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Abstract: Network analysis was performed on the metabolic network of skeletal
muscle cells where metabolites are denoted as nodes and reactions are denoted
as connections. We also implemented an alternative approach that augments the
metabolic network into an ”interaction network” that represents influences that
a certain metabolite can exert on others. With this novel method, key elements
and modules of the system were identified with an emphasis on their regulatory
function rather than just their contribution to material (carbon) flow within the
pathways. We have utilized several different network analysis software packages
to identify key metabolites, and motifs and investigated the modularity of these
networks. Copyright c© 2007 IFAC
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1. INTRODUCTION

Metabolic pathways are complex networks where
each metabolite is connected to a handful of others
via biochemical reactions. The metabolism exerts
control over the network through regulation of
the expression and activation of certain enzymes,
leading to changes in mass fluxes. Mathemati-
cal models of cellular pathways should take into
account such regulatory systems to capture the
essential dynamics of the system. Often limited
information and data are available about these
mechanisms for modeling purposes. Key metabo-
lites and regulatory components of the system
can be identified via a comprehensive network
analysis.

Diabetes is estimated to affect 6% of the adult
population, afflicting over 200 million people
worldwide by the end of the decade and Type
2 diabetes accounts for about 90 to 95 percent
of 20.8 million diagnosed cases in the U.S. (CDC
2005). A better understanding of the alterations
in insulin utilization in tissues by high levels of
free fatty acids (FFA) will help identify the key
steps to be targeted for treatment of Type 2 dia-
betes. Elevated plasma FFA and intracellular lipid
concentration are the primary suspects for inhibit-
ing glucose transport and causing insulin resis-
tance in liver and muscle tissue (Sindelar et al.
1997, Dresner et al. 1999). Recent research has re-
vealed important details about glucose and insulin
metabolism and the effects of plasma FFA con-
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Fig. 1. Interaction network of skeletal muscle energy metabolism and its most dominant motif

centrations, however, detailed metabolic networks
and dynamic models describing these phenomena
are open research problems. To our knowledge,
this research has been the first integrated ap-
proach utilizing a variety of system analysis and
complex network analysis techniques to formulate
and analyze metabolic networks and application
of these methods to study the energy metabolism
of muscle cells. The metabolic network of the
pathways involved in the energy metabolism of
muscle cells has been constructed to illustrate
and test the methods and tools developed. Sys-
tem analysis has been performed to determine
the overall connectivity within the system, and
to identify key metabolites, regulatory structures
and functional modules of the system.

We expect that these network development, mod-
eling and system analysis tools will generate inter-
esting research hypotheses for experimental and
clinical studies on obesity and Type 2 diabetes,
and reduce the experimental effort by conducting
in-silico studies.

2. DEVELOPMENT OF METABOLIC
NETWORKS FOR MODELING THE

ENERGY METABOLISM OF MUSCLE CELLS

Metabolic networks can be visualized as nodes
(substrates) connected to one another through
links (metabolic reactions). The physical link is

the temporary educt-educt complex in which en-
zymes provide the catalytic scaffolds for the re-
actions that yield products which in turn can
become educts for subsequent reactions.

A reaction network of major pathways involved in
energy metabolism of muscle cells has been con-
structed (Salway 2004). The network topology has
been analyzed to investigate its modularity and
to identify critical nodes (metabolites). Dominant
motifs are determined by comparing the frequency
of various functional motifs defined to those in
randomized networks.

An alternative representation of the metabolic
system was used, where the metabolic network
was reconstructed as an ”interaction network”.
Energy metabolism of skeletal muscle cell is a
complex network where each metabolite can di-
rectly or indirectly influence the level of a hand-
ful of others via biochemical transformations and
activation/deactivation of reactions. By utilizing
current knowledge on such reactions and processes
involved in the energy metabolism of skeletal mus-
cle cells, we have developed the ”interaction net-
work” that maps the direct or indirect influences
between metabolites (Roden et al. 1996, Opara
2005, Salway 2004)(Fig. 1). The influence of
metabolite A on metabolite B is represented as an
arrow from metabolite (node) A, pointing towards
metabolite (node) B. The metabolites with key
roles within the system were identified according
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to their connection properties. Network motifs
of the interaction network have been identified.
Consistency of the results based on module and
connectivity determination and motif identifica-
tion has been assessed.

3. ANALYSIS OF METABOLIC NETWORKS
OF SKELETAL MUSCLE CELLS

Analysis included identification of key metabolites
according to their connectivity properties within
the network, identification of motifs of reaction
and interaction network and investigation of mod-
ularity of metabolic networks. Software used in-
clude mfinder (Kashtan et al. 2002) to find net-
work motifs and UCInet (Borgatti et al. 2002)
to analyze basic properties of the network and to
identify its modules.

3.1 Identification of network motifs

Certain sub-systems (composed of metabolites,
biochemical reactions and interactions) within a
metabolic network may serve specific functions in
the system. Such sub-systems should be incorpo-
rated properly into the mathematical model. In
case of insufficient experimental data, cybernetic
modeling principles can be used to introduce the
function of a certain segment into the mathe-
matical model. We have identified motifs of the
metabolic network, the patterns of interconnec-
tions occurring at numbers that are significantly
higher than those in randomized networks. The
significance of these structures raises the question
of whether they have specific roles in the network.
If they do, they might be used to understand the
network dynamics in terms of elementary com-
putational building blocks. Different networks be-
longing to a certain class (e.g. biological systems)
may share the same unique network motifs. There-
fore motifs can define broad classes of networks,
each with specific types of elementary structures.
Bi-fan and feed-forward loop motifs have been
observed as common motifs of various biological
systems (Milo et al. 2002).

Algorithm for motif identification in a network:

• The network is scanned for all 13 unique 3-
node and 199 unique 4-node subgraphs.

• A randomized network for the same size and
connection properties as the real network
under investigation is developed.

• The number of occurrences of each subgraph
in the real network is compared to the num-
ber of occurrences of the same subgraph in
randomized networks of the same size and
connection properties.

• Statistically significant subgraphs are deter-
mined as network motifs.

Motifs of the reaction network give insight to
the common structures made by the paths of
material (carbon) flow. 4-node, linear, irreversible
structure is found to be the only significant motif,
which points at the abundance of such structures
within individual pathways (e.g. glycolysis, beta-
oxidation). Glycogen metabolism has not been
included in this analysis since it obviously yields
the reversible linear motifs in large numbers and
makes motifs of glycolysis, beta-oxidation and
mitochondrial metabolism insignificant.

Since the interaction network maps the influences
that a certain metabolite can exert on another,
it represents regulation rather than just biochem-
ical transformations within metabolic pathways.
Therefore, the motifs identified in interaction net-
work may potentially correspond to regulatory
components in the system. The motifs we have
identified for the interaction network of skeletal
muscle cells are listed in Table 1.

Table 1. Number of occurrences (Nreal)
and significance (Z-score) of dominant

motifs

Motif ID Nreal Z-score

46 25 8.22

110 40 5.34

238 17 2.29

94 139 3.58

414 22 4.33

328 155 3.39

3.2 Identification of key metabolites according to
their connection properties within the reaction
network and interaction network

The metabolites with key roles within the system
were identified according to their connection prop-
erties. We have analyzed the degree of emission
(number nodes that a certain node can access)
and the degree of reception (number of nodes that
can access a certain node) after n consecutive con-
nections along the shortest path from the starting
metabolite to the target metabolite.

A connection within the reaction network refers to
a biochemical transformation, therefore, degree of
emission represents the significance of a metabo-
lite in terms of its ability to provide carbon for the
production of different metabolites and degree of
reception refers to the number of metabolites that
play a role in producing a certain metabolite by
providing carbon.

When n=1, the significance of a metabolite is
characterized according the number of metabo-
lites it directly provides with carbon and number
of metabolites it directly receives carbon from via
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a single biochemical reaction. In this case, the
degree of emission and reception does not exceed
3 for any metabolite except for Acetyl-CoA which
has a reception degree of 11 since it is directly pro-
duced from numerous steps within beta-oxidation
pathway. By setting n=3 we define domains of
metabolites to which a certain metabolite pro-
vides carbon and from which a certain metabolite
receives carbon (Table 2, 3).

Table 2. Degree of emission and respec-
tive ranks within reaction network for
n=3 (m: mitochondrial, rank: low num-
ber refers to high emission relative to

other metabolites)

Metabolite Degree: Rank:

Emission Emission

Acetyl-CoAm 5 20-31

Citrate 5 20-31

Glucose 6-phosphate 7 5-12

Fructose 6-phosphate 8 1-4

3-ketoacyl-CoA 7 5-12

Table 3. Degree of reception and respec-
tive ranks within reaction network for

n=3

Metabolite Degree: Rank:

Reception Reception

Acetyl-CoAm 24 1

Citrate 20 2

Glucose 6-phosphate 8 6-7

Fructose 6-phosphate 9 5

3-ketoacyl-CoA 3 25-69

For n=3 acetyl-CoA again has a very high degree
of reception and since citrate is directly formed
by the reaction of Acetyl-CoA and oxaloacetate
it also has a high degree of reception through
Acetyl-CoA. As indicated from high degree of
emission and reception, glucose 6-phosphate con-
tributes to the carbon flow to different metabo-
lites significantly, which is indicative of its role
as the central metabolite between glycolysis and
glycogenesis pathways. Fructose 6-phosphate also
has high degree of emission and reception due
to its proximity to glucose 6-phosphate in the
metabolic network. 3-ketoacyl-CoA, a metabolite
in the beta-oxidation pathway, has a high degree
of emission since it is a direct provider of carbons
for the production of acetyl-CoA.

Since a connection within the interaction network
corresponds to direct or indirect influence of a
certain metabolite on another, degree of emission
represents number of metabolites whose levels can
be influenced by a certain metabolite and degree
of reception represents number of metabolites that
influence the level of a certain metabolite after
n influences. When n=1, immediate influences
are highlighted. When n=3, a wider domain of
influence is displayed.

The initial analysis was done by setting n=1. Co-
factors such as NADH, NAD+, FAD and FADH2,
were found to have high degree of emission and
reception as expected since they appear as sub-
strates or products in numerous reactions (Table
4, 5).

Table 4. Degree of emission and respec-
tive ranks within interaction network
for n=1 (m: mitochondrial, c: cytosolic)

Metabolite Degree: Emission Rank: Emission

Acetyl-CoAm 2 42-51

NAD+
m 22 1

NADHm 12 3

FADm 19 2

FADHm 4 14-17

ADPm 9 4

ADPc 8 5

O2 5 9-13

X 7 6

Table 5. Degree of reception and respec-
tive ranks within interaction network

for n=1

Metabolite Degree: Reception Rank: Reception

Acetyl-CoAm 12 3-4

NAD+
m 15 1

NADHm 14 2

FADm 10 5

FADHm 12 3-4

ADPm 6 6-9

ADPc 5 10-17

O2 3 23-29

X 4 18-22

Setting n=3 reveals the importance of dissolved
oxygen and metabolite X in the system (Table 6,
7). The significance of oxygen and metabolite X
can be observed by looking at their rapid climb
in the ranks when n is increased from 1 to only
3. Having a large domain of metabolites under
which a certain metabolite is affected, may lead
to the conclusion that the levels of this metabolite
is tightly regulated by several other metabolites.
Having a large domain of metabolites over which a
certain metabolite exerts influence may lead to the
conclusion that this metabolite is involved in the
regulation of several other metabolites. In both
cases, we can hypothesize that this metabolite
serves a key role within the system.

Table 6. Degree of emission and respec-
tive ranks within interaction network

for n=3

Metabolite Degree: Emission Rank: Emission

Acetyl-CoAm 36 33

NAD+
m 47 6

NADHm 46 7-8

FADm 51 5

FADHm 54 1

ADPm 52 2-4

ADPc 46 7-8

O2 52 2-4

X 52 2-4
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Fig. 2. Modules of interaction network represented on reaction network (Numbers in parenthesis refer to
module numbers)

Table 7. Degree of reception and respec-
tive ranks within interaction network

for n=3

Metabolite Degree: Reception Rank: Reception

Acetyl-CoAm 43 15-16

NAD+
m 53 4-5

NADHm 53 4-5

FADm 39 25

FADHm 46 8

ADPm 59 1

ADPc 25 52-54

O2 54 2-3

X 45 9-12

3.3 Occurrences of highly connected metabolites
in network motifs

Highly connected metabolites (Table 4 and 5) of
the interaction network are likely to be members
of a large number of network motifs. The following
analysis reveals the number of occurrences of each
highly connected metabolite in each previously
defined network motif.

Table 8. Occurrences of highly con-
nected metabolites in network motifs

Motif ID Nreal NAD+
m NADHm FADm

48 25 10 3 8

110 40 13 18 10

238 17 5 5 0

94 139 60 12 64

478 22 10 9 8

414 155 77 2 65

328 231 37 101 14

Total 212 150 169

Table 8 shows that the certain highly connected
metabolites appear mostly in certain network mo-
tifs (NAD+

m in motifs 94, 414 and 328, NADHm

in motif 328 and FADm in motifs 94 and 414).
Since these metabolites usually perform a partic-
ular task in the system, the motifs that they are
involved in are likely to be the structures repre-
senting these tasks, pointing out to the possibility
that network motifs can be functional units.

3.4 Identification of clustering within the network
and identification of modules

We have analyzed the reaction network and inter-
action network to find a community structure in
which network nodes are joined together in tightly
knit groups between which there are only a few
loose connections. A module of reaction network
represents a group of metabolites that take part in
a large number of biochemical reactions between
each other compared to metabolites out of that
group. Therefore modules of the reaction network
can represent the metabolic pathways (e.g. glycol-
ysis, glycogenesis) of the system.

Since the interaction network represents the in-
fluences that the metabolites exert on each other,
identification of clusters may reveal functional
modules, which may not refer to a certain path-
way (e.g. glycolysis) but a collection of metabo-
lites from different pathways working together
to perform a specific task. A representation of
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the reaction network numbered according to the
functional modules found from interaction net-
work displays the remoteness of the members of
a functional module (Figure 2). Two important
members of module number 3 are glucose and
palmitate, which are shown to operate closely and
influence each other readily within the system.
Different members of the beta-oxidation, glycol-
ysis pathways and even citric acid cycle can po-
tentially play a role in regulating the utilization of
glucose and palmitate based on their occurrence
in the same functional modules.

3.5 Investigation of key metabolites according to
their influence on different functional modules

Metabolite X and oxygen have been identified
as key metabolites according to the number of
metabolites that may influence them and the
number of metabolites which are likely to be influ-
enced by them. Availability of oxygen is already
known to be an important determinant of the
system. To determine whether metabolite X may
have an important role within the system, we
have analyzed the domain of metabolites that may
be influenced by metabolite X and oxygen and
domain of metabolites which are likely to influ-
ence them to observe whether these domains con-
tain metabolites from different functional mod-
ules. Both oxygen and metabolite X interact with
a similar set of metabolites, which contains mem-
bers from all functional modules and therefore
metabolite X is potentially a key metabolite of
the system.

4. CONCLUSION

Apart from the traditional method of representing
metabolites and reactions as nodes and connec-
tions within a network, an interaction network
was developed, which characterizes the interac-
tions between metabolites rather than just bio-
chemical transformations between them. Several
techniques were applied for the analysis of reac-
tion network and interaction network to identify
key metabolites, network motifs, and functional
modules. Results from different techniques were
compared with each other to understand the role
of key metabolites in regulatory motifs, and to
differentiate the significance of key metabolites
according to their roles in individual functional
modules.

Energy metabolism of skeletal muscle was investi-
gated with an emphasis on the interplay between
the utilization of glucose and FFA. The techniques
developed for construction and investigation of
metabolic networks were used to identify the key
metabolites, modules and regulatory components

of the system. Identification of such components
and metabolites can yield a better understanding
of the alterations in insulin utilization in tissues
caused by high levels of FFA and will help identify
the key steps to be targeted for treatment of Type
2 diabetes.
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