −+−= ϕϕϕϕ  (2) 

where N∈ ℜ�  is the vector of concentrations, 
∈ ℜNxMK  is the pseudo-stoichiometric coefficients 

matrix ( N M≥ ), M∈ ℜ� is the vector of reaction 
rates, D ∈ ℜ  is the dilution rate, N∈ ℜF  is the 
vector of external feed rates, N∈ ℜQ  is the vector of 
gaseous outflow rates. 
 
In (Bogaerts et al., 1999) a kinetic model structure 
allowing the representation of the activation and 
inhibition effects is proposed: 
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where 0>j�  is a kinetic constant, 0>hj�  the 

activation coefficient associated to the component h 
in reaction j, 0≥lj�  the inhibition coefficient of the 

component l in reaction [ ]1,j M∈ . I is the set of all 

the components indices while *
jR  is the set of 

reactants, catalysts and auto-catalysts components. 
 
The main advantage of this structure is the possibility 
to develop a systematic identification procedure, 
which proceeds in 2 steps. 
 
The first step is a unique least squares estimation 
based on the linearization of the kinetic model 
structure (3) 
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where estimates )(ˆ ,ksj t�  can be obtained by 

differentiating smoothing splines applied to the 
measured concentration vector �̂ . 

In the second step, the kinetic coefficients together 
with the initial conditions are identified starting from 
the initial estimates determined in the previous step. 
This step relies on the complete simulation model 
{(2), (3)} and a maximum-likelihood estimator 
taking the measurement errors into account (Bogaerts 
et al., 2003). 
 

3. A GENERAL KINETIC MODEL 
 
The kinetic model structure (3) is not able to 
represent saturation effects. The model is forced to 
mimic this behaviour by an inhibition compensating 
a stronger activation. This, of course, alters the 
physical interpretation of the parameters. To 
represent saturation by a culture component, the idea 
is to replace the activation function hj

h
�
�  by 

( ) hjhhj te
��� )(1 −− , where 0≥hj�  is the saturation 

coefficient of the component h in reaction j. The 
kinetic model structure therefore becomes 
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where 0* >j�  is a kinetic constant, 0≥hj�  the 

activation coefficient associated to the component h 
in reaction j, 0≥hj�  the saturation coefficient of the 

component h in reaction j, and 0≥lj�  the inhibition 

coefficient of the component l in reaction j. 
 
Note that the original activation function hj

h
�
�  is 

actually a particular case of the generalized structure. 
Indeed, when the saturation coefficient is small 
( <<hj� ), the Taylor series expansion of ( ))(1 thhje ��−−  

around 0  and limited to the first order, is given by 
( ) )(1 )( te hhj

thhj ��
�� ≈− −  (6) 

 
Hence, when <<hhj�� , the generalized kinetic model 

can be expressed as follows: 
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which corresponds to the expression (5) where 
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This property is used in the following section in order 
to initialize the identification procedure, i.e., to 
systematically determine a first estimation of the 
parameters. 
 

4. IDENTIFICATION PROCEDURE 
 
Besides the ability of model structure (5) to describe 
various effects (activation, inhibition, saturation), it is 
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desirable to establish a systematic parameter 
identification procedure (in constrast with Monod-
like or neural network models, for which such a 
procedure is quite difficult to suggest). The idea is to 
build upon the procedure described in Section 2, and 
originally developed for model (3). 
 
If we first assume weak saturation effects ( <<hj� ), 

the generalized kinetic model structure (5) can be 
approached by the original model structure (3). 
Hence, the procedure of Section 2 can be used to 
determine a first estimation of the original parameters 

j� ,
hj� ,

lj� . Based on these parameter values and a 

selection of values for 
hj� , the parameters *

j�  can be 

computed according to (9). Starting from these initial 
parameter estimates (which hopefully, are not so far 
away from the optimum), nonlinear identification of 
the parameters *

j� ,
hj� ,

lj� . and 
hj�  as well as the 

initial component concentrations (initial conditions of 
the mass balance equations) can then be achieved. 
 
The next subsections describe in more details these 
several estimation steps. 
 
4.1 Initial estimation 
 
The kinetic model structure (3) can be linearized 
w.r.t. its parameters thanks to a logarithmic 
transformation (4). The resulting formulation allows 
a linear least squares estimation of the kinetic 
coefficients (which necessarily exists, is unique and 
independent of any initial guess): 
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and under the constraints [ ] 0≥jljh ��
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To estimate the reaction rate vector )(ˆ ,kst� , it is 

useful to partition the vector [ ]T
b

T
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the corresponding partition of [ ]T
b

T
a
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involves a matrix MxM
a ℜ∈K of full rank 

( Ma =)(rank K , assuming rank( ) M=K ). On the 

basis of this partition, )(ˆ ,kst�  can be computed as 
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where the estimate of the derivative dttd ksa /)( ,�  can 

be evaluated by numerical differentiation of a 
smoothing spline (generally speaking, an 
interpolation model taking the measurement noise 
into account) of the vector )(ta� . 

 

4.2 A special treatment for 
hj�  and *

j�  

 
As mentioned previously, 

hj�  values have to be 

sufficiently small in order to allow the approximation 
of the activation function ( ))(1 thhje ��−−  by its Taylor 
series expansion limited to the first order around 0  
(6). Hence, we make an initial guess of these 
parameters by considering that we accept ( )100 x− % 
of disparity between the nonlinear activation function 
and its linear version. So, we compute 

hj�  values on 

the basis of the following equation 
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Approaching ( ))(1 thhje ��−−  by its Taylor series 
expansion limited to the second order around 0 , we 
obtain 
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which leads to the following expression of 
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In turn, a first estimation of *
j�  can be deduced from 

(9): 
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4.3 Markov Estimation 
 
At this stage, a first estimation of all the parameters 
has been obtained. These parameter values are 
usually not accurate enough to be accepted as such, 
but can serve as starting point in a nonlinear 
identification procedure. This identification step 
concerns both the parameter set and the initial 
conditions of the experimental runs used to build the 
database. Indeed, these initial conditions are 
necessary to integrate in time the simulation model 
(2), (5), which consists of a nonlinear differential 
equation system of the form 

));(),((
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dt
td =  (20) 

where ( ) ( )T Tt t=x �  is the state vector containing the 
concentrations of the components involved in the 
reaction scheme ; [ ]( ) ( ) ( ) ( )T t D t t t=u F Q is the 

input vector containing the dilution rate, the external 
feed rates and the gaseous outflow rates; 

[ ]* (0) 1,T T
j h j l j h j j M� 	= ∈
 �� � � � � �

� � �
is the 

vector of the parameters to be identified (kinetic 
coefficients and initial concentrations); f  is the 
model structure corresponding to relations (2)and (5). 
Let ));(),(,()( �xu� tttgt = be the solution (generally 
obtained by a numerical integration algorithm) of the 
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ordinary differential equation system (20) starting 
from the initial concentrations )0(� . 
On the basis of sampled measurements 

ksysksksksm ttg ,,,,,, ));0(),(,( ε+= �xuy  (21) 

corrupted by a white measurement noise 
ksy ,,ε , 

normally distributed with zero mean and covariance 
matrix ,s kQ , the maximum-likelihood estimate of �  

can then be deduced from a non linear Markov 
estimator  
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under the constraints ˆ 0≥�  (23) 
The initial guess of �  consists, on the one hand, of 
the first estimate of the kinetic parameters deduced 
from the previous estimation steps and, on the other 
hand, of the measurements of �  at the initial time 
(which are not "exact" since there are measurement 
errors). 
 
The covariance matrix of the parameter estimation 
errors can also be estimated in this last step (Bogaerts 
et al., 2003): 
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This Jacobian is obtained by solving (together with 
the simulation model (21)) the sensitivity equations 
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with the initial condition 
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where 
0θG  is a matrix whose elements are all equal 

to zero except the ones corresponding to the partial 
derivative of the elements of �x ∈)0( , these partial 
derivatives being equal to 1. The Jacobian 

)ˆ);0(),(,( ,, �xuG sksks ttθ  involved in relation (24) is 

thus obtained by evaluating the numerical solution 
));0(),(,( �xuG ttθ  of the system (20), (26) for ,s kt t=  

and �� ˆ= . 
 
At the end of this identification step, all the 
parameters have been estimated as accurately as 
possible but the model has to be validated through 
direct and cross validation tests and the study of the 
covariance matrix of the parametric errors. This latter 
study usually leads to parameters reduction. This is 
the subject of the following subsection. 
 

4.4 Parameter reduction 
 
The study of the covariance matrix (24) can help 
reducing the number of parameters. Indeed, hardly 
assessable coefficients can be suppressed after 
checking that their information is covered by other 
parameters. In concrete terms, coefficients with high 
variance and a sufficient correlation with other 
parameters can be cancelled out (the thresholds have 
to be chosen by the user). This cancellation reduces 
the number of parameters, and in turn the effect of a 
component (e.g. activation, saturation or inhibition). 
 
However, considering the structure of the activation 
function (((( )))) hjhhj te

��� )(1 −−−−−−−− , the cancellation of a 
saturation coefficient implies the absence of 
activation. So, if a component activates a reaction 
with no saturation effect, the saturation coefficient 
should be cancelled out while keeping an activation 
effect. The easiest way to achieve this is to come 
back to the original model structure, i.e. to replace 
the activation/saturation function (((( )))) hjhhj te

��� )(1 −−−−−−−−  by 
the original activation function hj

h
�
� . 

 
However, all the parameters cannot be cancelled out 
without a careful check. Saturation and inhibition 
coefficients are usually strongly correlated. When 
saturation and inhibition parameters of a component 
display high variance and correlation, the most 
inaccurate parameter has to be eliminated. 
 
The following parameter reduction procedure is 
therefore proposed: 
♦ First, among all the above-mentioned parameters, 

the parameters with a variance and a covariance 
respectively superior to 310  and 610  are cancelled 
out. 

♦ Then, the remaining parameters are re-estimated 
and the parameters with a variance and a 
covariance respectively superior to 100 and 50  are 
cancelled out. 

♦ The same operation is repeated with variance and 
covariance levels of 4  and 2 , respectively. 

♦ Finally, a last round is achieved with variance and 
covariance levels of 5.1  and 1, respectively. 

Note that the thresholds, which seem, at first sight, to 
have been determined rather arbitrarily, are 
dimensionless. Indeed, the parameter positivity is 
ensured through a logarithmic transformation of the 
parameters and the elements of (22) can therefore be 
regarded as relative errors. 
 
In conclusion, the overall procedure has a number of 
steps, which, in our experience, are necessary to 
efficiently isolate hardly assessable parameters. It is 
important to note that an inaccurate estimation of one 
parameter can have a significant influence on the 
estimation of other parameters, i.e., it can lead to 
significant variance and correlation of parameters, 
which are essential in the model. We now turn our 
attention to a few case studies. 
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5. CASE STUDIES 

 
In this section, three applications are considered, two 
in simulation, and one based on real experimental 
data. 
 
5.1 A simple microbial growth 
 
The following reaction scheme is considered: 

XSk
ϕ

→  (28) 
where S  denotes the substrate concentration, X  the 
biomass concentration, k  the pseudo-stoichiometric 
coefficient and ϕ  the reaction rate which follows a 
theoretical Monod-type kinetic law: 

max

( ) ( )
( ( ), ( ))

( ) ( )m X

S t X t
S t X t

K S t K X t
ϕ µ=

+ +
 (29) 

The numerical values of the model parameters are the 
following: 

111 )10(5.0 −= cellgk , 
112 −= glK m , lcellKX /1011==== , 

and 1
max 4.1 −= hµ . 

 
Simulation of this model in various conditions allows 
the creation of a database, which consists of 4 
batches of 50 hours which have the same initial 
concentration in biomass ( 111

0 104.1 −= lcellX ) and 

different initial concentrations in substrate 
( ]30122418[0 ====S  )( 1−−−−gl ). These latter 

concentrations are chosen in order to ensure 
significant substrate saturation at the beginning of the 
experiments and a strong biomass saturation at the 
end. The sampling time for the simulated substrate 
and biomass concentration measurements is 2 hours. 
Among the different experiments, the first two are 
used for the identification while the others are kept 
for cross- validation, to test the generalization of the 
models. 
 
The direct and cross-validation results are presented 
in Table 1. We observe that the original kinetic 
structure gives good results in validation, but that it 
artificially represents the saturation effects by a 
strong activation factor compensated by a non 
negligible inhibition. When using the generalized 
structure, we observe that an initial 95% confidence 
in the absence of saturation leads back to the original 
structure, whereas for x = 70% and 50%, we observe 
saturation effects without any inhibition and the same 
minimum of the cost function. Hence, these two 
starting points lead to the same model, which gives 
significantly better results in direct and cross 
validation as well as better standard deviations in 
parameters than the original structure. 
 
5.2 An animal cell culture 
 
The second simulation example involves a more 
complex model of animal cell cultures presented in 
(Perrier et al., 2000), i.e. human embryo kidney cell 
cultures. The corresponding macroscopic reaction 
scheme is given by 

LXG

XG

3222

21

2

1

νν

ν
ϕ

ϕ

++++→→→→

→→→→  (30) 

where G  denotes the glucose concentration, X  the 
biomass concentration and L  the lactate 
concentration. 

ijν  are the pseudo-stoichiometric 

coefficients and iϕ  the reaction rates which follow 
Monod-type laws:  

LK
K

GK
G

X
L

L

R
m ++++++++

==== 11 µϕ  (31) 

GK
G

X
F

m ++++
==== 22 µϕ  (32) 

The numerical values of the model parameters are the 
following:

XG mmolmmol /7.121 ====ν , 
XG mmolmmol /5.1822 ====ν  

XL mmolmmol /1232 ====ν , 110 −= mmollK R
, 150 −−−−==== mmollK L

, 
110 −−−−==== mmollK F
, 1

1 055.0 −−−−==== hmµ  and 1
2 045.0 −−−−==== hmµ . 

 
The simulated database consists of 9 fed-batch 
cultures of 110 hours with the same initial 
concentrations in glucose and lactate 
( lmmolLlmmolG /13.0,/21 00 == ) but different initial 

concentrations in biomass ( ]8.04.018.0[0 ====X  

lmmol / ) and different profiles of the external feed 
rate F  ( [[[[ ]]]] )/(01.01.05.0 hlttt ). The sampling time 
for the simulated measurements is 10h. Among the 
different experiments, only three are considered for 
the identification while the others are kept for cross-
validation. 
 
The direct and cross-validation results are presented 
in Table 2. We see that the generalized model gives 
much better results than the original one. However, 
we observe three different local minima. An 
initialization with x = 95% or 70% does not capture 
the two-substrate saturation, whereas x = 50% does. 
This demonstrates the existence of local minima and 
the need for a multistart strategy (note that in contrast 
with a general multistart strategy, we can use a single 
parameter x to investigate various scenarios). 
 
5.3 An experimental process (B. subtilis) 
 
This bioprocess consists of a culture of bacteria (B. 
subtilis), which produce enzyme by consumption of 
two substrates (carbon and nitrogen sources). Seven 
fed-batch experiments with constant feed rate have 
been carried out to build an experimental data base. 
The culture time is generally 39h and the sampling 
period is 4h. All the experiments present similar 
initial concentrations in substrates (Table 3) but 
differ in the substrate concentrations in the feed 
solution (fresh medium). Available experimental data 
contain the concentration measurements of the four 
main components: biomass (g/l), nitrogen (g/l), 
enzyme (axu/ml i.e. activity of xylanase/ml) and 
carbon (expressed in (g/l) of equivalent glucose). A 
reaction scheme has been determined in (Grosfils et 
al., 2004): 
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using a systematic procedure for selecting the most-
likely C-identifiable reaction scheme (Hulhoven et 
al., 2005). 

non lysedX −
, 

lysedX , E, C and N are the non 

lysed cells, lysed cells, enzymes, carbon and nitrogen 
concentrations and the cell lysis reaction rate is 
assumed to be proportional to the non lysed cells 
concentration, i.e.,

3 0.051 non lysedXϕ −= . 

 
We observe better results in direct and cross 
validation (Table 4) for the proposed structures (3) 
and (5), as compared to a classical Monod-type 
representation of the kinetics. The proposed 
structures give very similar results in this application, 
where saturation effects are not significant. 
 

6. CONCLUSION 
 
In this study, a general kinetic model structure is 
presented, which describes activation, saturation and 
inhibition effects of the main components of a 
culture. Besides its generality (flexibility in 
representing a range of behaviours), the main 
advantage of this model structure (in contrast with 
classical Monod-type laws) is that it is amenable to a 
systematic identification procedure. This latter 
procedure combines various ingredients including 
initialization, a step-by-step nonlinear estimation 
(including a natural multistart strategy based on the 
exploration of a single parameter) and model 
reduction based on the analysis of the 
variance/covariance of the model parameters. 
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Table 3: Case study 3: Initial concentrations and 
feeding concentrations in substrates (g/l) 

(g/l) [C]init [N]init [C]feed [N]feed 
1 11.6 0.4 166.9 10.8 
2 11.3 0.5 100 6.7 
3 10.1 0.5 33.8 2.7 
4 11.4 0.6 100 6.7 
5 11.1 0.5 33.8 10.8 
6 11.7 0.6 67.5 6.7 
7 11.4 0.5 33.8 10.8 
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